首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In freshwater ecosystems, abiotic factors such as flow regime and water quality are considered important predictors of ecosystem invasibility. The aim of this study was to investigate the critical swimming capacity and metabolism of the eastern mosquitofish, Gambusia holbrooki, focusing on sex and size effects, to evaluate the influence of water flow on its invasive success. Specimens of mosquitofish were captured from the Ter Vell lagoon (L'Estartit, north‐eastern Spain) in July 2014, and we measured the critical swimming speed (Ucrit) and oxygen consumption of individual fish (30 females and 30 males) using a mini swim tunnel. The mean Ucrit of this poeciliid fish was estimated at 14.11 cm·s?1 (range = 4.85–22.26), which is lower than that of many other fishes of similar size and confirms that this species is limnophilic and its invasive success might be partially explained by hydrologic alterations. However, the Ucrit and maximal metabolic rate vary markedly with fish size and sex, with males having much higher values for the same body mass, and thus probably being more resistant to strong water flows. Multiple regression models illustrate that multivariate analyses might increase the predictive power and understanding of swimming performance and metabolic traits, compared to results from conventional simple regressions.  相似文献   

2.
This study documented the swimming capacity of a large ambush predator, Murray cod Maccullochella peelii, endemic to the Murray‐Darling Basin, Australia. It was evident that the species is a swimming generalist, maintaining moderate ability across all aspects of the swimming capacity parameters that were investigated. For instance, the species was capable of prolonged swimming performance (critical swimming speed, Ucrit: absolute, 0.26–0.60 m·s?1, relative, 1.15–2.20 BL s?1) that was inferior to active fish species, but comparable with other ambush predators. The species had low energetic demands, maintaining a low mass‐specific standard (21.3–140.3 mg·h?1 kg?1) and maximum active metabolic rate (75.5–563.8 mg·h?1 kg?1), which lead to a small scope for activity (maximum active metabolic rate–standard metabolic rate; 1.4–5.9). They were reasonably efficient swimmers (absolute and relative optimal swimming speed, 0.17–0.61 m·s?1 and 0.77–1.93 BL·s?1, respectively) and capable of repeat bouts of prolonged performance (recovery ratio = 0.99). Allometric changes in aspects of swimming capacity were realised with body mass, whereas broad swimming capacity was maintained across a wide range of temperatures. The swimming capacity demonstrated by Mpeelii reflects a sit‐and‐wait foraging strategy that seeks to conserve energy characteristic of ambush predators, but with distinct features (e.g., lack of fast‐start ability) that may reflect their evolution in some of the world's most hydrologically and thermally variable rivers.  相似文献   

3.
Farmed gilthead sea bream, Sparus aurata, frequently escape from the sea cages and interact with wild populations. The impact of these interactions on the wild populations will depend, in part, on differences in performance of the bream. This study compared the swimming performance of the wild and farmed fish in a current channel. The absolute critical swimming speed (Ucrit) increased with increasing size while the relative Ucrit decreased. Even at the same length there were noticeable performance differences between the individuals. The wild sea bream have significantly higher (P<0.05) absolute Ucrit performance (0.86±0.01 m s−1) than the farmed fish (0.79±0.01 m s−1) and significantly higher (P<0.05) relative Ucrit performance (4.52±0.05 BL s−1) than the farmed fish (4.21±0.05 BL s−1). The present study suggests that cultured sea bream may not have the ability to compete with wild sea bream in native seawaters.  相似文献   

4.
Fish generally perform routine swimming behaviors during food digestion; thus, changes in swimming performance and adjustments to spontaneous behavior resulting from digestion can have important ecological significance for wild fishes. The effects of feeding on metabolism, spontaneous activity, fast-start escape movement, and critical swimming speed (U crit) were investigated in five cyprinids with different habitat preferences, specifically the Chinese crucian carp (Carassius auratus), common carp (Cyprinus carpio), black carp (Mylopharyngodon piceus), Chinese bream (Parabramis pekinensis), and qingbo (Spinibarbus sinensis). Generally, species in still water exhibited increased feeding metabolism, whereas species in flowing water showed higher spontaneous activity and locomotion performance. Digestion had no significant effects on either spontaneous activity or fast-start escape movement in the five cyprinids. These results could be due to the small meal sizes (approximately 2% body mass) and active foraging modes of cyprinids. The changes in aerobic swimming performance due to feeding were more complex. No effect of digestion on U crit was observed in crucian carp (still water, high feeding metabolism, and low U crit), common carp (widely distributed, high feeding metabolism, and high U crit), and qingbo (flowing water, low feeding metabolism, and high U crit), but digestion resulted in a significant decrease in the U crit of Chinese bream (moderate feeding metabolism but high U crit) and black carp (moderate feeding metabolism and low U crit), suggesting no connection between postprandial U crit changes and feeding metabolism (or between U crit and preferred habitat). The maximum metabolic rate (MMR) of common carp and crucian carp increased after feeding, whereas the corresponding values for the other three cyprinids remained the same. The oxygen uptake capacity appears to meet the oxygen demand of both aerobic swimming and digestion in common carp and crucian carp, whereas qingbo sacrifices digestion for locomotion, and black carp and Chinese bream sacrifice locomotion for digestion under postprandial swimming conditions. The locomotion-priority mode of qingbo is adaptive to its active foraging mode in the demanding swimming habitat of rapidly flowing water, whereas the high respiratory capacities of postprandial crucian carp and common carp and hence the maintenance of their aerobic swimming performances might be a by-product of natural selection for hypoxia tolerance rather than for swimming speed.  相似文献   

5.
The microsporidian Loma morhua infects Atlantic cod (Gadus morhua) in the wild and in culture and results in the formation of xenomas within the gill filaments, heart and spleen. Given the importance of the two former organs to metabolic capacity and thermal tolerance, the cardiorespiratory performance of cod with a naturally acquired infection of Loma was measured during an acute temperature increase (2 °C h?1) from 10 °C to the fish's critical thermal maximum (CTMax). In addition, oxygen consumption and swimming performance were measured during two successive critical swimming speed (Ucrit) tests at 10 °C. While Loma infection had a negative impact on cod cardiac function at warm temperatures, and on metabolic capacity in both the CTMax and Ucrit tests (i.e. a reduction of 30–40%), it appears that the Atlantic cod can largely compensate for these Loma‐induced cardiorespiratory limitations. For example, (i) CTMax (21.0 ± 0.3 °C) and Ucrit (~1.75 BL s?1) were very comparable to those reported in previous studies using uninfected fish from the same founder population; and (ii) our data suggest that tissue oxygen extraction, and potentially the capacity for anaerobic metabolism, is enhanced in fish infected with this microsporidian.  相似文献   

6.
Swimming performance was measured in Atlantic salmon (Salmo salar, L.) fed one of four isonitrogenous and isoenergetic experimental diets, in which the supplemental lipid (25% of diet) originated either solely from menhaden oil (rich in highly unsaturated fatty acids of the n-3 series; n-3 HUFA), or from different proportions of this oil and canola oil (rich in 18-carbon unsaturated fatty acids).The results indicate that dietary fatty acid composition influenced swimming performance in Atlantic salmon through changes in maximum swimming speed (Ucrit). Salmon fed a diet in which menhaden oil furnished all of the supplemental lipid had a significantly lower Ucrit than those fed a diet in which the supplemental lipid was an equal blend of menhaden and canola oil. Furthermore, there was a highly significant linear relationship between dietary and/or muscle levels of particular fatty acids or groups of fatty acids and Ucrit.There was a negative relationship between dietary n-3 HUFA content and Ucrit, but there was no relationship between Ucrit and muscle n-3 HUFA content nor between Ucrit and the levels of the eicosanoids thromboxane A2 and prostacyclin, or of their ratio, in the heart and gills of fatigued salmon. These results indicate that the differences in exercise performance were not a result of differences in n-3 HUFA metabolism amongst the dietary groups.Indeed, although there was a highly significant positive relationship between Ucrit and total n-6/n-3 fatty acid ratio of muscle lipids, this was largely due to the associated positive relationship between Ucrit and content of the most common n-6 fatty acid in muscle lipids, linoleic acid. There was also a significant positive relationship between content in muscle lipids of the most prominent fatty acid in canola oil, oleic acid, and Ucrit. It is suggested that metabolism of these 18-carbon unsaturated fatty acids accounts for the effects of the diets on exercise performance.  相似文献   

7.
Chinese sturgeon (Acipenser sinensis) is a critically endangered species. A flume-type respirometer, with video, was used to conduct two consecutive stepped velocity tests at 10, 15, 20, and 25 °C. Extent of recovery was measured after the 60-min recovery period between trials, and the recovery ratio for critical swimming speed (U crit) averaged 91.88% across temperatures. Temperature (T) effects were determined by comparing U crit, oxygen consumption rate (MO 2), and tail beat frequency (TBF) for each temperature. Results from the two trials were compared to determine the effect of exercise. The U crit occurring at 15 °C in both trials was significantly higher than that at 10 and 25 °C (p < 0.05). The U crit was plotted as a function of T and curve-fitting allowed calculation of the optimal swimming temperature 3.28 BL/s at 15.96 °C (trial 1) and 2.98 BL/s at 15.85 °C (trial 2). In trial 1, MO 2 increased rapidly with U, but then declined sharply as swimming speed approached U crit. In trial 2, MO 2 increased more slowly, but continuously, to U crit. TBF was directly proportional to U and the slope (dTBF/dU) for trial 2 was significantly lower than that for trial 1. The inverse slope (tail beats per body length, TB/BL) is a measure of swimming efficiency and the significant difference in slopes implies that the exercise training provided by trial 1 led to a significant increase in swimming efficiency in trial 2.  相似文献   

8.
The migration of Schizothorax prenanti, an ecologically important and commercially valuable species, is impeded by dams. Effective fishways would contribute to conservation of wild populations, and swimming performance data are necessary for fishway design. The swimming performance of S. prenanti was investigated at four temperatures (15, 19, 23, 27 °C), and numerical models were used to characterize the effect of temperature on swimming performance. As temperature increases, critical swimming speed (U crit) increases from 15 to 23 °C and then decreases significantly. The highest U crit (7.71 BL/s) occurs at 24 °C, as estimated by interpolation. Swimming efficiency was similar from 19 to 23 °C, but decreases significantly at 27 °C. The temperature range 15–23 °C is suitable for S. prenanti. However, the excess post-exercise oxygen consumption values of Q 10 for the four temperature increments indicate that 19–23 °C is the optimal range for swimming performance. Maximum tail beat amplitude increased >25 % (0.35–0.45 BL) over the temperature range considered, but variation of tail beat frequency was erratic. White muscle fiber begins to contribute to swimming at swimming speeds ~40 % U crit at the lower three temperatures, but increases to almost 60 % at 27 °C, and the contribution is relatively small. The results of this investigation advance the knowledge of fish metabolism while swimming provides data critical for fishway design.  相似文献   

9.
As a crucial step in developing a bioenergetics model for Pacific Chub Mackerel Scomber japonicus (hereafter chub mackerel), parameters related to metabolism, the largest dissipation term in bioenergetics modelling, were estimated. Swimming energetics and metabolic data for nine chub mackerel were collected at 14°C, a low temperature within the typical thermal range of this species, using variable‐speed swim‐tunnel respirometry. These new data were combined with previous speed‐dependent metabolic data at 18 and 24°C and single‐speed (1 fork length per second: FL/s) metabolic data at 15 and 20°C to estimate respiration parameters for model development. Based on the combined data, the optimal swimming speed (the swimming speed with the minimum cost of transport, Uopt) was 42.5 cm/s (1.5–3.0 FL/s or 2.1 ± 0.4 FL/s) and showed no significant dependence on temperature or fish size. The daily mass‐specific oxygen consumption rate (R, g O2 g fish?1 day?1) was expressed as a function of fish mass (W), temperature (T) and swimming speed (U): R = 0.0103W?0.490 e(0.0457T) e(0.0235U). Compared to other small pelagic fishes such as Pacific Herring Clupea harengus pallasii, Pacific Sardine Sardinops sagax and various anchovy species, chub mackerel respiration showed a lower dependence on fish mass, temperature and swimming speed, suggesting a greater swimming ability and lower sensitivity to environmental temperature variation.  相似文献   

10.
To investigate the effect of acceleration rates on the constant acceleration test speed (U cat) and to compare U cat with the critical swimming speed (U crit) in Chinese bream (Parabramis pekinensis), the U cat test at acceleration rates of 0.05, 0.1, 0.2, 0.4 and 0.8 cm s?2 and the U crit test in juvenile fish at 20 °C in either normoxia (>90 % saturation oxygen tension) or hypoxia (30 % saturation) were compared. The lactate concentration ([lactate]) of white muscle, liver and plasma and the glycogen concentration ([glycogen]) of white muscle and liver were also measured to identify whether tissue substrate depletion or tissue lactate accumulation correlated with exhaustion. The U cat decreased with the acceleration rate, and there was no significant difference between U crit and U cat at lower acceleration rates. Hypoxia resulted in lower U cat and U crit, and the difference increased with decreased acceleration rates of the U cat test, possibly due to the increased contribution of aerobic components in U crit or U cat at low acceleration rates. Hypoxia elicited a significant decrease in muscle [glycogen] and an increase in muscle and liver [lactate] in resting fish. All post-exercise fish had similar muscle [lactate], suggesting that tissue lactate accumulation may correlate with exercise exhaustion. Unlike hypoxia, exercise induced an increase in muscle [lactate] and a significant increase in plasma [lactate], which were worthy of further investigation. The similar swimming speed and biochemical indicators after exercise in the U crit and U cat groups at low acceleration rates suggested that U cat can be an alternative for the more frequently adopted protocols in U crit in Chinese bream and possibly in other cyprinid fish species.  相似文献   

11.
Rainbow trout were exposed to 0–80 μg l−1 aluminum (Al) at pH 5.2 in synthetic soft water, for up to 8 weeks. Trout were submitted to an incremental swimming test to quantify their aerobic swimming capacity (Ucrit). After a simple, non-invasive cardiac surgery to install Doppler flow probes, their heart rate, cardiac output and stroke volume were measured while swimming at increasing water velocities. Fish exposed to Al accumulated significant amounts of Al at the gills (0–80 μg g−1) and in their liver (5–60 μg g−1) and had decreases in swimming capacity, ranging from 11 to 21%. Analysis of cardiac parameters during swimming revealed that increases in heart rate were used in trout exposed to the highest concentrations of Al to increase cardiac output, whereas control fish tended to increase cardiac output through increases in stroke volume.  相似文献   

12.
The movements of 28 adult chum salmon, Oncorhynchus keta (Walbaum) tagged with electromyogram (EMG) transmitters were tracked along the Toyohira river, Hokkaido, Japan, in October of 2007 and 2008 to investigate and evaluate the upstream migratory behavior through the protection bed and fishway of ground sills. The approach time of fish that ascended successfully through the protection bed and fishway was shorter than that of unsuccessful fish. The unsuccessful fish were observed to swim in currents with high water velocity and shallow water depth at swimming speeds that exceeded their critical swimming speed (U crit) during the approach to these structures. In consequence, unsuccessful fish frequently alternated between burst and maximum sustained speeds without ever ascending the fishway, and eventually became exhausted. It is important that fishway are constructed to enable chum salmon to find a passage way easily, so that they can migrate upstream rapidly without wasting excessive energy.  相似文献   

13.
Do secondary sexual traits, such as large dorsal hump and hooked snout, decrease the swimming efficiency of male pink salmon during freshwater migration? This is the first study to address the effects of secondary sexual traits in pink salmon on oxygen uptake and swimming capacity. We conducted a laboratory experiment using a swimming respirometer and a field study using electromyogram (EMG) telemetry in the Shibetsu River, Hokkaido, Japan. We compared the relationship between MO2 (mg O2·kg?1·h?1) and swimming velocity U (m·s?1) in male and female fish, and also investigated the effects of morphological traits (secondary sexual characters) on the relationship between MO2 (mg O2·kg?1·h?1) and swimming velocity U (m·s?1). Additionally, we compared energy costs and swimming behaviour during upstream migration between male and female pink salmon. The laboratory experiment revealed that MO2 exponentially increased with increasing U; this increase was described by MO2 = 167.9e1.23U for males and 144.9e1.14U for females. Linear mixed models found that hump height and the upper jaw length in males significantly and positively affected the relationship between MO2 and U; no effect was found in females. The field study found that swimming velocity for both sexes estimated from EMG calibration was lower than optimal swimming velocity (Uopt) calculated from the laboratory experiment. We suggest that pink salmon in the Shibetsu River do not swim at the optimal swimming velocity because of the short migration distance involved (20 km).  相似文献   

14.
Fishways have historically been constructed to restore and preserve the ecological connectivity for fish in fragmented rivers. However, the fishways are often selective on species due to different size and swimming capacity. As the proportion of dammed rivers is still increasing, there is a growing need for more information on wild fish and their migration potential. In this study, we compared the swimming capacity of wild caught brown trout (Salmo trutta) and European grayling (Thymallus thymallus) until the fish were exhausted in a critical swimming speed (Ucrit) test, under three different naturally occurring stream temperatures in Norway: 1.7, 5.5 and 10°C. The results indicated that trout swim better at the warmer temperatures than at colder temperatures. The grayling showed consistent swimming patterns with little variation across all tested temperatures. The results therefore signify the need to have operational fishways already early in the spring when the grayling migration starts and highlight the need for more studies on fish migration abilities across a wider range of species and seasons.  相似文献   

15.
Rainbow trout acclimated to soft water were submitted to an incremental velocity trial, and exhibited a 14% decrease in critical swimming speed (U crit ∼ 1.37 ± 0.055 vs. 1.54 ± 0.044 m s−1) compared to fish kept in hard water. After a standardized swimming protocol, soft-water-acclimated fish had higher blood lactate concentrations (6.5 ± 0.66 and 6.0 ± 0.64 mmol L−1 (soft water) vs. 5.0 ± 0.46 and 3.9 ± 0.32 mmol L−1 (hard water)), revealing a greater use of anaerobic metabolism for the same exercise. Cardiovascular parameters were investigated while fish were swimming at increasing water velocities, revealing that soft-water-acclimated fish had lower increases in heart rate (105% vs. 118% of pre-exercise values), due to higher heart rates observed during acclimation and during the first 10 min of the swimming trial. This was also reflected by the plateau in heart rate and stroke volume observed during the swimming protocol, which can be attributed to increased cardiovascular function in response to soft-water acclimation. These results are in accord with previously reported increases in blood-to-water diffusion distance, due to proliferation of chloride cells at the gills in response to soft-water conditions, and underscore the costs and limitations of soft-water acclimation. R. C. Playle—Deceased.  相似文献   

16.
The critical swimming speed (Ucrit, cm s−1) value of normal juvenile sea bass (Dicentrarchus labrax) (64.7±6.33) was significantly higher than that of fish with lordosis (60.3±6.66) (P<0.05). Both normal fish and those with lordosis showed increased endurance with increasing length during exercise at a fixed water velocity of 50 cm s−1. This speed was used to investigate the separation possibility of deformed specimen from the normal developed fish based on their swimming performance, and 28% separation was achieved without losing any normal fish by the end of the 10th minute. To achieve a better separation of the deformities from the normal, first grading of the juveniles and then a swimming endurance test is advised.  相似文献   

17.
There is a wealth of evidence showing that a moderate level of non-stop exercise improves the growth and feed conversion of many active fishes. A diverse number of active fish are currently being farmed, and an optimal level of exercise may feasibly improve the production efficiency of these species in intensive culture systems. Our experiments have set out to resolve the growth benefits of juvenile New Zealand yellowtail kingfish (Seriola lalandi) enforced to swim in currents at various speeds over two temperatures (14.9 and 21.1°C). We also probed potential sources of physiological efficiency in an attempt to resolve how growth is enhanced at a time of high energetic expenditure. Results show that long-term exercise yields a 10% increase in growth but this occurs in surprisingly low flows (0.75 BL s−1) and only under favourable environmental temperatures (21.1°C). Experiments using a swim flume respirometer indicate that exercise training has no effect on metabolic scope or critical swimming speeds but it does improve swimming efficiency (lower gross costs of transport, GCOT). Such efficiency may potentially help reconcile the costs of growth and exercise within the range of available metabolic energy (scope). With growth boosted in surprisingly low flows and elevated water temperatures only, further investigations are required to understand the bioenergetics and partitioning of costs in the New Zealand yellowtail kingfish.  相似文献   

18.
Rainbow trout,Oncorhynchus mykiss, were exercise-trained for 18 hours per day over 28 days at water velocities up to 60% of their measured Ucrit. Anin situ perfused heart preparation was used to compare maximum cardiac performance between control and trained fish. Trained fish had a larger stroke volume at a given filling pressure, as well as an 18% higher cardiac output and a 25% greater maximum power output. These observations indicate that exercise training in rainbow trout improved maximum cardiac performance. Adrenaline produced positive inotropic and chronotropic effects on the perfused heart, but exercise training did not alter these stimulatory effects. Maximal activities of citrate synthase (CS), B-hydroxyacyl CoA dehydrogenase (HOAD), glutamate dehydrogenase (GDH) and carnitine palmitoyl transferase (CPT) were measured in cardiac and skeletal muscles. CS, HOAD and GDH increased in red and white skeletal muscle as a result of training. Training also increased GDH activity in the endocardium and epicardium, and increased HOAD in the epicardium. While the training regime did not result in a statistically significant increase in Ucrit and produced a decrease in the condition factor of the fish, other training effects were clearly evident. Furthermore, significant correlations were observed between Ucrit and the maximal activities of GDH and HOAD.  相似文献   

19.
The swimming angle of larval Japanese anchovy (Engraulis japonicus) was measured in a tank, and target strength (TS) was calculated using a theoretical scattering model. The mean swimming angle was 12.8° (SD ±22.1). Increased speeds of flow led to increased mean swimming angles. The mean swimming angle at flow of 5 cm s−1 was higher than at other speeds. TS values were estimated using a distorted-wave Born approximation model for two cases. Average values were 1–3 cm s−1 (11.5° ± 22.1) and 5 cm s−1 (16.6° ± 21.7) for cases 1 and 2, respectively. For case 1, TS ranged from −92.0 to −74.7 dB with a mean of −79.4 dB at 120 kHz. For case 2, TS ranged from −92.2 to −75.2 dB with a mean of −79.9 dB. The mean TS in case 2 was lower than that in case 1, with the maximum difference being 1.0 dB at 120 kHz (standard length 22.0 mm). However, there were no significant differences between the regression lines of cases 1 and 2. Thus, changes in flow speed altered the swimming angle of larval Japanese anchovy, but had little influence on TS.  相似文献   

20.
Juvenile rainbow trout (2–5 g) were chronically exposed (for 22 days) to acidified softwater (Ca2+ = 25 Eq/l, pH 5.2) in the presence or absence sublethal Al (30 g/l). Al-exposed fish (5.2/Al group) suffered 20% whole body Na+ and Cl losses and a 30% reduction in the maximum sustainable swimming speed (Ucrit) over the initial 7 days. These disturbances were approximately 2 fold greater than those observed in the fish exposed to low pH alone (5.2/0 group). However, whole body ion levels were completely restored in the 5.2/Al fish by day 22, whereas they merely stabilized at a new reduced level in the 5.2/0 group. Increased resistance to acutely lethal Al (200 g/l at pH 5.2) was observed from day 17 onwards in the 5.2/Al fish. Despite this acclimation and recovery of whole body ions, Ucrit remained significantly lower than in the 5.2/0 group throughout. Growth on a restricted diet of 1% body wt. /day was normal in the 5.2/0 group compared with controls maintained in pH 6.5 softwater, whereas 5.2/Al fish suffered a 50% reduction in growth rate on the same diet. The 5.2/Al fish accumulated large amounts of Al on the gills, reaching an initial peak after 4 days, followed by a decline at 7 days, and a secondary rise thereafter. Therefore acclimation and recovery of whole body ionic status was not associated with a reduction in the gill Al burden. Some of the metabolic costs of acclimation to Al, namely a continued impairment of swimming speed and growth, are discussed in light of the physiological and structural changes reported to occur at the gills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号