首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to evaluate the effect of short-term starvation on the morphology of the digestive system of juvenile tench Tinca tinca (L.). The morphological changes in digestive structures of juveniles, fed 70 days starter or Chironomidae larvae, were examined after 1, 12, 24 and 48 h of starvation at 28 °C. The morphological changes in the organisation of the digestive structures were as follows: (1) Intestine – proteolysis of the intestinal mucosa, especially of enterocytes in apical part of mucosal folds; (2) Liver – progressive reduction of lipid vacuoles and glycogen granules, and, in effect, volume reduction of hepatocytes cytoplasm; (3) Pancreas – progressive degeneration of exocrine pancreatic cells, parallel with decrease of zymogen activity. The fish fed natural food prior to starvation seem to be more resistant to starvation than those fed starter.  相似文献   

2.
A two‐dimensional individual‐based fish movement model coupled with fish bioenergetics was developed to simulate the observed migration and growth of Japanese sardine (Sardinops melanostictus) in the western North Pacific. In the model, derived from the observed ocean–environmental data as the driving force, fish movement was adapted as a kinesis behavior. The model successfully simulated the observed transport patterns during the egg and larval stages and the northward migrations during the juvenile stage in 2005, 2006 and 2007. The model results showed that both temperature during the larval stage in the Kuroshio Extension and the prey availability during the early juvenile stage in the Kuroshio–Oyashio transitional area are important factors for growth of Japanese sardine. In autumn, the observed juvenile sardine were mainly distributed in the subarctic water region off the Kuril Islands, which is an area (158–165°E, 43–47°N) with a high chlorophyll‐a (Chl‐a) concentration. The model reproduced the fish distribution, which has a high density in this region. The high Chl‐a concentration area in autumn may contribute to increasing the survival rate of Japanese sardine by cascading up the food chain, from the high primary production, and is an important habitat for recruitment success of Japanese sardine.  相似文献   

3.
To be useful as short-term indices of nutritional status when food availability varies, wet weight-at-length and tissue concentrations of nucleic acids and protein must covary closely with a fish's recent feeding history. We measured changes in these indices for young brook trout (Salvelinus fontinalis) (fork length: 20–34 mm) reared under alternating, 4 to 5 d periods of food provisioning and food deprivation. Weight-at-length corresponded closely with current feeding conditions, being higher when the trout were fed than when they were deprived. Concentrations of RNA and protein, however, did not correspond closely with current feeding conditions. Instead, there were significant carry-over effects whereby responses to feeding conditions experienced in one treatment period were not exhibited until the following treatment period. Food provisioning had positive carry-over effects on concentrations of RNA and protein while food deprivation had negative carry-over effects. Consequently, food-deprived trout sometimes had higher concentrations of RNA and protein than well fed trout. Since wild fish may experience short-term fluctuations in food availability, lagged responses in concentrations of nucleic acids or protein like those reported here could hamper attempts to use these biochemical measures to assess the nutritional status of juvenile fish in the field.Author to whom all correspondence should be addressed.  相似文献   

4.
Long‐term studies of predator food habits (i.e., ‘predator‐based sampling’) are useful for identifying patterns of spatial and temporal variability of forage nekton in marine ecosystems. We investigated temporal changes in forage fish availability and relationships to ocean climate by analyzing diet composition of three puffin species (horned puffin Fratercula corniculata, tufted puffin Fratercula cirrhata, and rhinoceros auklet Cerorhinca monocerata) from five sites in the North Pacific from 1978–2012. Dominant forage species included squids and hexagrammids in the western Aleutians, gadids and Pacific sand lance (Ammodytes personatus) in the eastern Aleutians and western Gulf of Alaska (GoA), and sand lance and capelin (Mallotus villosus) in the northern and eastern GoA. Interannual fluctuations in forage availability dominated variability in the western Aleutians, whereas lower‐frequency shifts in forage fish availability dominated elsewhere. We produced regional multivariate indicators of sand lance, capelin, and age‐0 gadid availability by combining data across species and sites using Principal Component Analysis, and related these indices to environmental factors including sea level pressure (SPL), winds, and sea surface temperature (SST). There was coherence in the availability of sand lance and capelin across the study area. Sand lance availability increased linearly with environmental conditions leading to warmer ocean temperatures, whereas capelin availability increased in a non‐linear manner when environmental changes led to lower ocean temperatures. Long‐term studies of puffin diet composition appear to be a promising tool for understanding the availability of these difficult‐to‐survey forage nekton in remote regions of the North Pacific.  相似文献   

5.
We examined the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the rates of abnormal morphology in juvenile brown sole Pseudopleuronectes herzensteini. Larvae during the D–E stages (15–24 days post hatching) were fed live food containing various amounts of DHA and/or EPA prepared using emulsified oils (DHA ethyl ester, EPA ethyl ester, and corn oil). Larvae during the F–I stages were fed Artemia enriched with a commercial diet supplement. We found that DHA and EPA promoted larval development and improved the incidence of morphological abnormalities in brown sole juveniles to a similar extent. However, DHA was more effective than EPA in preventing the appearance of morphological abnormalities in brown sole. The incidence of normal morphology was clearly improved by an increase of the DHA content in brown sole larvae at 25 days post-hatching. These results suggest that it is important to promote larval development and feed larvae with live food containing high levels of DHA during the D–E stages to prevent morphological abnormalities in brown sole juveniles.  相似文献   

6.
The arrival of the warm tropical Leeuwin Current (LC) into southern Western Australia (SWA) may influence the movement timing and foraging habitat of juvenile southern bluefin tuna (SBT). Seasonal and interannual changes in the strength of the LC lead to thermal differences and potential changes in food availability between tropical and temperate waters in SWA. This phenomenon could influence the habitat utilization of SBT in these summer grounds. Movement characteristics determined from SBT tagged with acoustic transmitters (N = 244) using cross‐shelf lines of automated receivers for three summer‐autumn seasons (2004/2005, 2005/2006, 2006/2007) in SWA revealed interannual variability. Each year, the eastward movements of tagged fish increased as temperatures increased, and fish left the region when temperatures exceeded 20.0°C, a temperature indicative of the leading edge of the LC in SWA waters. Interannual fluctuations in the timing of movements were detected. When the LC was narrow and restricted to the shelf edge in 2004/2005, the distribution of SBT in shelf waters did not change before or after LC intrusion. In contrast, long distance eastward movements frequently occurred when the LC intrusion was spread wide over the continental shelf in 2005/2006 and 2006/2007. This suggests that, off SWA, juvenile SBT move quickly out of local foraging habitats defined by cool sub‐tropical temperate waters ahead of the tropical LC intrusion, despite these waters not being physiologically limiting. These results suggest that the behavioural response of SBT may be related to changes in prey availability as a result of changes in oceanographic conditions.  相似文献   

7.
Juvenile Pacific abalone (Haliotis discus hannai Ino) are currently reared in land‐based aquaculture systems until they reach the necessary size for seeding in the sea. One problem that this industry faces is that an uneven distribution of juveniles in tanks can lead to variations in the growth rate. Understanding the cues that affect the sheltering behaviours exhibited by juvenile Pacific abalone—namely, the food distribution and the water flow velocity—will help optimize abalone culture settings. In this study, a group of 1,000 juvenile Pacific abalone (distributed across three tanks) was visually observed and enumerated during six experiments that were conducted over a 5‐month study period. It was found that juvenile Pacific abalone preferred to shelter close to food sources when the food was unevenly distributed. When the food was evenly distributed, the juveniles tended to avoid areas of rapid water flow and distributed evenly across the sheltered areas receiving the equal water velocity. This distribution might be the confounding effects between water flow velocity and food stimulus. Based on these findings, it was recommend that the food and water velocity be evenly distributed in an abalone aquaculture system.  相似文献   

8.
Phenotypic plasticity is an important mechanism to maximise fitness in unpredictable environments by fine‐tuning phenotypes to a specific environmental setting. We used Nothobranchius furzeri, an African annual fish from temporary pools with erratic changes in habitat condition, to study changes in the allocation to growth and reproduction and to test the key trade‐off between egg size and number. In an experimental setting, we quantitatively varied ration at two levels and over two time periods, including temporal switches in ration level. As predicted, female N. furzeri possessed the capacity for compensatory growth, which surprisingly came with no longer‐term cost to fecundity. Females responded strongly to ration manipulation, with a pronounced decrease in fecundity associated with a low ration, even after accounting for body mass. Due to the unpredictability of offspring environment, we expected no adaptive change in oocyte size. However, females responded to the quality of their environment in accordance with an adaptive maternal effect, with females receiving a low ration producing larger eggs. Further, a switch in ration size in either direction was associated with a decrease in egg size. There was a trade‐off between egg size and number in half of the treatments, but high variability in egg size among females made the relationship complex. Overall, N. furzeri females demonstrated high plasticity in both growth rate and fecundity parameters. Females appear able to track and respond adaptively to unpredictable changes in food availability in their environment.  相似文献   

9.
1. Habitat availability for 0+ Rutilus rutilus (L.) was determined at four sites in the regulated River Great Ouse, Eastern England, using a modified version of the Instream Flow Incremental Methodology. Discharge–habitat relationships were then calculated using a modified version of the Physical Habitat Simulation (PHABSIM) computer package. A weighted usable area (WUA) time series was generated using the discharge–habitat models. 2. Habitat availability varied between sites and with discharge, although at three of the four sites some suitable habitat remained throughout the year. In general, more habitat was available for juvenile fishes than for young larval fishes and during the winter. 3. As discharge increased habitat availability decreased, primarily as a result of increased velocity and depth. This was exacerbated by the trapezoidal shape of the main channel. In a marina, which was thought to be acting as a flood refuge, WUA decreased as a result of increasing water depth. Only in a modified backwater did WUA increase with discharge. Owing to the morphology of the backwater, there was still a WUA minimum at intermediate discharges. 4. The output of the model indicates the variation in habitat available for small fish in both temporal and spatial dimensions, and reinforces the requirement for spatial heterogeneity in riverine habitats for the preservation of fish stocks. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
The mid‐shelf front (MSF) of the Buenos Aires province continental shelf in the Southwestern Atlantic Ocean plays a central role in the pelagic ecosystem of the region acting as the main spring reproductive area for the northern population of the Argentine anchovy Engraulis anchoita and supporting high concentrations of chlorophyll as well as zooplankton, the main food of anchovy. To investigate the influence of environmental variability on the reproductive success of E. anchoita, we analyzed a 13‐yr time series (1997–2009) of environmental data at MSF including chlorophyll dynamics, as well as zooplankton composition and abundance, ichthyoplankton distributions, and recruitment of E. anchoita. Spring chlorophyll concentrations showed high interannual variability and were mainly influenced by changes in water temperature and vertical stratification, which in turn control nutrient supply to the surface. Chlorophyll dynamics (magnitude, timing, and duration of the spring bloom) explained most of the variability observed in E. anchoita recruitment, most likely via fluctuations in the availability of adequate food for the larvae. Our results suggest that satellite ocean color products can be valuable tools for understanding variability in ecosystem dynamics and its effects on the recruitment of fish.  相似文献   

11.
Abstract – Standard metabolic rate (SMR, closely related to basal and resting metabolism) varies by up to threefold among juvenile Atlantic salmon, Salmo salar L., of similar size at common temperature. Here, consequences of this variation are predicted by combining empirically derived relationships between SMR, specific dynamic action, energy budgets, water velocity, food level in the environment and food availability to fish. The range of velocities across which growth is predicted to occur is inversely related to a fish’s SMR. Growth is positively related to SMR at high but negatively related to it at low‐food levels. The relationship between food level and the range of velocities over which lower SMR fish can grow but higher SMR fish cannot is asymmetrically bi‐phasic and peaked. It is predicted that maternal manipulation of offspring SMR would generate fitness benefits through bet‐hedging against unpredictability in food level and increases in the overall range of velocities that the family of offspring can occupy and thrive in.  相似文献   

12.
During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week springmigration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility,yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses ofmigrating fish either did not increase during themigration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations inmigrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability ofmigrating smolts to maintain relatively elevated IGF-I levels despiteRestricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance.  相似文献   

13.
We examined variability in growth rate during the larval stage of northern anchovy (Engraulis mordax) in response to physical and biological environmental factors in 2005 and 2006. The onset of spring upwelling was anomalously delayed by 2–3 months until mid‐July in 2005; in contrast, spring upwelling in 2006 began as a normal year in the northern California Current. Larval and early juvenile E. mordax were collected in August, September, and October off the coast of Oregon and Washington. Hatch dates ranged from May to September, with peaks in June and August in 2005 and a peak in July in 2006, based on the number of otolith daily increments. Back‐calculated body length‐at‐age in the June 2005 hatch cohort was significantly smaller than in the August 2005 cohort, which had comparable growth to the July 2006 cohort. Standardized otolith daily increment widths as a proxy for seasonal variability in somatic growth rates in 2005 were negative until late July and then changed to positive with intensification of upwelling. The standardized increment width was a positive function of biomass of chlorophyll a concentration, and neritic cold‐water and oceanic subarctic copepod species sampled biweekly off Newport, Oregon. Our results suggest that delayed upwelling in 2005 resulted in low food availability and, consequently, reduced E. mordax larval growth rate in early summer, but once upwelling began in July, high food availability enhanced larval growth rate to that typical of a normal upwelling year (e.g., 2006) in the northern California Current.  相似文献   

14.
Abstract –  During winter, large numbers of juvenile fishes (mainly roach, Rutilus rutilus L.) were observed to migrate at dawn from a floodplain lake into a connected channel, whereas they migrated in the opposite direction at dusk. The diurnal migration pattern was strongly correlated to light intensity. The total number of migrating fish decreased from autumn to spring. Ice coverage and water temperature were the only abiotic factors that affected the seasonal migration pattern significantly. Moonlight, water level, current velocity, rainfall, insolation and wind velocity did not influence the observed migration of juvenile fish. The results are discussed in relation to food availability, predation risk and energy conservation.  相似文献   

15.
Understanding the relationship between intraspecific phenotypic variation and habitat is fundamentally important to ecology and evolution. However, it is largely unknown whether the environment drives the morphological variation in riverine fish otoliths, which are potential phenotypic markers. In this study, we investigated morphological variations in the otoliths of an endemic Chinese fish (Schizothorax nukiangensis Tsao) collected from seven sites with varying environmental gradients along the NuSalween River. We compared morphological characters of S. nukiangensis otoliths among sampling sites and identified environmental sources of otolith morphological variation using multivariate regression trees and multiple factor analysis. Results showed that S. nukiangensis otoliths collected from different habitats were significantly different in morphology, mainly at the rostrum, excisura and posterior rim. Variations in otolith morphology (specifically the increase in otolith length) were predominantly governed by average river gradient; this might be a functional response to hydrogeomorphic conditions. Other environmental gradients (i.e., altitude, latitude and average annual temperature) played a minor role in otolith shape. This study highlighted the role of environmental factors in determining the otolith shape in riverine fish; thus, species and population discriminations based on otolith morphology should consider intraspecific variability.  相似文献   

16.
Annual fishes, which inhabit temporary pools with extremely limited habitat complexity and niche availability, display remarkable sexual dimorphism, rapid growth, and enormous investment into reproduction, all traits associated with high energy requirement. This study tests three hypotheses for two syntopic annual fishes (Austrolebias minuano and Cynopoecilus fulgens) found in six wetlands of southern Brazil: (i) considerable morphological differences result in low dietary overlap, (ii) sexual dimorphism in both species leads to intraspecific diet segregation, and (iii) dietary richness increases during ontogenetic development, and is narrower in C. fulgens than A. minuano due to morphological limitations imposed by reduced size. The diet of 82 A. minuano and 211 C. fulgens individuals was analyzed over two annual cycles. The morphology was characterized by 26 measurements covering the entire body of both species. There was no evidence of morphological specialization related to food competition and the diet of A. minuano and C. fulgens showed high overlap. High food availability, high predator abundance, and high connectivity of adjacent wetlands are likely the main mechanisms allowing coexistence of both species. Within species, sexual dimorphism did not result in a decrease in dietary overlap, which reinforces the idea that morphological differences between the sexes did not evolve as a mechanism to decrease food competition. Large A. minuano did not have a more diverse diet than the smaller C. fulgens; however, increase in body size allowed both species to ingest larger prey. Morphological variability in both species was mainly related to ontogenetic development and reproduction.  相似文献   

17.
研究磨刀溪回水区的鱼类早期资源,可为三峡库区重要生境、水生生物多样性保护提供科学依据。2019年的4-6月,在三峡库区支流磨刀溪回水区江段(新津乡-龙角镇)开展鱼类资源监测,以了解该区域鱼类早期资源种类组成、仔稚鱼密度的时间动态以及与环境因子的关系。结果表明,采集到7种产粘沉性卵鱼类的鱼苗中,以贝氏?(Hemiculter bleekeri)、鲤(Cyprinus carpio)、鲫(Carassius auratus)为主;密度高峰期集中在4月下旬至5月中旬。磨刀溪新津口至龙角镇江段共分布有鲤、鲫集中产卵场4处。冗余分析(RDA)表明,饵料丰度、溶解氧和pH是影响鱼苗分布的主要因素。磨刀溪变动回水区江段是粘沉性鱼类产卵场的分布区域,三峡水库4-6月水位的快速消落,很可能导致鲤、鲫等产粘沉性卵鱼类资源的损失。建议通过实施生态调度减小水位日变幅或在回水区放置人工鱼巢、恢复水生植被来减缓其影响。  相似文献   

18.
Abstract – The morphologies of sympatric juvenile Atlantic salmon Salmo salar parr and brown trout Salmo trutta parr were compared between Irish rivers with contrasting hydraulic environments – a high‐gradient and a low‐gradient tributary from the River Barrow catchment, south‐east Ireland and a high‐gradient river from the Burrishoole catchment, west of Ireland. The two catchments differ markedly in mean annual precipitation (849.0 mm year?1 and 1370.3 mm year?1 for the Barrow and Burrishoole catchments, respectively). Parr of both species demonstrated morphological variation between and within catchments. Changes in metrics such as pectoral fin length, body depth and body length between and within catchments suggest that hydraulic forces were a major determinant of morphological variation. Both species from the Burrishoole catchment had relatively larger pectoral fins, longer heads, larger eyes and shallower bodies than conspecifics from the Barrow catchment. In rivers subject to frequent rainfall‐driven high discharges, such as those in the Burrishoole catchment, a more fusiform body and head shape coupled with larger pectoral fins may reduce the energetic cost of maintaining position in the water column, as well as increase stability and manoeuvrability. The larger eyes in both parr species in the Burrishoole catchment could further be a response to the lower visibility of the more turbid and peat‐stained waters or to the reduced prey availability. The results of this study demonstrate that local adaptation to flow conditions can yield morphologically distinct populations and that multiple species can exhibit parallel phenotypic responses to changing environmental conditions.  相似文献   

19.
A growth trial was conducted to evaluate the effects and safety of nucleotides in low fish meal diets on the growth performance, antioxidative capacity and intestinal morphology of turbot (Scophthalmus maximus). High fish meal control diet was formulated with 500 g kg?1 fish meal. Seven levels (0.075, 0.15, 0.225, 0.300, 1.5 and 3.0 g kg?1, respectively) of nucleotides were added to a low fish meal basal diet, which was formulated with 400 g kg?1 fish meal. The eight experimental diets were fed to groups of juvenile turbot (initial weight: 6.0 ± 0.03 g) for 60 days. Results showed that compared with high fish meal control diet, low fish meal basal diet treatment had lower total antioxidative capacity (T‐AOC), glutathione peroxidase activity, fold height of proximal and distal intestine, enterocyte height of all evaluated enteric section and microvillus height of mid‐intestine and distal intestine (< 0.05). However, supplemented nucleotides in diets could significantly improve growth (specific growth rate, SGR), feed utilization, antioxidative capacity and intestinal morphology of turbot (< 0.05). Broken‐line regression analysis of SGR and T‐AOC showed that the optimal supplemental levels of dietary nucleotide for juvenile turbot were 0.366 and 0.188 g kg?1, respectively. In summary, 0.300 g kg?1 of dietary nucleotides was helpful in improving growth, feed utilization, antioxidative capacity and intestinal morphology of turbot fed with low fish meal diet. Excessive dietary nucleotides (3.0 g kg?1) might cause oxidative stress and morphological damage in intestine and then reduce the growth of turbot.  相似文献   

20.
The research of intestinal microflora structures for Paralichthys olivaceus larvae and juveniles will help us to master the ontogeny and developmental colonization of microflora during the larval rearing stage. In this study, we sequenced the total bacterial genomic DNA in larval and juvenile guts with an Illumina MiSeq PE300 system, and analysed the structural characteristics of these microbiota, feed and rearing water in live and formulated feeding periods. The structure of gut microbiota was gradually similar to those in wild P. olivaceus at the phylum level and the newly hatched ones with the growth, according to the distribution and abundance of intestinal microbiota. And the colonized rule of main microbial species in guts was decreased initially and then increased during the larvae and juveniles stage. Meantime, the core microflora of this study were obtained through the analysis of shared and dominant species, which included Bacteroides, Bacillus, Enterococcus, Lactobacillus, Lactococcus, Escherichia_Shigella, Acinetobacter, Pseudomonas, Vibrio, Nitrosomonas, and Glaciecola. The correlation analysis of microbiota between intestines and environmental factors suggested that microflora in feed and water could affect the distribution of larval and juvenile gut microbiota. Moreover, many species of Acinetobacter, Pseudomonas and Vibrio are treated as important potential pathogens in aquaculture. These all pointed out the microbial quality of feed and rearing water should be strictly controlled in fish breeding and farming, and supply theoretical bases for screening the native probiotics to artificially regulate the gut microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号