首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
1. One hundred and sixty rivers in Scotland with historical records of freshwater pearl mussel Margaritifera margaritifera were surveyed between 1996 and 1999 for the presence of the species. 2. M. margaritifera populations were classed as either ‘extinct’ (no mussels remaining), ‘not currently viable’ (ranging from only dead shells present to no juveniles present, regardless of the number of adults found), or ‘functional’ (at least one juvenile was found, regardless of the overall numbers of adults present). 3. M. margaritifera populations could be classed as ‘functional’ in only 52 rivers (34% of total surveyed) and in only 17 of these were juveniles below 20 mm (5 yrs old) present. Furthermore, in only 10 of these functional rivers were mussels also still considered either to be common or abundant and these included both large easterly‐flowing rivers and small western rivers and streams. 4. In approximately two‐thirds (101) of the 155 rivers occupied 100 years ago, M. margaritifera is now extinct or is about to become extinct. Furthermore, analysis indicates that the rate of mussel population extinction has accelerated since 1970, with a recent average of two mussel river extinctions per year. 5. The predominant threat to the mussel populations has undoubtedly been pearl fishing. This has been occurring at every river, even in the most remote northwest areas, where most of the ‘functional’ populations remain. Recent legislation has provided full protection to M. margaritifera, so that all pearl harvesting is now illegal. 6. Locally, river engineering and host salmonid stock decline poses a serious threat and eutrophication has already eliminated populations in southern and eastern Scotland. 7. In every part of its global range, M. margaritifera has declined substantially and is now either threatened with extinction or is highly vulnerable. Based on recent estimates from across the species range, it appears that Scotland now probably holds at least half of the world's remaining functional M. margaritifera populations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The malacosporean Tetracapsuloides bryosalmonae was detected in kidneys from Atlantic salmon parr in 64 of 91 sampled Norwegian rivers. Using real‐time PCR, this parasite was found to be present in Atlantic salmon parr in rivers along the whole coast, from the northernmost and southernmost areas of the country. In addition, T. bryosalmonae was found in kidneys from brown trout parr in 17 of 19 sampled rivers in south‐east Norway, and in Arctic charr sampled in the River Risfjordelva, located at the northernmost edge of the European mainland. In conclusion, T. bryosalmonae has a widespread distribution in salmonids in Norwegian watercourses. Proliferative kidney disease (PKD) caused by T. bryosalmonae and PKD‐induced mortality has been observed in salmonids in several Norwegian rivers and it can be speculated that more PKD outbreaks will occur as a result of climate change.  相似文献   

3.
The trout thyroid secretes L-thyroxine (T4) which undergoes enzymatic deiodination in liver and other tissues. Based on mammalian studies, T4 outer-ring deiodination (ORD) or T4 inner-ring deiodination (IRD) could generate respectively 3,5,3′-triiodo-L-thyronine (T3) or 3,3′,5′-T3(rT3), while subsequent T3ORD or T3IRD could generate respectively 3,5-diiodo-L-thyronine (T2) or 3,3′-T2, and rT3ORD or rT3IRD could generate respectively 3,3′-T2 or 3′,5′-T2. In practice, T4 in trout undergoes hepatic ORD to produce T3 but negligible IRD to produce rT3, and T3 in turn undergoes negligible ORD but modest IRD to produce 3,3′-T2. T4ORD, which is particularly important in converting T4 to the biologically more potent T3, also occurs in gill, muscle and kidney. At least two isozymes are involved: i) a high-affinity, propylthiouracil (PTU)-sensitive T4ORD which displays ping-pong kinetics, requires thiol as a cofactor, and is present in liver, gill and muscle, and ii) a low-affinity, PTU-insensitive T4ORD with sequential kinetics with a thiol cofactor, and is present in liver and kidney. Receptor-bound T3 is derived primarily from the plasma for kidney, mainly from intracellular sources for gill and about equally from both plasma and intracellular sources for liver. Thus, the high-affinity T4ORD may produce T3 for local intracellular use while the low-affinity 5′-monodeiodinase may produce T3 for systemic use. T4ORD activity responds to nutritional factors and the physiologic state of the fish. Furthermore, T3 administered orally for either 6 weeks or 24h reduces the functional level (Vmax) of hepatic T4ORD, and T3 added to isolated hepatocytes also reduces activity, indicating direct T3 autoregulation of T4ORD to maintain hepatocyte T3 homeostasis. However, T3 administration also induces T4IRD to produce biologically inactive rT3 and induces T3IRD to produce 3,3′-T2. Thus, the trout liver has several iodothyronine deiodinase systems which in a coordinated manner regulate tissue T3 homeostasis in the face of a T3 challenge. It does this by decreasing formation of T3 itself, by diverting T4 substrate to biologically inactive rT3 and by increasing the degradation of T3. These deiodinases differ in many respects from any mammalian counterparts.  相似文献   

4.
From July 1989 to December 1994, an echo sounder provided monthly estimates, usually for both day and night, of pelagic salmonid densities in the North and South Basins of Windermere, the largest natural lake in England. Sampling was along contiguous transects, three in the North Basin and five in the South Basin. Records for Arctic charr (Salvelinus alpinus) could not be separated from those for brown trout (Salmo trutta), but previous sampling by gill-nets and anglers showed that charr formed over 90% of this mixed population in the North Basin and about 60–75% in the South Basin. Associated with the increasing eutrophication of the lake, there has been a decline in anglers' catches of charr and, since 1984, an increase in brown trout taken in the pelagic zone of the South Basin. The echo-sounder data showed that pelagic salmonid density in the North Basin was about two to five times that in the more eutrophic South Basin in 1989, 1990 and 1991. Since the start, in April 1992, of the reduction of phosphorus discharged from sewage works, this ratio has decreased, especially at night when the highest densities were recorded. This improvement was chiefly due to a significant (P<0.001) increase in the density of small fish (length <20 cm), in both the upper (depth <20 m) and deeper (depth >20 m) water layers. Although a similar improvement has still to be shown in the upper water layer by larger fish above the size limit for removal by angling (20 cm), there has been a significant increase (P<0.01) in the density of these fish in the deeper water layer of the South Basin. The increased density of small fish suggests that the stock available to charr anglers (fish >20 cm at water depths <20 m) should increase in the next few years, especially in the South Basin. It is therefore important to continue the monitoring program and thus ensure that there is advance warning of any marked changes in charr stocks.  相似文献   

5.
We describe changes in the habitat associations and geographic distribution of thorny skate during their feeding season in the southern Gulf of St Lawrence, based on 32 yr of monitoring by a bottom‐trawl survey. In the 1990s, geographic range contracted sharply and distribution shifted into a narrow band of warm deep waters. These changes appeared to reflect altered habitat selection by individual skates, rather than local depletion of the skates that had habitually occupied the vacated areas or a change in the timing of seasonal migrations. Changes in skate distribution coincided with a decline in skate biomass and a cooling of bottom waters. The contraction in the geographic range of skates appeared to be a density‐dependent response, more closely linked to the decline in skate abundance than to the change in environmental conditions. The cause of the shift in habitat associations is less certain. An index of the distribution shift was more strongly correlated with skate biomass than with an index of temperature conditions, and the change in temperature associations is in the direction predicted by density‐dependent bioenergetic considerations. However, the shift into deeper waters is into a depth zone where skate condition is relatively low, contrary to the expectation that fish should be concentrated in optimal habitat at low population size. On the other hand, while the shift into warm deep waters coincided with a cooling of waters at intermediate depths, distribution failed to shift back to the earlier pattern as these waters warmed in the late 1990s.  相似文献   

6.
7.
The underlying scientific objective here is to determine the mechanisms that control seasonal variations in the abundance of Pseudocalanus spp. in the Georges Bank–Gulf of Maine region. It is postulated that the observed distributions result from the interaction of the population dynamics with the climatological circulation. The problem is posed mathematically as a 2-D advection–diffusion–reaction equation for a scalar variable. Given an initial distribution of animals, we seek the population dynamics source term R ( x , y ) such that integration of the forward model will result in predictions3 that minimize the sum of squares of differences with observed concentrations at a later time. An adjoint data assimilation technique has been designed for these purposes.
This approach has been used to invert for the population dynamics associated with the transition between bimonthly (i.e. for 2 months) climatological Pseudocalanus spp. distributions derived from MARMAP data. Vertically averaged velocity and diffusivity fields diagnosed from hydrodynamical simulations of the climatological flow are specified. Solutions converge rapidly, and the procedure reduces the cost function by an order of magnitude within 50 iterations. The resulting population dynamics vary considerably in space and time, as does the balance between local tendency, physical transport and biological source terms. Generally speaking, the patterns in population dynamics are not inconsistent with current knowledge concerning potential controls such as predation and food limitation. Analysis of the solutions indicates that the Pseudocalanus spp. population centres located in the western Gulf of Maine and on Georges Bank may be self-sustaining, in contrast to prior studies which characterize the former as a source region for the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号