首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Yearling juvenile coho and Chinook salmon were sampled on 28 cruises in June and September 1981–85 and 1998–07 in continental shelf and oceanic waters off the Pacific Northwest. Oceanographic variables measured included temperature, salinity, water depth, and chlorophyll concentration (all cruises) and copepod biomass during the cruises from 1998–07. Juvenile salmonids were found almost exclusively in continental shelf waters, and showed a patchy distribution: half were collected in ~5% of the collections and none were collected in ~40% of the collections. Variance‐to‐mean ratios of the catches were high, also indicating patchy spatial distributions for both species. The salmon were most abundant in the vicinity of the Columbia River and the Washington coast in June; by September, both were less abundant, although still found mainly off Washington. In June, the geographic center‐of‐mass of the distribution for each species was located off Grays Harbor, WA, near the northern end of our sampling grid, but in September, it shifted southward and inshore. Coho salmon ranged further offshore than Chinook salmon: in June, the average median depth where they were caught was 85.6 and 55.0 m, respectively, and in September it was 65.5 and 43.7 m, respectively. Abundances of both species were significantly correlated with water depth (negatively), chlorophyll (positively) and copepod biomass (positively). Abundances of yearling Chinook salmon, but not of yearling coho salmon, were correlated with temperature (negatively). We discuss the potential role of coastal upwelling, submarine canyons and krill in determining the spatial distributions of the salmon.  相似文献   

2.
    
Chinook salmon (Oncorhynchus tshawytscha) is one of several economically‐important species of salmon found in the Northeast Pacific Ocean. The first months at sea are believed to be the most critical for salmon survival, with the highest rate of mortality occurring during this period. In the present study, we examined interannual diet composition and body condition trends for late‐summer subyearling Chinook salmon caught off Oregon and Washington from 1998 to 2012. Interannual variability was observed in juvenile salmon diet composition by weight of prey consumed. Juvenile subyearling Chinook salmon were mainly piscivorous, with northern anchovy (Engraulis mordax) being especially important, making up half the diet by weight in some years. Annual diets clustered into two groups, primarily defined by their proportion of invertebrate prey (14% versus 39% on average). Diet composition was found to influence adult returns, with salmon from high‐invertebrate years returning in significantly larger numbers 2–3 yrs later. However, years that had high adult returns had overall lower stomach fullness and poorer body condition as juveniles, a counterintuitive result potentially driven by the enhanced survival of less fit individuals in better ocean conditions (top‐down effect). Ocean conditions in years with a higher percentage of invertebrates in salmon diets were significantly cooler from May to August, and bottom‐up processes may have led to a fall plankton community with a larger proportion of invertebrates. Our results suggest that the plankton community assemblage during this first fall may be critical in predicting adult returns of Chinook salmon in the Pacific Northwest.  相似文献   

3.
Time series of adult recruitment for natural runs of coho salmon from the Oregon coastal region (1970–94) and marine survival of hatchery-reared coho salmon from California to Washington (1960–94) are significantly correlated with a suite of meteorological and oceanographic variables related to the biological productivity of the local coastal region. These variables include strong upwelling, cool sea surface temperature (SST), strong wind mixing, a deep and weakly stratified mixed layer, and low coastal sea level, indicating strong transport of the California Current. Principal component analysis indicates that these variables work in concert to define the dominant modes of physical variability, which appear to regulate nutrient availability and biological productivity. Multiple regression analysis suggests that coho marine survival is significantly and independently related to the dominant modes acting over this region in the periods when the coho first enter the ocean and during the overwintering/spring period prior to their spawning migration. Linear relationships provided good fits to the data and were robust, capable of predicting randomly removed portions of the data set.  相似文献   

4.
A time series of mean weekly sea surface temperature (SST) images was used to investigate the relationship between fluctuations in the marine survival of hatchery-reared coho salmon and coastal ocean dynamics off the north-western United States (51° to 37°N) between 1985 and 1996, using univariate and nonlinear bivariate regression analysis. Ocean conditions were matched against survival for a number of different annual time frames according to the sum of negative or positive weekly SST anomalies. From the univariate analyses, the sum of negative anomalies from April to June, when the juvenile salmon first enter the ocean, was found to have an R 2 of 0.88 against survival with 1991 excluded as an outlier. The bivariate multiple regressions used the sum of negative anomalies from April to June as the first independent variable. When the sums of positive anomalies from the following periods during the fishes' second calendar year in the ocean were each used as the second independent variable, the R 2 values were all greater than or equal to 0.92 (with no data points excluded): January to June, February to June, April to June, March to June. These results are discussed within the context of coastal ocean processes. It is concluded that the analysis of SST image time series might allow management to make reasonable forecasts of hatchery-reared coho salmon survival.  相似文献   

5.
Abstract – Although homing behaviour has been observed in juvenile Atlantic salmon, brown trout and resident cutthroat trout, this behaviour has not been well studied in juvenile Pacific salmon. We examined the site fidelity and homing behaviour of juvenile coho salmon ( Oncorhynchus kisutch ) by marking and relocating them within an off-channel habitat. Over 80% of displaced fish returned to the area from which they were originally collected. The proportion of fish that returned to the original location did not vary significantly among three sampling dates. However, we found that this proportion decreased over time in a brackish lagoon when we statistically analysed the data reported by Day (1966) . Our results suggest that juvenile coho salmon exhibit strong site fidelity and are able to return to their home ranges after displacement. These behaviours are likely to be important for the winter survival of juvenile coho salmon.  相似文献   

6.
    
Extreme variability in abundance of California salmon populations is often ascribed to ocean conditions, yet relatively little is known about their marine life history. To investigate which ocean conditions influence their distribution and abundance, we surveyed juvenile Chinook salmon (Oncorhynchus tshawytscha) within the California Current (central California [37°30′N) to Newport, Oregon (44°00′N]) for a 2‐week period over three summers (2010–2012). At each station, we measured chlorophyll‐a as an indicator of primary productivity, acoustic‐based metrics of zooplankton density as an indicator of potential prey availability and physical characteristics such as bottom depth, temperature and salinity. We also measured fork lengths and collected genetic samples from each salmon that was caught. Genetic stock identification revealed that the majority of juvenile salmon were from the Central Valley and the Klamath Basin (91–98%). We constructed generalized logistic‐linear negative binomial hurdle models and chose the best model(s) using Akaike's Information Criterion (AIC) to determine which covariates influenced the salmon presence and, at locations where salmon were present, determined the variables that influenced their abundance. The probability of salmon presence was highest in shallower waters with a high chlorophyll‐a concentration and close to an individual's natal river. Catch abundance was primarily influenced by year, mean fork length and proximity to natal rivers. At the scale of sampling stations, presence and abundance were not related to acoustic indices of zooplankton density. In the weeks to months after ocean entry, California's juvenile Chinook salmon population appears to be primarily constrained to coastal waters near natal river outlets.  相似文献   

7.
    
Little is known about the food habits of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in marine environments of Alaska, or whether their diets may have contributed to extremely high marine survival rates for coho salmon from Southeast Alaska and much more modest survival rates for Southeast Alaskan Chinook salmon. To address these issues, we documented the spatial and temporal variability of diets of both species collected from marine waters of Southeast Alaska during summers of 1997–2000. Food habits were similar: major prey items of both species included fishes, crab larvae, hyperiid amphipods, insects, and euphausiids. Multivariate analyses of diet composition indicated that the most distinct groups were formed at the smallest spatial and temporal scales (the haul), although groups also formed at larger scales, such as by month or habitat type. Our expectations for how food habits would influence survival were only partially supported. As predicted, Southeast Alaskan coho salmon had more prey in their stomachs overall [1.8% of body weight (BW)] and proportionally far fewer empty stomachs (0.7%) than either Alaskan Chinook (1.4% BW, 5.1% empty) or coho salmon from other regions. However, contrary to our expectations, coho salmon diets contained surprisingly few fish (49% by weight). Apparently, Alaskan coho salmon achieved extremely high marine survival rates despite a diet consisting largely of small, less energetically‐efficient crustacean prey. Our results suggest that diet quantity (how much is eaten) rather than diet quality (what is eaten) is important to marine survival.  相似文献   

8.
    
The ocean survival of coho salmon (Oncorhynchus kisutch) off the Pacific Northwest coast has been related to oceanographic conditions regulating lower trophic level production during their first year at sea. Coastal upwelling is recognized as the primary driver of seasonal plankton production but as a single index upwelling intensity has been an inconsistent predictor of coho salmon survival. Our goal was to develop a model of upwelling‐driven meso‐zooplankton production for the Oregon shelf ecosystem that was more immediately linked to the feeding conditions experienced by juvenile salmon than a purely physical index. The model consisted of a medium‐complexity plankton model linked to a simple one‐dimensional, cross‐shelf upwelling model. The plankton model described the dynamics of nitrate, ammonium, small and large phytoplankton, meso‐zooplankton (copepods), and detritus. The model was run from 1996 to 2007 and evaluated on an interannual scale against time‐series observations of copepod biomass. The model’s ability to capture observed interannual variability improved substantially when the copepod community size distribution was taken into account each season. The meso‐zooplankton production index was significantly correlated with the ocean survival of hatchery coho salmon from the Oregon production area, although the coastal upwelling index that drove the model was not itself correlated with survival. Meso‐zooplankton production within the summer quarter (July–September) was more strongly correlated with coho survival than was meso‐zooplankton production in the spring quarter (April–June).  相似文献   

9.
    
The feeding selectivity of laboratory‐reared larvae of Rhamdia voulezi was assessed to investigate the preferred preys in early life stages. Three experiments were conducted at different larval development stages, starting soon after the absorption of the yolk sac (on fourth day after hatching – DAH), using zooplankton from fish ponds as food. Differences were detected in the patterns of prey selection among development stages. At first, the larvae prefer small preys, such as rotifers and cladocerans. Later, when they are more developed, they prefer to feed on large preys, such as copepods. On the fourth DAH, larvae in the pre‐flexion and initial flexion stage strongly selected rotifers and cladocerans (Diaphanosoma spinulosum, D. brevireme, Moina sp., M. micrura and M. minuta). At the other stages, cladocerans continued to be strongly selected. However, on the eighth DAH, larvae in flexion stage selected less strongly copepods Argyrodiaptomus azevedoi, Metacyclops mendocinus and Termocyclops decipiens. On the tenth DAH, larvae in postflexion stage selected more strongly copepods Argyrodiaptomus furcatus, Notodiaptomus cf. spinuliferus and M. mendocinus. As larvae grow, they tend to specialize in feeding of a particular prey. Prey selection of R. voulezi larvae was based both on species and zooplankton size. The size of the zooplankton ingested was related to the mouth gape size of larvae.  相似文献   

10.
The pattern of temporal change in recruitment of steelhead trout ( Oncorhynchus mykiss ) entering the ocean between 1963 and 1990 was geographically coherent in all regions of British Columbia. A major increase in recruitment was evident for smolts entering the ocean after 1977. Subsequently, an out-of-phase response occurred after 1990, indicating that the effect of a possible 1990 regime shift had both temporal and geographical structure. Steelhead entering northern regions had increasing recruitment, while steelhead entering southern BC coastal regions had sharply decreasing recruitment. The evidence clearly indicates that the overall recruitment response since 1977 was primarily shaped by changes in marine (not freshwater) survival. Similar sudden changes in adult recruitment also appear to be occurring for other species of Pacific salmon in BC and Oregon, such as coho ( O. kisutch ), which appear to occur suddenly and show considerable persistence. A possible explanation for the change is that ocean productivity declined in coastal regions of southern BC after 1990, reducing the marine growth of juvenile salmon. The Bakun upwelling index shows a pattern of geographical coherence along the west coast of North America that could in principle explain the observed pattern of changes in recruitment. However, no evidence for a temporal shift in this index occurring around 1977 and 1990 is apparent. The reason for the sudden and persistent decline in ocean survival is therefore uncertain.  相似文献   

11.
不同光照强度对花鲈幼鱼摄食的影响   总被引:6,自引:0,他引:6  
研究结果表明,花鲈幼鱼为白昼中照度型鱼类,在10^3-10^0lx范围内,以10^2lx时摄食较好;为准确了解其最适摄食光照强度,进行10^3-10^2lx摄食强度实验,结果为在400lx照度下对蒙古裸腹Sou的摄食强度达最大值。  相似文献   

12.
    
We studied salmon feeding selectivity and diel feeding chronology in the Columbia River plume. Juvenile chinook and coho salmon were caught by trawling at 2–3 h intervals throughout a diel period on three consecutive days (21–23 June 2000) at stations located 14.8 and 37 km offshore from the mouth of the Columbia River. A total of 170 chinook salmon were caught at the inshore and 79 chinook and 98 coho salmon were caught at the offshore station. After each trawl, potential prey were sampled at different depths with 2–3 different types of nets (1‐m diameter ring net, bongo net, neuston net). Despite the variability in zooplankton abundance, feeding selectivity was surprisingly constant. Both salmon species fed selectively on larger and pigmented prey such as hyperiid amphipods, larval and juvenile fish, various crab megalopae, and euphausiids. Hyperiid amphipods were abundant in the salmon diets and we hypothesize that aggregations of gelatinous zooplankton may facilitate the capture of commensal hyperiid amphipods. Small copepods and calyptopis and furcilia stages of euphausiids dominated the prey field by numbers, but were virtually absent from salmon diet. Juvenile chinook salmon, with increasing body size, consumed a larger proportion of fish. Stomach fullness peaked during morning hours and reached a minimum at night, suggesting a predominantly diurnal feeding pattern. In general, both chinook and coho salmon appear to be selective, diurnal predators, preying mostly on large and heavily pigmented prey items, in a manner consistent with visually oriented, size‐selective predation.  相似文献   

13.
Zooplankton and fish densities in the southern Strait of Georgia were observed to coincide with variations in surface salinities resulting from the outflow of the Fraser River. Vertical net hauls in the euphotic zone revealed that copepods, amphipods, and euphausiids were significantly more abundant per m3 in the brackish estuarine plume (surface salinities - 10–15 ppt) when compared to the area covered by the freshwater of the Fraser River plume (0–10 ppt) and the region of the Strait of Georgia (25–30 ppt) unaffected by the outflow of the Fraser River.
The estuarine and riverine plumes had significantly higher fish densities (adult and juvenile herring, and juvenile salmonids [excluding chinook]) than the Strait of Georgia region, with no significant differences in densities of juvenile chinook salmon observed between regions. The highest catches of juvenile salmonids were at the boundary between the estuarine plume and the Strait of Georgia. Zooplankton found in the stomach contents of both adult and juvenile herring suggested that the herring were filter-feeding on the zooplankton in the estuarine plume. Juvenile salmonids fed primarily on small unidentifiable juvenile fish. The existence of increased densities of prey items in the estuarine plume is proposed to be the primary mechanism resulting in increased residence time in this region by outmigrating juvenile salmonids. Utilization of aggregated zooplankton could lead to increased salmonid growth rates and therefore to enhanced survival of individuals utilizing the Fraser River plume environment.  相似文献   

14.
This is a synthesis of published and unpublished research on euphausiid and fish populations using the south-west coast of Vancouver Island. Overall, the studies covered 1985–98, when there were two ENSO events and considerable variation in upwelling. The population biology of the dominant euphausiids ( Thysanoessa spinifera , Euphausia pacifica ) was monitored during 1991–98. The species abundance trends differed. Results of simple correlation analyses suggested that variations in temperature, salinity and upwelling do not explain variations in the abundance of larval or adult euphausiids, or in the abundance of portions of euphausiid populations on which fish feed. I found significant interannual variations in daily ration of the dominant planktivorous fish species, but euphausiids remained the most important prey. Pacific hake ( Merluccius productus ), the dominant planktivore, fed on larger (>17 mm) T. spinifera , even though the biomass of this part of the euphausiid biomass decreased by 75% between 1991 and 1997, but Pacific herring ( Clupea pallasi ) may have begun feeding on smaller E. pacifica . Therefore, any study of the relationship between fish production and krill biology must consider that part of the euphausiid biomass exploited by fish. In addition, some fish species and/or life history stages appeared to adapt to changes in euphausiid availability, while others did not. Such variation in adaptations also has to be described and considered to understand how changes in euphausiid biology affect fish productivity.  相似文献   

15.
    
Invasive species in riparian forests are unique as their effects can transcend ecosystem boundaries via stream‐riparian linkages. The green alder sawfly (Monsoma pulveratum) is an invasive wasp whose larvae are defoliating riparian thin‐leaf alder (Alnus tenuifolia) stands across southcentral Alaska. To test the hypothesis that riparian defoliation by this invasive sawfly negatively affects the flow of terrestrial prey resources to stream fishes, we sampled terrestrial invertebrates on riparian alder foliage, their subsidies to streams and their consumption by juvenile coho salmon (Oncorhynchus kisutch). Invasive sawflies altered the composition of terrestrial invertebrates on riparian alder foliage and as terrestrial prey subsidies to streams. Community analyses supported these findings revealing that invasive sawflies shifted the community structure of terrestrial invertebrates between seasons and levels of energy flow (riparian foliage, streams and fish). Invasive sawfly biomass peaked mid‐summer, altering the timing and magnitude of terrestrial prey subsidies to streams. Contrary to our hypothesis, invasive sawflies had no effect on the biomass of native taxa on riparian alder foliage, as terrestrial prey subsidies, or in juvenile coho salmon diets. Juvenile coho salmon consumed invasive sawflies when most abundant, but relied more on other prey types selecting against sawflies relative to their availability. Although we did not find effects of invasive sawflies extending to juvenile coho salmon in this study, these results could change as the distribution of invasive sawflies expands or as defoliation intensifies. Nevertheless, riparian defoliation by these invasive sawflies is likely having other ecological effects that merits further investigation.  相似文献   

16.
ABSTRACT: The feeding habits of skipjack tuna Katsuwonus pelamis juveniles (8.5–66.8 mm standard length) were examined, collected from the tropical western Pacific in October to December 1994, and their habits were compared with those of the other tuna Thunnus spp. juveniles (9.8–55.3 mm standard length). The indices, frequency of occurrence of each food item in the total number of stomachs examined (% F ), percentage of number of each food item to the total number of all food items identified (% N ), percentage of wet weight of each food item to the total wet weight of all food items identified (% W ), and relative importance of each food item ( IRI ) were estimated in the north equatorial current (NEC) and the north equatorial countercurrent (NECC) areas. The most dominant prey item of skipjack juveniles in the two areas was fish larvae. Other major prey items in the NEC area were Euphausiacea, Amphipoda, and Copepoda; whereas those in the NECC area were Copepoda, Cephalopoda, Euphausiacea, and Amphipoda. In the other tuna juveniles, the IRI of fish larvae in the two areas was remarkably high. Other prey, Euphausiacea and Cephalopoda in the NEC area only and Cephalopoda in the NECC area, were also found. These results indicate that the skipjack juvenile is primarily a piscivorous feeder although they also depend on various other prey organisms, whereas the other tuna juveniles are stronger piscivorous feeders.  相似文献   

17.
    
Our collaborative work focused on understanding the system of mechanisms influencing the mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Coordinated field studies, data analysis and numerical modelling projects were used to identify and explain the mechanisms and their roles in juvenile mortality. In particular, project studies addressed the identification of major fish and bird predators consuming juvenile salmon and the evaluation of three hypotheses linking these losses to (i) alternative prey for predators (prey‐switching hypothesis); (ii) salmon foraging behaviour (refuge‐dispersion hypothesis); and (iii) salmon size and growth (size‐refuge hypothesis). Two facultative planktivorous fishes, Pacific herring (Clupea pallasi) and walleye pollock (Theragra chalcogramma), probably consumed the most juvenile pink salmon each year, although other gadids were also important. Our prey‐switching hypothesis was supported by data indicating that herring and pollock switched to alternative nekton prey, including juvenile salmon, when the biomass of large copepods declined below about 0.2 g m?3. Model simulations were consistent with these findings, but simulations suggested that a June pteropod bloom also sheltered juvenile salmon from predation. Our refuge‐dispersion hypothesis was supported by data indicating a five‐fold increase in predation losses of juvenile salmon when salmon dispersed from nearshore habitats as the biomass of large copepods declined. Our size‐refuge hypothesis was supported by data indicating that size‐ and growth‐dependent vulnerabilities of salmon to predators were a function of predator and prey sizes and the timing of predation events. Our model simulations offered support for the efficacy of representing ecological processes affecting juvenile fishes as systems of coupled evolution equations representing both spatial distribution and physiological status. Simulations wherein model dimensionality was limited through construction of composite trophic groups reproduced the dominant patterns in salmon survival data. In our study, these composite trophic groups were six key zooplankton taxonomic groups, two categories of adult pelagic fishes, and from six to 12 groups for tagged hatchery‐reared juvenile salmon. Model simulations also suggested the importance of salmon density and predator size as important factors modifying the predation process.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Interannual variation in the timing of the return migration to fresh water of adult sockeye salmon, Oncorhynchus nerka, from 46 populations throughout the species North American range was examined in a broad analysis of how timing patterns are affected by marine and freshwater conditions. Migration timing data (measured at various points along the migration, including just prior to freshwater entry, just after freshwater entry, and near the spawning grounds) were examined for correlations with sea‐surface temperatures (SST) prior to migration and to freshwater temperatures and flows during migration. Following a spring–summer period with warm SST, populations from southwestern Alaska tended to return early, Fraser River populations returned late, and populations from other regions showed no consistent patterns. Similarities between interannual timing of both nearby and distant populations indicated the presence of common or coincidental influences on timing. When riverine conditions related to timing, high flows and low temperatures were associated with late migrations, low flows and high temperatures were associated with early migrations. However, even counting stations at upriver locations showed correlations with SST. Notwithstanding some inconsistencies among the many populations examined and the indirect nature of the inferences, the results supported the hypotheses that (i) interannual variations in salmon distributions at sea reflect temperature conditions, and (ii) the date when salmon initiate homeward migration is a population‐specific trait, largely unaffected by the fish's location at sea.  相似文献   

19.
光照强度对暗纹东方鲀稚鱼摄食的影响   总被引:3,自引:0,他引:3  
在0~1000lx光照范围内,对不同光照强度下暗纹东方鲀稚鱼摄食量进行了测定,稚鱼在500lx时摄食强度最大,其次为300、700lx,摄食率在500lx时最高,并在5min时达到最大值,40~60min时段摄食效率最低接近停食。  相似文献   

20.
Abstract – Fish, which are generally visual foragers, experiences reduced reaction distance in visually degraded environments, which has consequences for encounter rates with prey. Small prey is detected at shorter distances than larger prey, and piscivores are therefore predicted to be more strongly affected by visual degradation. In experiments, roach (Rutilus rutilus) were fed two plankton prey types and pike (Esox lucius) were fed Daphnia and larval roach, in clear water, algal turbid water and water coloured brown by dissolved organic matter (DOM). Planktivorous foraging in roach was not affected by visual degradation, while pike foraging on both Daphnia and larval roach was. Pike showed increased reaction distance to Daphnia in visually degraded water, while it was severely reduced with roach as prey even if the visual range was not reduced below pike reaction distances in clear water. Pike foraging on Daphnia was not affected, but when foraging on roach, the reduced search efficiency was counteracted by increased attack rates. However, there was no increase in movement and no difference between turbid and DOM treatments. Effects on piscivores will likely become more pronounced at later life stages as prey size and the reliance on long‐distance detection increases at the same time as changing climatic conditions may further deteriorate the visual conditions in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号