首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yearling juvenile coho and Chinook salmon were sampled on 28 cruises in June and September 1981–85 and 1998–07 in continental shelf and oceanic waters off the Pacific Northwest. Oceanographic variables measured included temperature, salinity, water depth, and chlorophyll concentration (all cruises) and copepod biomass during the cruises from 1998–07. Juvenile salmonids were found almost exclusively in continental shelf waters, and showed a patchy distribution: half were collected in ~5% of the collections and none were collected in ~40% of the collections. Variance‐to‐mean ratios of the catches were high, also indicating patchy spatial distributions for both species. The salmon were most abundant in the vicinity of the Columbia River and the Washington coast in June; by September, both were less abundant, although still found mainly off Washington. In June, the geographic center‐of‐mass of the distribution for each species was located off Grays Harbor, WA, near the northern end of our sampling grid, but in September, it shifted southward and inshore. Coho salmon ranged further offshore than Chinook salmon: in June, the average median depth where they were caught was 85.6 and 55.0 m, respectively, and in September it was 65.5 and 43.7 m, respectively. Abundances of both species were significantly correlated with water depth (negatively), chlorophyll (positively) and copepod biomass (positively). Abundances of yearling Chinook salmon, but not of yearling coho salmon, were correlated with temperature (negatively). We discuss the potential role of coastal upwelling, submarine canyons and krill in determining the spatial distributions of the salmon.  相似文献   

2.
Time series of adult recruitment for natural runs of coho salmon from the Oregon coastal region (1970–94) and marine survival of hatchery-reared coho salmon from California to Washington (1960–94) are significantly correlated with a suite of meteorological and oceanographic variables related to the biological productivity of the local coastal region. These variables include strong upwelling, cool sea surface temperature (SST), strong wind mixing, a deep and weakly stratified mixed layer, and low coastal sea level, indicating strong transport of the California Current. Principal component analysis indicates that these variables work in concert to define the dominant modes of physical variability, which appear to regulate nutrient availability and biological productivity. Multiple regression analysis suggests that coho marine survival is significantly and independently related to the dominant modes acting over this region in the periods when the coho first enter the ocean and during the overwintering/spring period prior to their spawning migration. Linear relationships provided good fits to the data and were robust, capable of predicting randomly removed portions of the data set.  相似文献   

3.
Abstract – Although homing behaviour has been observed in juvenile Atlantic salmon, brown trout and resident cutthroat trout, this behaviour has not been well studied in juvenile Pacific salmon. We examined the site fidelity and homing behaviour of juvenile coho salmon ( Oncorhynchus kisutch ) by marking and relocating them within an off-channel habitat. Over 80% of displaced fish returned to the area from which they were originally collected. The proportion of fish that returned to the original location did not vary significantly among three sampling dates. However, we found that this proportion decreased over time in a brackish lagoon when we statistically analysed the data reported by Day (1966) . Our results suggest that juvenile coho salmon exhibit strong site fidelity and are able to return to their home ranges after displacement. These behaviours are likely to be important for the winter survival of juvenile coho salmon.  相似文献   

4.
Abstract— The predator-prey behavioral interactions between two salmon species, coho salmon ( Oncorhynchus kisutch ) and chinook salmon ( Oncorhynchus tshawytscha ), and their prey species were examined under laboratory conditions. These behaviors were studied to determine the bases for prey selection by salmon in Lake Michigan and ultimately facilitate predictions on shifts or changes in salmon diets. Chinook and coho salmon captured all prey items in the open water portion of the aquarium, and they had similar attack behaviors. Average attack swimming speeds varied from 2.6 to 3.6 m/s, and average escape swimming speeds varied from 2.6 to 2.9 m/s. There were no significant differences in attack swimming speeds and escape swimming speeds. There was a significant difference in median reactive distances between the prey captured and those that escaped. There was no reactive distance (0.00 m) for 96% and 98% of the successfully captured prey by chinook and coho salmon, respectively. Only 4% and 10% of the unsuccessful attacks by chinook and coho salmon, respectively, had no reactive distance (0.00 m). Salmon would repeatedly attack a school and capture individuals separated from the school. Alewives, bloaters and fathead minnows were easy prey because they remained in the open water portion of the aquarium and stayed in schools until only a few individuals remained. The schooling behavior of spottail shiners and emerald shiners was an effective anti-predation tactic against salmon attacks. After some experience with yellow perch, salmon were reluctant to attack them and would often break off attacks on them. When coho salmon were presented with different proportions of bloaters and yellow perch, they significantly attacked and captured bloaters in preference to yellow perch.  相似文献   

5.
Chinook salmon (Oncorhynchus tshawytscha) is one of several economically‐important species of salmon found in the Northeast Pacific Ocean. The first months at sea are believed to be the most critical for salmon survival, with the highest rate of mortality occurring during this period. In the present study, we examined interannual diet composition and body condition trends for late‐summer subyearling Chinook salmon caught off Oregon and Washington from 1998 to 2012. Interannual variability was observed in juvenile salmon diet composition by weight of prey consumed. Juvenile subyearling Chinook salmon were mainly piscivorous, with northern anchovy (Engraulis mordax) being especially important, making up half the diet by weight in some years. Annual diets clustered into two groups, primarily defined by their proportion of invertebrate prey (14% versus 39% on average). Diet composition was found to influence adult returns, with salmon from high‐invertebrate years returning in significantly larger numbers 2–3 yrs later. However, years that had high adult returns had overall lower stomach fullness and poorer body condition as juveniles, a counterintuitive result potentially driven by the enhanced survival of less fit individuals in better ocean conditions (top‐down effect). Ocean conditions in years with a higher percentage of invertebrates in salmon diets were significantly cooler from May to August, and bottom‐up processes may have led to a fall plankton community with a larger proportion of invertebrates. Our results suggest that the plankton community assemblage during this first fall may be critical in predicting adult returns of Chinook salmon in the Pacific Northwest.  相似文献   

6.
We studied salmon feeding selectivity and diel feeding chronology in the Columbia River plume. Juvenile chinook and coho salmon were caught by trawling at 2–3 h intervals throughout a diel period on three consecutive days (21–23 June 2000) at stations located 14.8 and 37 km offshore from the mouth of the Columbia River. A total of 170 chinook salmon were caught at the inshore and 79 chinook and 98 coho salmon were caught at the offshore station. After each trawl, potential prey were sampled at different depths with 2–3 different types of nets (1‐m diameter ring net, bongo net, neuston net). Despite the variability in zooplankton abundance, feeding selectivity was surprisingly constant. Both salmon species fed selectively on larger and pigmented prey such as hyperiid amphipods, larval and juvenile fish, various crab megalopae, and euphausiids. Hyperiid amphipods were abundant in the salmon diets and we hypothesize that aggregations of gelatinous zooplankton may facilitate the capture of commensal hyperiid amphipods. Small copepods and calyptopis and furcilia stages of euphausiids dominated the prey field by numbers, but were virtually absent from salmon diet. Juvenile chinook salmon, with increasing body size, consumed a larger proportion of fish. Stomach fullness peaked during morning hours and reached a minimum at night, suggesting a predominantly diurnal feeding pattern. In general, both chinook and coho salmon appear to be selective, diurnal predators, preying mostly on large and heavily pigmented prey items, in a manner consistent with visually oriented, size‐selective predation.  相似文献   

7.
The ocean survival of coho salmon (Oncorhynchus kisutch) off the Pacific Northwest coast has been related to oceanographic conditions regulating lower trophic level production during their first year at sea. Coastal upwelling is recognized as the primary driver of seasonal plankton production but as a single index upwelling intensity has been an inconsistent predictor of coho salmon survival. Our goal was to develop a model of upwelling‐driven meso‐zooplankton production for the Oregon shelf ecosystem that was more immediately linked to the feeding conditions experienced by juvenile salmon than a purely physical index. The model consisted of a medium‐complexity plankton model linked to a simple one‐dimensional, cross‐shelf upwelling model. The plankton model described the dynamics of nitrate, ammonium, small and large phytoplankton, meso‐zooplankton (copepods), and detritus. The model was run from 1996 to 2007 and evaluated on an interannual scale against time‐series observations of copepod biomass. The model’s ability to capture observed interannual variability improved substantially when the copepod community size distribution was taken into account each season. The meso‐zooplankton production index was significantly correlated with the ocean survival of hatchery coho salmon from the Oregon production area, although the coastal upwelling index that drove the model was not itself correlated with survival. Meso‐zooplankton production within the summer quarter (July–September) was more strongly correlated with coho survival than was meso‐zooplankton production in the spring quarter (April–June).  相似文献   

8.
The planned removal of four dams on the Klamath River (anticipated 2024) will be the largest river restoration effort ever undertaken on the planet. Dam removal will restore access to >50 km of the Klamath River mainstem for coho salmon, but mainstem habitat may not be suitable for rearing juvenile coho salmon. Instead, small tributaries may provide most rearing habitat for reestablishing coho salmon. We used four approaches to evaluate six Klamath River tributaries above existing dams to assess their potential to support juvenile coho salmon: (1) We measured summer temperature regimes and evaluated thermal suitability. (2) We applied an Intrinsic Potential (IP) model to evaluate large-scale geomorphological constraints on coho salmon habitat. (3) We used the Habitat Limiting Factors Model (HLFM) to estimate rearing capacity for juveniles given current habitat conditions. (4) We developed an occupancy model using data from reference tributaries to predict coho salmon rearing distribution. All six streams had summer temperatures cooler than the mainstem Klamath River. However, five of the streams have barriers that will restrict coho salmon to within 5 km of the confluence with the Klamath River and two were disconnected mid-summer. Despite these constraints, the tributaries will likely produce coho salmon. Most streams had high IP in their lower reaches, the HLFM model estimated a total capacity of 105,000 juvenile coho salmon, and the occupancy model predicted juvenile coho salmon will rear throughout the accessible reaches. Protection and habitat enhancement for these tributaries will be important for coho salmon reestablishment post-dam removal.  相似文献   

9.
This study was conducted to investigate whether aromatization to estrogen could be the cause for the paradoxical feminization of gonads of sexually-undifferentiated fish after treatment with androgen at either high doses or for long periods. The aromatizable androgen 17-methyltestosterone (MT) and the nonaromatizable androgen 17-methyldihydrotestosterone (MDHT) were administered to groups of newly hatched coho salmon (Oncorhynchus kisutch) in a single 2h immersion at concentrations ranging from 6.25 to 6,400µg/l. The effects of treatment were evaluated by determining the resultant proportion of males in each experimental group. The effects of steroid administration on the final mean weight, length and condition factor were also determined. An increase in all these three variables was observed in the groups treated with the higher doses of MT. Regarding the resultant sexual phenotype, the response to both androgens was similar at the majority of doses tested. However, at the highest dose, the proportion of females increased with respect to that of males for MT, but not for MDHT. Since the major difference between the two androgens tested is their capacity to be aromatized, it seems that aromatization to estrogen, rather than inhibition of the biosynthesis of endogenous androgen, may explain the paradoxical feminization encountered.  相似文献   

10.
Heritabilities and genetic and phenotypic correlations were estimated for length and weight of two brood years (BY 1977 and BY 1978) of coho salmon [Oncorhynchus kisutch (Walbaum)] during the marine net-pen phase of rearing. The estimates were calculated from length and weight measurements on progeny resulting from a nested mating design and measurements at approximately 4 and 7 months after entering sea water. Point estimate for heritabilities based on the sire component for BY 1977 were low to moderate (0.02–0.19) and did not differ significantly from zero. On the other hand, BY 1978 estimates ranged from 0.31 to 0.62 and, with two exceptions, were significantly different from zero. The latter estimates may have been inflated by inclusion of variances from non-additive sources, but still indicated that differences in the genetic potential for increased growth between the two year classes may be substantial. Genetic correlations between length and weight within sampling periods were consistently high (0.95–1.00), indicating that pleiotropic gene action or close linkage among genes affects length and weight. Genetic correlations between body size traits (length and weight) between sampling periods varied considerably but suggested a potential for indirect selection gains. Genetic correlation approximations derived using family means or ranks appeared to provide reliable estimates and may be useful when environmental influences cause a significant deviation from normality.  相似文献   

11.
We determined the habitat usage and habitat connectivity of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in continental shelf waters off Washington and Oregon, based on samples collected every June for 9 yr (1998–2006). Habitat usage and connectivity were evaluated using SeaWiFS satellite‐derived chlorophyll a data and water depth. Logistic regression models were developed for both species, and habitats were first classified using a threshold value estimated from a receiver operating characteristic curve. A Bernoulli random process using catch probabilities from observed data, i.e. the frequency of occurrence of a fish divided by the number of times a station was surveyed, was applied to reclassify stations. Zero‐catch probabilities of yearling Chinook and yearling coho salmon decreased with increases in chlorophyll a concentration, and with decreases in water depth. From 1998 to 2006, ~ 47% of stations surveyed were classified as unfavorable habitat for yearling Chinook salmon and ~ 53% for yearling coho salmon. Potentially favorable habitat varied among years and ranged from 9 856 to 15 120 km2 (Chinook) and from 14 800 to 16 736 km2 (coho). For both species, the smallest habitat area occurred in 1998, an El Niño year. Favorable habitats for yearling Chinook salmon were more isolated in 1998 and 2005 than in other years. Both species had larger and more continuous favorable habitat areas along the Washington coast than along the Oregon coast. The favorable habitats were also larger and more continuous nearshore than offshore for both species. Further investigations on large‐scale transport, mesoscale physical features, and prey and predator availability in the study area are necessary to explain the spatial arrangement of juvenile salmon habitats in continental shelf waters.  相似文献   

12.
Activity of the thyroid gland of the coho salmon,Oncorhynchus kisutch, was assessed by physiological, histological and ultrastructural criteria after treatment with graded doses of bovine thyrotropin (bTSH) in January and March. Average plasma thyroxine (T4) levels increased from about 0.8 ng/ml in saline-injected controls to about 15 ng/ml in fish treated with four intraperitoneal injections of 0.8 lU bTSH. Light-microscope observations of one m-thick sections stained with methylene blue and azure II, showed that bTSH treatment increased epithelial height in both presmolts and smolts. Ultrastructural manifestations of increased activity owing to bTSH treatment were also seen, along with evidence of follicle proliferation. Cytoplasmic organelles and secretory granules increased in numbers with increased dosage of bTSH.  相似文献   

13.
To better understand and predict Oregon coho (Oncorhynchus kisutch) marine survival, we developed a conceptual model of processes occurring during four sequential periods: (1) winter climate prior to smolt migration from freshwater to ocean, (2) spring transition from winter downwelling to spring/summer upwelling, (3) the spring upwelling season and (4) winter ocean conditions near the end of the maturing coho's first year at sea. We then parameterized a General Additive Model (GAM) with Oregon Production Index (OPI) coho smolt‐to‐adult survival estimates from 1970 to 2001 and environmental data representing processes occurring during each period (presmolt winter SST, spring transition date, spring sea level, and post‐smolt winter SST). The model explained a high and significant proportion of the variation in coho survival (R2 = 0.75). The model forecast of 2002 adult survival rate ranged from 4 to 8%. Our forecast was higher than predictions based on the return of precocious males (‘jacks’), and it won't be known until fall 2002 which forecast is most accurate. An advantage to our environmentally based predictive model is the potential for linkages with predictive climate models, which might allow for forecasts more than 1 year in advance. Relationships between the environmental variables in the GAM and others (such as the North Pacific Index and water column stratification) provided insight into the processes driving production in the Pacific Northwest coastal ocean. Thus, coho may be a bellwether for the coastal environment and models such as ours may apply to populations of other species in this habitat.  相似文献   

14.
15.
Tissue lipid content and lipolytic enzyme activity was determined in selected tissues of coho salmon,Oncorhynchus kisutch, at various developmental stages (freshwater parr, freshwater smolt, seawater smolt, and seawater stunt) and in tissues of coho salmon and chinook salmon,O. tshawytscha, exposed to seawater periodically during smoltification. Among developmental groups, total lipid concentration of liver and dark muscle was highest in freshwater (FW) parr. Lipid concentration in both liver and dark muscle was significantly lower in FW smolts, seawater (SW) smolts and SW stunts; no difference was observed among these groups. Alterations in lipid composition were reflected in depot triacylglycerol lipase activity. FW smolts, SW smolts and SW stunts displayed significantly higher lipase activity than FW parr in each of the tissues examined (live, dark muscle and mesenteric fat). Early in smoltification (March, April), exposure to seawater results in enhanced lipid depletion from liver, dark muscle and mesenteric fat, both 30 and 60 days after exposure, compared to FW controls. This depletion was accompanied by increased liver (March and April) dark muscle (March) and mesenteric fat (March) lipase activity. Later in smoltification (May), salinity-induced alterations in lipid metabolism were not observed. These results indicate that exposure to seawater stimulates lipid depletion in juvenile salmon and that the depletion can be explained, in part, by increased depot lipase activity. Furthermore, these data confirm that metabolic dysfunction is associated with stunting.  相似文献   

16.
Six extruded dry diets formulated to contain one of two levels of digestible protein (37% or 44%) and one of three levels of digestible lipid (16%, 23% or 30%) on a dry weight basis and a seventh diet (commercial control) were used to feed triplicate groups of post‐juvenile coho salmon Oncorhynchus kisutch in sea water. Fish were fed to satiation twice daily for 168 days. Growth performances were monitored every 28 days. On day 168, samples were taken from each replicate group per dietary treatment for determinations of whole‐body and muscle proximate compositions. Fatty acid compositions and astaxanthin concentration in both the experimental diets and fish flesh were assessed by gas chromatography (GC) and high‐performance liquid chromatography (HPLC) respectively. Coho salmon fed diets containing the higher lipid levels (23–30%) exhibited improved feed efficiency, protein efficiency ratio, percentage protein deposition and percentage gross energy utilization. Higher protein content diets supported better growth than those that had lower protein content, but the former led to lowered protein efficiency ratio, percentage protein deposition and gross energy utilization. Fish fed the diets with high lipid levels (23% or 30%) also had higher astaxanthin content in raw flesh.  相似文献   

17.
Although somatotropins are potent growth promoters in salmonids, there is little information on how these proteins are metabolized by poikilotherms. In the present study, the plasma uptake and clearance rates of recombinant chicken somatotropin (rcGH) were investigated in juvenile coho salmon (Oncorhynchus kisutch). Two doses of rcGH were administered by intraperitoneal (ip) or intramuscular (im) injection and blood samples were collected over a period of 32 days. A specific radioimmunoassay was validated and used to discriminate rcGH from endogenous somatotropin. Plasma rcGH concentration was proportional to the dose delivered, but uptake and clearance rates were found to be independent of dose (between 0.5 and 5.0 g/g). Absorption of rcGH into the plasma was faster from the im site, but the peak levels attained were similar after im or ip treatment (using the same dose) as was area under the curve. Plasma half-life was calculated from the declining phase of the uptake/clearance profile but the results were biased by the concurrent uptake of rcGH from the ip or im reservoir of material, resulting in an over-estimation of the true half-life value. Effective treatment doses and intervals are discussed.  相似文献   

18.
Our collaborative work focused on understanding the system of mechanisms influencing the mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Coordinated field studies, data analysis and numerical modelling projects were used to identify and explain the mechanisms and their roles in juvenile mortality. In particular, project studies addressed the identification of major fish and bird predators consuming juvenile salmon and the evaluation of three hypotheses linking these losses to (i) alternative prey for predators (prey‐switching hypothesis); (ii) salmon foraging behaviour (refuge‐dispersion hypothesis); and (iii) salmon size and growth (size‐refuge hypothesis). Two facultative planktivorous fishes, Pacific herring (Clupea pallasi) and walleye pollock (Theragra chalcogramma), probably consumed the most juvenile pink salmon each year, although other gadids were also important. Our prey‐switching hypothesis was supported by data indicating that herring and pollock switched to alternative nekton prey, including juvenile salmon, when the biomass of large copepods declined below about 0.2 g m?3. Model simulations were consistent with these findings, but simulations suggested that a June pteropod bloom also sheltered juvenile salmon from predation. Our refuge‐dispersion hypothesis was supported by data indicating a five‐fold increase in predation losses of juvenile salmon when salmon dispersed from nearshore habitats as the biomass of large copepods declined. Our size‐refuge hypothesis was supported by data indicating that size‐ and growth‐dependent vulnerabilities of salmon to predators were a function of predator and prey sizes and the timing of predation events. Our model simulations offered support for the efficacy of representing ecological processes affecting juvenile fishes as systems of coupled evolution equations representing both spatial distribution and physiological status. Simulations wherein model dimensionality was limited through construction of composite trophic groups reproduced the dominant patterns in salmon survival data. In our study, these composite trophic groups were six key zooplankton taxonomic groups, two categories of adult pelagic fishes, and from six to 12 groups for tagged hatchery‐reared juvenile salmon. Model simulations also suggested the importance of salmon density and predator size as important factors modifying the predation process.  相似文献   

19.
20.
We examined variability in growth rate during the larval stage of northern anchovy (Engraulis mordax) in response to physical and biological environmental factors in 2005 and 2006. The onset of spring upwelling was anomalously delayed by 2–3 months until mid‐July in 2005; in contrast, spring upwelling in 2006 began as a normal year in the northern California Current. Larval and early juvenile E. mordax were collected in August, September, and October off the coast of Oregon and Washington. Hatch dates ranged from May to September, with peaks in June and August in 2005 and a peak in July in 2006, based on the number of otolith daily increments. Back‐calculated body length‐at‐age in the June 2005 hatch cohort was significantly smaller than in the August 2005 cohort, which had comparable growth to the July 2006 cohort. Standardized otolith daily increment widths as a proxy for seasonal variability in somatic growth rates in 2005 were negative until late July and then changed to positive with intensification of upwelling. The standardized increment width was a positive function of biomass of chlorophyll a concentration, and neritic cold‐water and oceanic subarctic copepod species sampled biweekly off Newport, Oregon. Our results suggest that delayed upwelling in 2005 resulted in low food availability and, consequently, reduced E. mordax larval growth rate in early summer, but once upwelling began in July, high food availability enhanced larval growth rate to that typical of a normal upwelling year (e.g., 2006) in the northern California Current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号