首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
The effects of the interaction between sodium chloride, nitrate, and concentrations on growth and internal ion content of faba bean (Vicia faba L.) plants were studied, to understand the relationship between the above parameters and salt tolerance. Increased salinity substantially reduced the dry weight of roots and shoots and increased the root/shoot biomass ratio. Additional nitrate‐N considerably moderated the salinity effects on these parameters. The promotive effects of nitrate‐N were more pronounced on shoot dry weight. These results suggest that an exogenous supply of nitrate‐N would improve the vegetative growth of V. faba plants by moderating the suppresive effects of salinity. The evolution of the root and shoot content in potassium (K), sodium (Na), magnesium (Mg), calcium (Ca), and nitrogen (N) was monitored during vegetative growth. A high correspondence between total N and Ca content was found. The acquisition of Ca and K in response to salt and nitrate was similar in shoots and roots, whereas Mg uptake showed notable differences in the two organs. In salt‐affected plants, the roots were found to be high in accumulated Na while the shoots exhibited the lowest Na concentration. Potassium accumulation was higher in the shoots. In this way, there was an antagonistic effect between Na and K uptake. Analyses of the nutrient contents in plant organs have provided a data base on salt‐tolerance mechanisms of V. faba plants.  相似文献   

3.
The present study aimed at the assessment of carbon (C) costs for nitrate reduction by measuring the additional CO2 amounts released from roots of nitrate‐fed plants in comparison with urea‐fed plants. Only roots were suitable for these determinations, because nitrate reduction in illuminated shoots is fed nearly exclusively by reducing equivalents coming directly from photosynthetic processes. Therefore, in a first experiment, the sites of nitrate reduction were determined in nodule‐free broad bean (Vicia faba L.) and pea (Pisum sativum L.) plants grown in pots filled with quartz sand and supplied with KNO3. The extent of nitrate reduction in the various plant organs was determined by measuring in vitro nitrate reductase activity and in situ 15NO reduction. Only between 9% and 16% of nitrate were reduced in roots of German pea cultivars, whilst 52% to 65% were reduced in broad bean roots. Therefore, C costs of the process could be determined only in broad bean, using an additional pot experiment. The C costs amounted to about 4.76 mol C (mol N)–1 or 4 mg C (mg N)–1, similar to those measured earlier for N2 fixation. The high proportion of nitrate reduction in shoots of pea plants implies that only very little C is required for this nitrate fraction. This can explain the better root growth of nitrate‐nourished pea plants in comparison with N2‐fixing organisms, which need C compounds for N2 reduction in roots. Moreover, a different availability of photosynthates in roots of plant genotypes could explain physiologically the occurrence of “shoot and root reducers” in nature.  相似文献   

4.
Maize plants (Zea mays L. cv. Pioneer 3906) were grown in hydroponics with four different NaCl treatments (control, 50, 100, 150 mM NaCl). Nitrogen (N) was supplied as 2 mM Ca(NO3)2 in the fully concentrated nutrient solution. Plants of half of the pots were treated with additional 1 mM NH4NO3 2 d after start of the NaCl application. After 23 d, the maize plants were harvested and contents and concentrations of nitrate, reduced N as well as chloride were determined in shoots and roots. With increasing NaCl stress net nitrate uptake and net root‐to‐shoot translocation of total N decreased significantly. Under salt stress, decreased nitrate concentrations in shoots probably caused substrate limitation of nitrate reductase. However, the concentrations of reduced N in shoots were not affected by salt stress and no N deficiency was observed. Additional N application to the 100 and 150 mM NaCl treatments did not improve plant growth. A Cl?/NO antagonism was only weakly pronounced, probably because of the Cl? exclusion ability of maize. Thus, although net uptake and net translocation of total N were markedly decreased by NaCl application, the smaller maize plants nevertheless took up enough N to meet their demand pointing to other growth‐limiting factors than N nutrition.  相似文献   

5.
温室盆栽试验研究了我国北方不同菠菜品种叶柄和叶片的硝态氮含量及其与植株生长的关系。结果表明,30个菠菜品种地上部分的生长量和硝态氮含量存在显著差异。叶柄和叶片在反映品种间生长量和硝态氮含量变异方面的作用并不相同。叶片占植株地上部鲜重的比例高于叶柄,品种间叶片生长量的差异亦大于叶柄,叶片与植株生长量的正相关关系更为显著。但与生长量的情况不同,叶柄的硝态氮含量、累积总量均显著高于叶片,是菠菜累积硝态氮的主要器官。叶柄硝态氮含量的品种间差异远大于叶片,与植株地上部硝态氮含量的正相关性更为显著。菠菜不同品种之间,叶柄硝态氮含量与地上部鲜重、干重及水分均表现出显著的正相关关系,而叶片硝态氮含量与植株生物量及其各组分之间却无这种关系。  相似文献   

6.
Abstract

Barley (Hordeum vulgare L.) is an important crop for cereal research. In this study, two barley genotypes the wild-type (Steptoe) and the mutant (Az12) were used. An experiment was conducted using 15N-tracing method to NADH-specific nitrate reductase (NR)-deficient mutant seedling of barley. The N-depleted seedlings were exposed to a nutrient solution containing nitrate and nitrite, and were labeled with 15N for 38?h under (14?L/10D) cycles. The two genotypes utilized 15NO3? and accumulated it as reduced 15N, predominately in the shoots. However, nitrate reduction in the Az12 shoots was 9% lower than that in the Steptoe shoots at 38?h. As a result, in the Az12, nitrate accumulation in shoots was 78% higher than that in the Steptoe. Accumulation of reduced 15N in the Az12 roots was nearly similar to that of the Steptoe roots, but 8% lower in the Az12 shoots than in the Steptoe shoots at the end of the experiment. Also for both genotypes, root contribution increased during L/D cycles and decreased during the subsequent light cycle. Upward transport of reduced 15N via the xylem in the Az12 was nearly two times higher than that in Steptoe during the second light period (24–38?h). In both genotypes, xylem transport of reduced 15N was far exceeded the downward phloem transport. Abbreviations Anl accumulation of reduced 15N from 15NO3? in non-labeled roots of split roots

Ar accumulation in roots of reduced 15N from 15NO3?

As accumulation in shoots of reduced 15N from 15NO3?

Rr 15NO3? reduction in roots

Rs 15NO3? reduction in shoots

Tp translocation to root of shoot reduced 15N from 15NO3? in phloem

Tx translocation to shoot of root-reduced 15N from 15NO3? in xylem

FW fresh weight

  相似文献   

7.
作物硝态氮转运利用与氮素利用效率的关系   总被引:1,自引:0,他引:1  
【目的】 铵态氮(NH4+)和硝态氮(NO3-)是作物氮素吸收利用的主要形态,旱作作物NO3-的累积与利用是氮素营养研究的主要组成部分,关系到理解作物NO3-的转运和利用关系及作物体内NO3-含量和氮素利用效率(nitrogen utilization efficiency,NUE)高低的问题。主要进展 作物吸收的NO3-分为被作物直接利用、分泌到根外、储存在液泡和向地上部分运输四种途径。其中NO3-短途分配(液泡NO3-分配)和长途转运(地上、地下部NO3-的转运)共同调控着NO3-的利用效率,进而影响作物的NUE。液泡NO3-不能被作物直接利用,只有分配到液泡外细胞质中的NO3-才能被作物迅速代谢和利用;同时有更大比例的NO3-分配到地上部分,使得作物可以充分利用太阳光能进行NO3-代谢和能量转换,从而提高了作物的NUE。此外,液泡对NO3-起到分隔作用,储存在液泡中的NO3-并不能对NO3-转运相关基因(如NR、NO3-长途转运基因NRT1.5和NRT1.8)起到诱导效果;只有分配在液泡外原生质体中的NO3-才能对NO3-诱导基因产生强烈的诱导。因此,作物细胞原生质体中液泡内、外NO3-的分配不仅影响了NO3-的同化利用,而且直接影响了NO3-的长途转运。展望 本文对植物原生质体中液泡内、外NO3-的短途分配和地上、地下部间NO3-的长途转运机制进行了总结,为进一步深入研究作物地上、地下部NO3-长途转运和液泡NO3-短途分配的关系,以及更好地揭示作物NUE对NO3-转运和利用的响应机理提供参考。  相似文献   

8.
The effectiveness of reforestation programs on degraded soils in the Mediterranean region is frequently limited by a low soil availability and a poor plant uptake and assimilation of nutrients. While organic amendments can improve the nutrient supply, inoculation with mycorrhizal fungi can enhance plant nutrient uptake. A pot experiment was conducted in 2004 to study the influence of inoculation with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) or with a mixture of three AM fungi (G. intraradices, G. deserticola Trappe, Bloss. & Menge, and G. mosseae (Nicol & Gerd.) Gerd. & Trappe) and of an addition of composted sewage sludge or Aspergillus niger–treated dry‐olive‐cake residue on plant growth, nutrient uptake, mycorrhizal colonization, and nitrate reductase (NR) activity in shoot and roots of Juniperus oxycedrus L. Six months after planting, the inoculation of the seedlings with G. intraradices or a mixture of three AM fungi was the most effective treatment for stimulating growth of J. oxycedrus. There were no differences between the two mycorrhizal treatments. All treatments increased plant growth and foliar N and P contents compared to the control plants. Mycorrhizal inoculation and organic amendments, particularly fermented dry olive cake, increased significantly the NR activity in roots.  相似文献   

9.
利用控制条件下的溶液培养方法,研究了增硝营养(NH4+∶NO3-比例为100∶0和50∶50)对两种不同的基因型水稻南光和云粳苗期生长和硝酸还原酶(NR)活性及基因表达量的影响。结果表明,不同基因型水稻在增NO3-营养下生物量、氮素含量、氮积累量的增幅南光大于云粳。NO3-的存在增强了水稻硝酸还原酶的活力和NR基因OsNia1、OsNia2的表达。不同基因在水稻幼苗中,两个品种OsNia2的相对表达量均高于OsNia1。就品种而言,无论叶片还是根系,增硝后南光OsNia2mRNA表达量都高于云粳;南光叶片OsNia1mRNA表达量也较云粳叶片高。增硝营养提高了水稻NR基因的表达,增加了NR活性,促进了水稻NO3-的同化利用,从而增加了氮素在植株地上部的积累同化。南光和云粳相比,前者对NO3-的响应更为强烈。  相似文献   

10.
Considerable differences in response to nitrogen (N) availability among plant species and cultivars have been well documented. Focusing on the uptake of N, it is not clear which factor or factors determine efficient N acquisition. Two maize (Zea mays L.) inbred lines (478, N‐efficient; W312, N‐inefficient) were used to compare the relative contribution of root uptake activity and root size to N acquisition. Nitrogen‐efficient inbred 478 had higher yields and accumulated more N under field conditions than W312 under both high‐ (135 kg N ha–1) and low‐N (no N supplied) conditions. The root system of 478, as indicated by total root length, root biomass, and root‐to‐shoot ratio, was larger and more responsive to low N stress. Especially, 478 developed more and longer axial roots at low N stress. On the contrary, the average N‐accumulation rate in 478 was lower than that of Wu312. In solution culture, 13NO3influx in 478 was lower than in W312 after 8 h of nitrate provision. The expression of nitrate‐transporter genes ZmNRT1.1, ZmNRT2.1, ZmNRT2.2, and ZmNAR2.1 was stronger and lasted for a longer time after NO induction in W312. It is concluded that the efficient N acquisition in 478 is due to (1) a larger root system and (2) a stronger response of root growth to low N induction.  相似文献   

11.
硝态氮是植物吸收利用的主要氮源,其吸收利用是一个高度协调复杂的调控过程。植物为了在各种变化的环境中生存,进化出了适宜不同环境的硝态氮吸收利用机制。植物根系中存在不同类型的硝态氮受体,可以感受外界硝态氮浓度变化,并启用高亲和力或低亲和力硝态氮吸收系统,从而吸收硝态氮;硝态氮进入根系后,大部分被运输到地上部进行同化作用,合成大分子物质,以促进植物生长;如果地上部硝态氮含量过多,植物可把多余的硝态氮运送到液泡内储存,待需要时再从液泡转运至细胞质中利用。植物生长发育过程中,老叶和成熟叶片中的硝态氮可被转运到新生组织中,促进新生组织生长。硝态氮吸收利用过程中大量硝态氮吸收、转运、储存、同化和信号调控基因被有序激活并协调工作,促进植物高效吸收利用硝态氮。本文主要针对NRT1和NRT2硝态氮吸收转运相关基因及其功能,以及参与初级硝态氮反应的相关转录因子和小信号多肽在硝态氮信号传导和组织间的信号交流进行综述,以便深入理解植物吸收利用硝态氮的机理,为高效利用氮素的作物育种和栽培技术的创建提供新的思路。  相似文献   

12.
Plant roots are generally considered to decompose slower than shoots and contribute more to accumulation of soil organic matter, and management history is expected to shape the structure and function of decomposer communities in soil. Here we study the effect of chemical characteristics of shoots and roots from fodder radish (Raphanus sativus oleiformis L.), a widely used cover crop, on the release of their C and N after addition to soil. Shoots and roots were incubated for 180?d at 20°C using four soils with different management histories (organic versus mineral fertiliser, with and without use of cover crops), and the release of CO2 and extractable mineral N was determined. More shoot C than root C was mineralised during the first 10?d of incubation. After 180?d, 58% of the C input was mineralised with no difference between shoots and roots. At the end of incubation, shoots had released more N (42% of shoot N) than roots (28% of root N). Moreover, management history did not affect net mineralisation of added plant C. Residues incubated in soil with a management history involving cover crops showed an enhanced net N mineralisation. Therefore, long-term decomposition of C added in radish shoots and roots is unaffected by differences in chemical characteristics or soil management history. However, the net mineralisation of N in shoots is faster than for N in roots, and net N mineralisation of added materials is higher in soil with than without a history of cover crops.

Abbreviations: CC: cover crop; IF: inorganic fertilizer; M: manure  相似文献   

13.
ABSTRACT

Nickel (Ni) is an essential element for activation of urease in higher plants. The effects of Ni as an essential micronutrient on growth and chlorophyll content of wheat plants grew in nutrient solutions supplied either with ammonium nitrate or urea as two different nitrogen (N) sources were investigated. Plants were allowed to grow for six weeks, then leaf chlorophyll content, shoot and root fresh and dry weights, and Ni concentration in shoots and roots were determined. Shoot and root Ni concentration in both urea and ammonium nitrate-fed plants increased significantly with the increase in Ni concentration. Growth and chlorophyll content in leaves of the urea-fed plants increased when Ni concentration in the solution was as high as 0.05 mg L?1 and decreased at 0.1 mg Ni L?1. In ammonium nitrate-fed plants, these parameters increased up to 0.01 mg Ni L?1 and started to decrease with further increase in Ni concentration. Plants that grew in nutrient solutions containing urea had more shoots and roots fresh and dry weight at third and fourth Ni levels (0.05 and 0.1 mg L?1) than those that grew in media containing ammonium nitrate with similar Ni levels. Total chlorophyll content was also higher in plants supplied with urea plus Ni. The amount of Ni required for optimum wheat growth was dependent on the forms of N used. When supplied with ammonium nitrate or urea, the amount of Ni needed was 0.01 and 0.05 mgL?1 of nutrient solutions, respectively.  相似文献   

14.
《Journal of plant nutrition》2013,36(10):2091-2002
ABSTRACT

Two cultivars of wheat (Triticum aestivum cvs. Fresco and Hussar) were grown in hydroponic culture with nitrogen (N) supplied either as nitrate or equimolar ammonium and nitrate, and with a range of concentrations of NaCl from 0 to 100 mM. Plant growth was stimulated by low concentrations of NaCl and was depressed by high concentrations of NaCl. Growth was higher with mixed N nutrition than with nitrate supplied alone at all rates of NaCl supply. Shoot:root ratio was also depressed by salinity. Concentrations of potassium (K) decreased with salinity and were generally higher with mixed N supply, whereas concentrations of Na were higher with salinity and lower with mixed N supply. There were strong positive linear relationships between total plant dry mass and the concentrations of copper (Cu) in the roots and strong negative linear relationships between total plant dry mass and the concentrations of manganese (Mn) in both shoots and roots and zinc (Zn) in the shoots. The concentrations of Cu in the roots were higher with mixed N supply, lower with high salinity, and the concentrations of Mn in both shoots and roots were lower with mixed N supply and generally higher with high salinity. Tissue concentrations of these ions appear to be major determinants of wheat growth in saline environments.  相似文献   

15.
The field experiment was conducted to study the effect of conventional chemical fertilizer (urea),conventional biofertilizers (charcoal based) and organic matrix entrapped biofertilizer; (OMEB: a consortium of Azotobacter chroococcum, Azospirillum brasilense and Pseudomnas putida entrapped with clay soil, neem leaves, and cow dung in ratio of 1:1:1 and 15% saresh (plant gum of Acacia sp.) in various doses on growth parameters of Rauwolfia serpentina in terms of root length, shoot length, number of leaves, number of roots and fresh and dry weight of roots and shoots. Replacement of conventional chemical fertilizer by the consortium of biofertilizers (un-entrapped) increased plant growth in a dose dependent manner up to triple dose of the recommended dose (RD) of biofertilizers (1.80 kg ha-1). This increase in plant growth was not up to the level which appeared in the application of RD of urea. Entrapment of the same biofertilizers in an organic matrix mentioned above enhanced the plant growth similar to that observed for urea. The percentage increase of 9.57 and 7.54 in fresh weight (FW) and 11.93 and 11.12% in dry weight (DW) of shoot and 17.94 and 37.87% in FW of roots and 31.90 and 50.08% in DW of roots were recorded in 75 days old plant by the application of OMEB- triple dose over the conventional biofertilizers triple dose and recommended dose of urea. Conventional biofertilizers enhanced the availability of nitrate, nitrite and phosphate in the roots and leaves of the plant over application of urea as well as conventional biofertilizers. This formulation also increased alkaloid contents of in the roots of this plant. Microbial population of soil was also improved indicating enhanced soil fertility with application of OMEB. The results indicate that replacement of chemical fertilizers with microbial biofertilizers is possible with application of higher dose of biofertilizers entrapped into the organic matrix for the cultivation of medicinal plants like R. serpentina.  相似文献   

16.
Plant requires nitrogen for the growth, and it use nitrate and ammonium from the environment. Plant suffers from the toxicity when excess ammonium is supplied as a sole nitrogen, although it could be a good nitrogen source for plant growth. We hypothesized that the different responses of ecotypes to ammonium nutrient could partly account for the adaptation of Arabidopsis to an ammonium environment. The purpose of this study is to understand the different responses of ecotypes in ammonium environment. The growth of Arabidopsis thaliana ecotypes, Columbia was compared to those of Arabidopsis thaliana ecotypes, Landsberg erecta in ammonium nutrient. The ratio of shoot dry weight to root dry weight was compared to evaluate the adaptation of two ecotypes. The shoot:root ratio of Landsberg was significantly higher than that of Columbia. T-DNA insertion in cytosolic glutamine synthetase 1;2, one of the essential ammonium assimilatory enzymes, led a decrease of shoot:root ratio. We also measured the isotope-labeled ammonium uptake and the expression levels of ammonium transporter genes, and also the expression of ammonium assimilatory genes, glutamine synthetase genes and glutamate synthase genes, in roots after ammonium re-supply using real-time polymerase chain reaction analysis. We found that (1) ammonium uptake of Landsberg erecta was higher than that of Columbia, when ammonium was supplied at higher concentration, and (2) cytosolic glutamine synthetase 1;2 was highly increased by ammonium supply in the root of Landsberg erecta. The present study suggested the importance of these two factors for adaptation of Arabidopsis to an ammonium-rich environment.  相似文献   

17.
In nodulated young Inga edulis plants, nodule and plant growth, nitrogen (N) in xylem sap and tissues total contents of amino acid, ureide, and nitrate were determined in response to nutrition with nitrate, ammonium, or no mineral N. Additionally, the amount of soluble sugars in the different plant tissues was quantified. It was found that mineral N improved plant growth in height and diameter especially with ammonium. However, nitrate dramatically reduced nodule dry weight on a root dry weight basis and impaired N organic transport by xylem sap. Additionally, a higher amount of amino acids was observed in the roots and nodules of plants fed with mineral N but sugar levels remained constant. Although nitrate inhibited symbiosis, data support the idea that I. edulis is able to use both molecular and mineral nitrogen during the life cycle.  相似文献   

18.
The effects of aluminum (Al) on nitrate reductase activity, plastid pigment content, and mineral element composition in wheat, rye, and triticale seedlings were studied. Different responses of the plant species to Al content in the growth solution were observed. Under conditions of different Al concentrations (from 1 to 10 ppm), nitrate reductase (NR) activity increased in wheat and triticale, while in rye an interference with nitrate reductase by Al was observed. A definite tendency in plastid pigment content changes independent on Al levels was not found. The chlorophyll “a”;, chlorophyll “b”;, and carotenoid contents were influenced in a different way in wheat, rye, and triticale seedlings. A positive effect of 1, 5, and 10 ppm Al on the nitrogen (N) content in the shoots of wheat and rye was observed. The N content in the shoots of triticale was not affected by the presence of Al. The presence of Al in the nutrient solution led to a tendency toward reduction of potassium (K), calcium (Ca), and magnesium (Mg) contents in the shoots of rye seedlings, a reduction of K in the shoots and manganese (Mn) content in roots of wheat, and a reduction of K in both shoots and roots and an accumulation of Mn in triticale roots. In general, our investigation on the effect of Al in the early stages of wheat, rye, and triticale development showed that a large number of biochemical and physiological parameters are required to characterize the plant responses to Al stress.  相似文献   

19.
Defoliation-induced changes in grass growth and C allocation are known to affect soil organisms, but how much these effects in turn mediate grass responses to defoliation is not fully understood. Here, we present results from a microcosm study that assessed the role of arbuscular mycorrhizal (AM) fungi and soil decomposers in the response of a common forage grass, Phleum pratense L., to defoliation at two nutrient availabilities (added inorganic nutrients or no added nutrients). We measured the growth and C and N allocations of P. pratense plants as well as the abundance of soil organisms in the plant rhizosphere 5 and 19 d after defoliation. To examine whether defoliation affected the availability of organic N to plants, we added 15N-labelled root litter to the soil and tracked the movement of mineralized 15N from the litter to the plant shoots.When inorganic nutrients were not added, defoliation reduced P. pratense growth and root C allocation, but increased the shoot N concentration, shoot N yield (amount of N in clipped plus harvested shoot mass) and relative shoot N allocation. Defoliation also reduced N uptake from the litter but did not affect total plant N uptake. Among soil organisms, defoliation reduced the root colonization rates of AM fungi but did not affect soil microbial respiration or the abundance of microbe-grazing nematodes. These results indicate that interactions with soil organisms were not responsible for the increased shoot N concentration and shoot N yield of defoliated P. pratense plants. Instead, these effects apparently reflect a higher efficiency in N uptake per unit plant mass and increased relative allocation of N to shoots in defoliated plants. The role of soil organisms did not change when additional nutrients were available at the moment of defoliation, but the effects of defoliation on shoot N concentration and yield became negative, apparently due to the reduced ability of defoliated plants to compete for the pulse of inorganic nutrients added at the moment of defoliation.Our results show that the typical grass responses to defoliation—increased shoot N concentration and shoot N yield—are not necessarily mediated by soil organisms. We also found that these responses followed defoliation even when the ability of plants to utilize N from organic sources, such as plant litter, was diminished, because defoliated plants showed higher N-uptake efficiency per unit plant mass and allocated relatively more N to shoots than non-defoliated plants.  相似文献   

20.
Salinity and low nitrogen availability are important growth‐limiting factors for most plants. Our objective was to assess the influence of nitrogen (N) and salt levels on the growth and mineral nutrition of three forage grasses of varying salt resistance which are widely found in Tunisian salt lands, Aeluropus littoralis, Catapodium rigidum, and Brachypodium distachyum. Their response to salt and N interaction has not been studied and further investigations are necessary. Twenty day–old plantlets were hydroponically cultivated in Hewitt's nutrient solution. Half the plants were then exposed to 100 mM NaCl and the other half to no NaCl, and N was supplied at 0.5 or 5.0 mM N as NH4NO3. Plants were harvested after 60 d growth. Saline treatment (100 mM NaCl) decreased growth of B. distachyum (a relatively salt‐sensitive plant), but no significant effect was noted for A. littoralis (a relatively salt‐resistant plant) in both low– and high–N availability treatments. However, the effect of 100 mM NaCl on growth of C. rigidum (a moderately salt‐resistant plant) depended on N level. Increasing N availability and NaCl did not influence phosphate, sulfate, calcium, and magnesium concentrations in both A. littoralis and C. rigidum, but increased N supply reduced shoot sodium and chloride (Cl) accumulation. Potassium acquisition in A. littoralis and C. rigidum plants was severely depressed by increasing N availability under saline and nonsaline conditions, respectively. In these species, the increase of nitrate accumulation via N was attenuated by salinity. In contrast, total N content and allocation toward shoots were enhanced in these conditions, especially in A. littoralis, the most resistant species. It appears that increasing N availability at moderate salt levels has a beneficial effect on growth of species with high and moderate salt resistance, but not on species with low resistance to salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号