首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Roots are important organs that supply water and nutrients to growing plants. Data related to root growth and nutrient uptake by tropical legume cover crops are limited. The objective of this study was to evaluate root growth of tropical legume cover crops and nutrient uptake and use efficiency under different phosphorus (P) levels. The P levels used were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil, and five cover crops were evaluated. Root dry weight, maximum root length, and specific root length were significantly influenced by P and cover crop treatments. Maximum values of these root growth parameters were achieved with the addition of 100 mg P kg?1 soil. The P?×?cover crops interactions for all the macro- and micronutrients, except manganese (Mn), were significant, indicating variation in uptake pattern of these nutrients by cover crops with the variation in P rates. Overall, uptake pattern of macronutrients was in the order of nitrogen (N) > calcium (Ca) > potassium (K) > magnesium (Mg) > P and micronutrient uptake pattern was in the order of iron (Fe) > Mn > zinc (Zn) > copper (Cu). Cover crops which produced maximum root dry weight also accumulated greater amount of nutrients, including N, compared to cover crops, which produced lower root dry weight. Greater uptake of N compared to other nutrients by cover crops indicated that use of cover crops in the cropping systems could reduce loss of nitrate (NO3 ?) from soil–plant systems. Increase in root length and root dry weight with the addition of P can improve nutrient uptake from the soil and lessen loss of macro- and micronutrients from the soil–plant systems.  相似文献   

2.
Dry bean is an important legume for South American population, and phosphorus (P) deficiency is the most yield-limiting nutrient for crop production in South American soils. A greenhouse experiment was conducted with the objective of evaluating influence of P fertilization on grain yield and yield components of 30 dry bean genotypes. The P levels used were 0 mg P kg?1 (natural level of the soil) and 200 mg P kg?1 applied with triple superphosphate fertilizer. Yield and yield components were significantly influenced with P as well as genotype treatments. The P?×?genotype interactions were significant for yield as well as yield components, indicating different responses of genotypes at two P levels. Root dry weight and maximum root length were also significantly increased with the addition of P fertilization. There were also significant differences among the genotypes in the growth of root system. Based on grain yield efficiency index (GYEI), genotypes were classified as P efficient, moderately efficient, and inefficient. Among 30 genotypes, 17 were classified as efficient, 12 were classified as moderately efficient, and 1 was classified as inefficient. Yield components such as pods per plant and seeds per pod were having significant positive association with grain yield. In addition, grain harvest index (GHI) was also having significant linear association with grain yield. Hence, it is possible to improve grain yield of dry bean in Brazilian Oxisol with the addition of adequate rate of P fertilization as well as use of P-efficient genotypes.  相似文献   

3.
This experiment was conducted at Zahak Agricultural Research Station in the Sistan region in southeast Iran. A factorial design with three replications was used to determine the effects of zinc (Zn), iron (Fe), and manganese (Mn) applications on wheat yield, Zn, Fe, and Mn uptakes and concentrations in grains. Four levels of Zn [soil applications of 0, 40, and 80 kg ha?1 and foliar application of 0.5% zinc sulfate (ZnSO4) solution], two levels of iron sulfate (FeSO4; 0 and 1%) as foliar application, and two levels of Mn (0 and 0.5%) also as foliar application were used in this study. Results showed that the interactive effects of Zn and Mn were significant on the number of grains in each spike. The highest number of grains resulted from the application of 80 kg ZnSO4 ha?1 and foliar Mn. The interactive effects of Zn and Fe were significant on weight of 1000 grains. The highest weight of 1000 grains resulted from application of 80 kg Zn and foliar Fe. Application of 80 kg ZnSO4 ha?1 alone and 80 kg ZnSO4 ha?1 with foliar application of Mn significantly increased grain yield in 2003. The 2‐year results showed that foliar application of Zn increased Zn concentration and Fe concentration in grains 99% and 8%, respectively. Foliar application of Fe resulted in a 21% increase in Fe concentration and a 13% increase in Zn concentration in grains. The foliar application of Mn resulted in a 7% increased in Mn concentration in grains.  相似文献   

4.
Many researchers have reported beneficial effects of silicon (Si) on plant growth when available phosphorus (P) is low, but the reasons for this are poorly understood. Factorial application of three levels of Si and four levels of P to rice plants grown in Red Ferrosol interacted to increase rice growth and Si and P uptake (P < 0.01). Application of Si with P increased P uptake by <120%. Although Si application affected P uptake, yield increases were more likely associated with reduced manganese (Mn) toxicity, particularly as the P/Mn and P/iron ratios increased with increasing Si application. Further research is necessary to determine if the beneficial effects of Si application on P nutrition occur where adequate P is supplied or is limited to situations where alternate nutritional or disease limitations affect growth.  相似文献   

5.
Iron (Fe) availability is low in calcareous soils of southern Iran. The chelate Fe-ethylenediamine di (o-hydroxy-phenylacetic acid) (Fe-EDDHA), has been used as an effective source of Fe in correcting Fe deficiency in such soils. In some cases, however, its application might cause nutritional disorder due to the antagonistic effect of Fe with other cationic micronutrients, in particular with manganese (Mn). A greenhouse experiment was conducted to evaluate the influence of soil and foliar applications of Fe and soil application of manganese (Mn) on dry matter yield (DMY) and the uptake of cationic micronutrients in wheat (Triticum aestivum L. var. Ghods) in a calcareous soil. Results showed that neither soil application of Fe-EDDHA nor foliar application of Fe sulfate had a significant effect on wheat DMY. In general, Fe application increased Fe uptake but decreased that of Mn, zinc (Zn), and copper (Cu). Application of Mn increased only Mn uptake and had no significant effect on the uptake of the other cationic micronutrients. Iron treatments considerably increased the ratio of Fe to Mn, Zn, Cu, and (Mn + Zn + Cu). Failure to observe an increase in wheat DMY following Fe application is attributed to the antagonistic effect of Fe with Mn, Zn, and Cu and hence, imbalance in Fe to (Mn + Zn + Cu) ratio. Due to the nutritional disorder and imbalance, it appears that neither soil application of Fe-EDDHA nor foliar application of Fe-sulfate is appropriate in correcting Fe deficiency in wheat grown on calcareous soils. Hence, growing Fe-efficient wheat cultivars should be considered as an appropriate practice for Fe chlorosis-prone calcareous soils of southern Iran.  相似文献   

6.
Tropical legume cover crops are important components in cropping systems because of their role in improving soil quality. Information is limited on the influence of nitrogen (N) fertilization on growth of tropical legume cover crops grown on Oxisols. A greenhouse experiment was conducted to evaluate the influence of N fertilization with or without rhizobial inoculation on growth and shoot efficiency index of 10 important tropical cover crops. Nitrogen treatment were (i) 0 mg N kg?1 (control or N0), (ii) 0 mg N kg?1 + inoculation with Bradyrhizobial strains (N1), (iii) 100 mg N kg?1 + inoculation with Bradyrhizobial strains (N2), and (iv) 200 mg N kg?1 of soil (N3). The N?×?cover crops interactions were significant for shoot dry weight, root dry weight, maximal root length, and specific root length, indicating that cover crop performance varied with varying N rates and inoculation treatments. Shoot dry weight is considered an important growth trait in cover crops and, overall, maximal shoot dry weight was produced at 100 mg N kg?1 + inoculation treatment. Based on shoot dry-weight efficiency index, cover crops were classified as efficient, moderately efficient, and inefficient in N-use efficiency. Overall, the efficient cover crops were lablab, gray velvet bean, jack bean, and black velvet bean and inefficient cover crops were pueraria, calopo, crotalaria, smooth crotalaria, and showy crotalaria. Pigeonpea was classified as moderately efficient in producing shoot dry weight.  相似文献   

7.
Soil and plant samples were collected from an ongoing long-term experiment (LTE) at the Indian Agricultural Research Institute farm, New Delhi, to study the distribution of various fractions of iron (Fe) and their contribution to availability and plant uptake in a maize–wheat sequence. The optimum dose-based treatments adopted for the study were nitrogen (N), nitrogen–phosphorus (NP), nitrogen–phosphorus–potassium (NPK), NPK + farmyard manure (FYM), NPK+ zinc (Zn), and control (no fertilizer or manure). Different fractions of Fe in the soil were sequentially extracted using different extractants. Diethylenetriaminepentaacetic acid (DTPA)–extractable Fe did not differ significantly among the treatments as a result of continuous cropping for more than three decades. The overall mean total iron (Fe) content varied from 2.36 to 2.61% under different treatments. Residual Fe constitutes a major portion of total Fe in all four layers of soil. The Fe associated with easily reducible Mn and organic matter contributed directly to DTPA-extractable Fe both in pre-maize and post-wheat soil. Residual Fe contributed directly to uptake Fe by maize and wheat crops.  相似文献   

8.
The purpose of this study was to quantify the phosphorus (P) fractions in phosphate-fertilized sandy soils under grapevines. Soil was sampled from a grassland site and two vineyards (13 and 31 years old) in the State Rio Grande do Sul, Brazil, from the layers 0–5, 5–10, 10–15, 15–20, and 20–40 cm deep. The samples were prepared and P fractions were assessed by chemical fractionation. Phosphate fertilization of the vineyard soils increased P contents to a depth of 40 cm, especially in the more recalcitrant fractions but detectable in the more labile fractions as well, which are plant available and may increase the risk of environmental contamination. Phosphate fertilizers and the period of grapevine cultivation had little effect on the levels of organic P forms, whereas cover crops in vineyards could be an appropriate strategy to increase or maintain the levels of soil organic matter and the levels of organic P over the years.  相似文献   

9.
The effect of continuous cropping with maize and wheat on soil characteristics and various forms of micronutrient cations in an Incetisol over the years was studied in an ongoing long‐term experiment in New Delhi, India. The soil samples collected in the years of 1993, 1995, 1997, 1999, 2001, 2003, and 2004 were analyzed for different fractions of iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) by following a sequential extraction procedure. The pH, electrical conductivity (EC), and calcium carbonate (CaCO3) content of the soil varied from 8.28 to 8.53, 0.40 to 0.43 dSm?1, and 0.92 to 1.05%, respectively. Organic carbon content ranged from 0.38 in the control to 0.67% in 100% NPK + farmyard manure (FYM). Diethylenetriaminepentaacetic acid (DTPA)–extractable Fe and Mn (but not Zn and Cu) in soil declined from their respective initial (1971) values as a result of intensive cropping for more than three decades. It also resulted in a decrease in the concentrations of all the four metallic cations bound to organic matter, in addition to Fe and Zn, associated with carbonates in all the treatments in surface soil.  相似文献   

10.
Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical, and biological properties. A greenhouse experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient-use efficiency of 14 tropical cover crops. The P levels tested were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil. The cover crops tested were Crotalaria breviflora, Crotalaria breviflora, Crotalaria spectabilis Roth, Crotalaria ochroleuca G. Don, Crotalaria juncea L., Crotalaria mucronata, Calapogonium mucunoides, Pueraria phaseoloides Roxb., Pueraria phaseoloides Roxb., Cajanus cajan L. Millspaugh, Dolichos lablab L., Mucuna deeringiana (Bort) Merr., Mucuna cinereum L., and Canavalia ensiformis L. DC. Agronomic efficiency (shoot dry weight per unit P applied), physiological efficiency (shoot dry weight per unit of nutrient uptake), and apparent recovery efficiency (nutrient uptake in the shoot per unit nutrient applied) were significantly varied among cover crops. Agronomic efficiency decreased with increasing P levels. Overall, physiological efficiency of nutrient uptake was in the order of P > sulfur (S) > magnesium (Mg) > calcium (Ca) > potassium (K) > nitrogen (N). Similarly, apparent recovery efficiency was in the order of N > K > Ca > Mg > P > S. Different recovery efficiency in cover crops can be useful in selecting cover crops with high recovery efficiency, which may be beneficial to succeeding crops in the cropping systems. The P × cover crops interactions were significant for soil extractable Ca2+, P, cation exchange capacity (CEC), Ca saturation, Ca/K ratio, and K/Mg ratio, indicating that cover crops change these soil property differently under different P levels. Thus, cover crops selection for different P levels is an important strategy for using cover crops in cropping systems in Brazilian Oxisols. Optimal values of soil pH, soil Ca and Mg contents, hydrogen (H) + aluminum (Al), P, CEC, base saturation, Ca saturation, Mg saturation, and K saturation were established for tropical cover crops grown on an Oxisol.  相似文献   

11.
Nitrogen in the soil is continually undergoing transformation, changing in form and availability. All phases of the cycle through which this element passes must be considered in attempting to explain nitrogen balances, losses or gains. Processed such as ammonification, nitrosofication, nitrification, nitrogen fixation, and denitrification need study in this respect. Nitrogen transformations and losses in soils have been investigated extensively in various countries and exhaustive reviews of a general nature1),8,,9),15) are available.  相似文献   

12.
An experiment was conducted to clarify the relationship between Mn toxicity and Fe deficiency in bush snap bean (Phaseolus vulgaris L. cv. ‘Wonder Crop No. 2'). Seedlings were grown in full strength Hoagland No. 2 solution at pH 6.0 for ten days. Six concentrations of Mn as MnCl2.4H2O were used in combination with three concentrations of Fe as FeEDTA.

Toxicity symptoms, induced by low levels of Mn (0.1 ppm and above), included: small brown necrotic spots and veinal necrosis on primary leaves; necrosis on primary leaf petioles; interveinal chlorosis, with or without brown necrotic spots, on trifoliate leaves; and brown necrotic spots on stipules. Manganese toxicity symptoms were alleviated or prevented by increasing Fe concentration in the nutrient solution.

Manganese concentration in the leaves increased with increasing Mn and decreased with increasing Fe concentration in the nutrient solution, Iron concentration in the roots increased with increasing Fe concentration in the nutrient solution; however, Fe concentration in the leaves was not significantly affected by increasing Mn concentration in the solution culture. Manganese toxicity symptoms developed when Mn concentration in the leaves reached about 120 ppm.

A decrease in the Fe/Mn ratio in the nutrient solution resulted in a proportionate decrease in that of the leaves. Manganese toxicity symptoms occurred when the Fe/Mn ratio in the solution was 10.0 and below, or when the ratio in the leaves was less than 1.5. The ratio of Fe/Mn in the solution required for optimum growth of ‘Wonder Crop No. 2’ bean, without Mn toxicity symptoms, was in the range of 20.0 to 25.0.

Results indicate that the chlorosis on bush bean leaves induced by excessive Mn in the nutrient solution was due to excessive accumulation of Mn and not to Fe deficiency.  相似文献   


13.
A pot experiment was conducted to determine the effects of chickpea/wheat intercropping and two phosphorus (P) sources on soil acidification and to explore a new way of ameliorating soil acidification. Wheat and chickpea roots were grown in compartments separated either by a solid barrier to prevent any root interactions or by a nylon mesh (30 μm) to permit partial root interactions, or with no separation between the compartments. Two P sources were applied at 60 mg P kg?1 soil either as sodium phytate or ferrous phosphate (FePO4). The decline of soil pH after growing plants for 42 days was alleviated by supplying organic P or intercropping while receiving organic P. The ameliorating of soil acidification resulted mainly from a decrease in excess cations over anion uptake of both wheat and chickpea under phytate supply, compared to FePO4 supply. The excess cation uptake of chickpea was reduced by root interactions.  相似文献   

14.
Manganese (Mn) is an essential micronutrient needed for plant growth and development, but it can be toxic to plants in excess amounts. Long-term fertilizer experiment and intensive cropping alter the soil properties and also affect its plant-available Mn contents. To understand the dynamics of Mn under long-term fertilizer experiment the present study was initiated during 1972 at the experimental farm of College of Agriculture, CSK HPKV, Palampur (32° 6′ N latitude and 76° 3′ E longitude) in a randomized block design with 11 treatments replicated three times with a maize-wheat cropping sequence. The soils of the experimental area in the beginning of the experiment were acidic in reaction and taxonomically classified as Typic Hapludalfs. Surface (0.0–20 cm) and subsurface (20–40 cm) soil samples taken after the harvest of maize (kharif, 2008) were analyzed for pools of Mn and chemical indices of soil quality using standard analytical methods. Besides, the pools of Mn were also determined in the composite soil samples drawn from adjacent fallow plots. Results showed that all the pools of Mn were noticeably greater in farmyard manure (FYM)–amended plots compared to zero-fertilized plots. Although the residual fraction was found to be the most dominant fraction, organically bound and exchangeable forms were found to play major roles in the nutrient supply, crop productivity, and nutrient uptake. The greatest productivity of maize (2008) and wheat (2008–09) was recorded under the 100% nitrogen, phosphorus, and potassium (NPK) + FYM treatment. FYM and lime treatments resulted in significantly greater uptake of all the nutrients by both the crops compared to other treatments. The organically bound fraction was found to have the greatest significant and positive correlation with yield and nutrient uptake of maize and wheat crops. Further regression analysis studies revealed that the organic form was the most important pool contributing towards the variation in the parameters. Exchangeable and organically bound forms contributed significantly towards diethylene triamine pentaacetic acid (DTPA)–extractable Mn.  相似文献   

15.
Low soil phosphorus (P) availability is the primary limiting factor to soybean production in southern China. Field experiments with P-efficient (BX10 and BX11) and P-inefficient (BD2 and GD3) soybean genotypes were conducted to study the effects of soybean cultivation on P status and budget. The results showed that after four seasons of cultivation (2003–5), zero application of P resulted in a decrease of soil-available P and total P but high-P (80 kg ha?1) treatment resulted in an increase; there were no significant differences among genotypes. All genotypes had deficit of P under zero application of P, P-efficient genotypes had a larger deficit, and there was significant difference between BX10 and BD2. There was surplus P under high-P application, but there were no significant differences among soybean genotypes. These findings imply that it is necessary to apply P fertilizer for P-efficient genotypes although they can better adapt to low-P soil.  相似文献   

16.
This study evaluated the effects of phosphorus (P) fertilizer levels on inorganic P fractions. Wheat cultivars (Azadi and Marvdasht) were grown in the soils amended with the four rates of P fertilizer levels (no fertilizer, 10, 15, and 25 mg available P kg?1 soil). Soils were sampled from rhizosphere and non-rhizosphere areas after 6 weeks. The mean of all P fractions was significantly different in various P fertilizer levels. The smallest and the largest amounts of all P fractions were observed in the soil with no P and in 25 mg kg?1 soil P level, respectively. The Azadi cultivar, as P-efficient, showed the smallest increase in soil P fractions with increasing soil P levels. The means of all P fractions except Al-phosphates (Al-P) were significantly higher in non-rhizosphere soil. There were differences between these cultivars associated with the more inaccessible fractions at the 15 mg P kg?1 soil level.  相似文献   

17.
消落带土壤铁的形态变化及其对有效磷的影响   总被引:4,自引:0,他引:4  
Fe3+还原为Fe2+的过程中会增加磷酸铁的溶解,影响磷的化学行为及有效性。本文采用室内模拟试验研究了三峡库区消落带土壤铁的形态变化及其对有效磷的影响。消落带旱地和水田土壤经淹水和落水处理后,活性铁、水溶性铁增加,其他各形态铁变化较小。旱地土壤在不同的有机质和淹水落水处理下,其活化铁、游离铁、络合铁、水溶性亚铁、和交换性亚铁均为淹水处理高于落水处理,其中活性铁在各处理间呈现出显著性差异,其他则各处理间差异均未达到显著性水平;水田下层活性铁高于上层,且落水处理间呈显著差异。氧化铁及亚铁之间总处于不断的相互转化中,活性铁、络合铁和有机质正相关。旱地土壤中的有效磷各处理间差异显著,水田有效磷淹水处理高于落水处理。  相似文献   

18.
ABSTRACT

The chickpea breeding program in India has not yet considered the genotypic variation in phosphorus (P) efficiency, despite the fact that the largest proportion of chickpea-growing soils are P deficient. Since general P application to chickpea is at sub-optimum levels, efficient P-utilizing genotypes will perform better than others under P-deficient conditions. High levels of P application may induce zinc (Zn) deficiency in plants grown on Zn-deficient soils. Twenty chickpea genotypes were evaluated for their P efficiency at varied levels of added P, and the effect of P levels on Zn, iron (Fe), copper (Cu), and manganese (Mn) nutrition was studied in pot-culture experiments. Three criteria were used for evaluating P efficiency; shoot dry-matter yield without P, P-uptake efficiency (PUPE), and P-utilization efficiency (PUSE). Under P-deficiency conditions (control), the genotypes BG-256, HK-94-134, Phule-G-5, and Vikash produced the highest shoot biomass. However, genotypes that were found to be superior in the absence of P did not perform in a similar way under optimum P supply. Root dry weight showed a highly significant correlation with P uptake at all P levels. In the case of PUPE, genotypes KPG-59 and Pusa-209 were found to be superior to others. With increasing P levels, PUSE declined in all the genotypes. Increasing P up to 13.5 mg kg?1 soil increased Zn concentration, while further increase led to decreased concentration. Genotypes KPG-59, BG-256, RSG-888, and JG-315 showed Zn concentrations below the critical limit of 20 μg Zn g?1 dry weight (DW) at the high level of P application (27.0 mg kg?1). Iron concentration decreased with increasing P levels. Up to 13.5 mg kg?1 P application, Cu concentration increased and thereafter decreased. Manganese concentration gradually increased with the increasing P levels studied. Based on three criteria, BG-256 can be recommended for use in P-deficient conditions and can be good germplasm source material for chickpea-breeding programs for evolving P-efficient genotypes. Results also suggest that when selecting P-efficient genotypes of chickpea, it is essential to apply deficient micronutrients.  相似文献   

19.
Manganese (Mn) deficiency has become a serious nutritional problem for wheat grown in alkaline coarse textured soil. The study aimed to investigate post-anthesis Mn partitioning in different wheat species. Cultivars of bread wheat (‘PBW509’, ‘DBW17’, ‘PBW550’ and ‘PBW636’); durum wheat (‘PDW291’) and triticale (‘TL2908’) were grown in 6.5 L pots with two treatments of Mn (0 and 50 mg Mn kg?1 soil) in screen house and harvested at anthesis, 18- days post-anthesis, and maturity to record Mn uptake. Durum cv. ‘PDW291’ retained highest proportion of Mn in its vegetative parts under Mn deficiency resulting into lowest partitioning to the grain and had the lowest grain yield. All bread wheat cv. facilitated superior Mn partitioning to the grain, lesser retention in vegetative organs and higher Mn utilization efficiency, than triticale and durum wheat species. Cultivars producing higher yield on Mn deficit soils are viable alternative to foliar application of Mn.  相似文献   

20.
Root proliferation and greater uptake per unit of root in the nutrient‐rich zones are often considered to be compensatory responses. This study aimed to examine the influence of plant phosphorus (P) status and P distribution in the root zone on root P acquisition and root and shoot growth of wheat (Triticum aestivum L.) in a split‐root soil culture. One compartment (A) was supplied with either 4 or 14 mg P (kg soil)–1, whereas the adjoining compartment (B) had 4 mg P kg–1 with a vertical high‐P strip (44 mg kg–1) at 90–110 mm from the plant. Three weeks after growing in the split‐root system, plants with 4 mg P kg–1 (low‐P plants) started to show stimulatory root growth in the high‐P strip. Two weeks later, root dry weight and length density in the high‐P strip were significantly greater for the low‐P plants than for the plants with 14 mg P (kg soil)–1. However, after 8 weeks of growth in the split‐root system, the two P treatments of compartment A had similar root growth in the high‐P strip of compartment B. The study also showed that shoot P concentrations in the low‐P plants were 0.6–0.8 mg g–1 compared with 1.7–1.9 mg g–1 in the 14 mg P kg–1 plants after 3 and 5 weeks of growth, but were similar (1.1–1.4 mg g–1) between the two plants by week 8. The low‐P plants had lower root P concentration in both compartments than those with 14 mg P kg–1 throughout the three harvests. The findings may indicate that root proliferation and P acquisition under heterogeneous conditions are influenced by shoot P status (internal) and soil P distribution (external). There were no differences in the total root and shoot dry weight between the two P treatments at weeks 3 and 5 because enhanced root growth and P uptake in the high‐P strip by the low‐P plants were compensated by reduced root growth elsewhere. In contrast, total plant growth and total root and shoot P contents were greater in the 14 mg P kg1 soil than in the low‐P soil at week 8. The two P treatments did not affect the ratio of root to shoot dry weight with time. The results suggest that root proliferation and greater P uptake in the P‐enriched zone may meet the demand for P by P‐deficient plants only for a limited period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号