首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the effect and magnitude of flour particle size on sponge cake (SC) baking quality. Two different sets of wheat flours, including flours of reduced particle size obtained by regrinding and flour fractions of different particle size separated by sieving, were tested for batter properties and SC baking quality. The proportion of small particles (<55 μm) of flour was increased by 11.6–26.9% by regrinding. Despite the increased sodium carbonate solvent retention capacity, which was probably a result of the increased starch damage and particle size reduction, reground flour exhibited little change in density and viscosity of flour‐water batter and produced SC of improved volume by 0.8–15.0%. The volume of SC baked from flour fractions of small (<55 μm), intermediate (55–88 μm), and large (>88 μm) particles of soft and club wheat was in the range of 1,353–1,450, 1,040–1,195, and 955–1,130 mL, respectively. Even with comparable or higher protein content, flour fractions of intermediate particle size produced larger volume of SC than flour fractions of large particle size. The flour fractions of small particle size in soft white and club wheat exhibited lower flour‐water batter density (102.6–105.9 g/100 mL) than did those of large and intermediate particle fractions (105.2–108.2 g/100 mL). The viscosity of flour‐water batter was lowest in flour fractions of small particle size, higher in intermediate particles, and highest in large particles. Flour particle size exerted a considerable influence on batter density and viscosity and subsequently on SC volume and crumb structure. Fine particle size of flour overpowered the negative effects of elevated starch damage, water absorption, and protein content in SC baking.  相似文献   

2.
Dolomite (CaMg(CO3)2) constitutes half of the global carbonates. Thus, many calcareous soils have been developing rather from dolomitic rocks than from calcite (CaCO3)‐dominated limestone. We developed a physical fractionation procedure based on three fractionation steps, using sonication with subsequent density fractionation to separate soil organic matter (SOM) from dolomite‐derived soil constituents. The method avoids acidic pretreatment for destruction of carbonates but aims at separating out carbonate minerals according to density. The fractionation was tested on three soils developed on dolostone parent material (alluvial gravel and solid rock), differing in organic‐C (OC) and inorganic‐C (IC) concentrations and degree of carbonate weathering. Soil samples were suspended and centrifuged in Na‐polytungstate (SPT) solutions of increasing density, resulting in five different fractions: two light fractions < 1.8 g cm–3 (> 20 μm and < 20 μm), rich in OC and free of carbonate, and two organomineral fractions (1.8–2.4 g cm–3 and 2.4–2.6 g cm–3), containing 66–145 mg g–1 and 16–29 mg g–1 OC. The organomineral fractions consist of residual clay from carbonate weathering such as clay minerals and iron oxides associated with SOM. The fifth fraction (> 2.6 g cm–3) was dominated by dolomite (85%–95%). The density separation yielded fractions differing in mineral compositions, as well as in SOM, indicated by soil‐type‐specific OC distributions and decreasing OC : N ratios with increasing density of fractions. The presented method is applicable to a wide range of dolomitic and most likely to all other calcareous soils.  相似文献   

3.
One commercial bread wheat flour with medium strength (11.3% protein content, 14% mb) was fractionated into starch, gluten, and water solubles by hand‐washing. The starch fraction was separated further into large and small granules by repeated sedimentation. Large (10–40 μm diameter) and small (1–15 μm diameter) starch fractions were examined. Flour fractions were reconstituted to original levels in the flour using composites of varying weight percentages of starch granules: 0% small granules (100% large granules), 30, 60, and 100% (0% large granules). A modified straight‐dough method was used in an experimental baking test. Crumb grain and texture were significantly affected. The bread made from the reconstituted flour with 30% small granules and 70% large granules starch had the highest crumb grain score (4.0, subjective method), the highest peak fineness value (1,029), and the second‐highest elongation ratio (1.55). Inferior crumb grain scores and low fineness and elongation ratios were observed in breads made from flours with starch fractions with 100% small granules or 100% large granules. As the proportion of small granules increased in the reconstituted flour, it yielded bread with softer texture that was better maintained than the bread made from the reconstituted reference flour during storage.  相似文献   

4.
[目的]小麦籽粒锌(Zn)含量普遍较低,在没有外源锌施用措施下难以满足以小麦为主食人群健康所需.探索提升小麦籽粒Zn含量,尤其是其加工产品面粉Zn含量和Zn生物有效性的农艺措施,具有实际重要的意义.[方法]于2013、2014年分别在陕西杨凌示范区和三原试验站进行小麦田间试验,两地均为潜在缺锌石灰性土壤,DTPA-Zn...  相似文献   

5.
ABSTRACT

Red acid soil is generally distributed in humid tropical areas under high rainfall. The main constraint is usually the extremely low pH of the soil due to the very intensive leaching of the bases from the soil. At the same time, however, the soluble micro elements, such as iron, are high. This can cause plant toxicity. The liming of acidic soils is normally performed to reduce the iron toxicity as the first step toward providing a balanced nutrition for cultivated plants. The objective of this study is to determine the effects of liming on the soil pH, on the decrease of iron in the soil and on the growth of the pineapple. The research was done in the Greenhouse of the Research and Development Department, PT Great Giant Pineapple, Lampung, Indonesia, from November 2015 to April 2016. The design of the experiment was arranged as a completely randomized design with seven treatments and three replications, consisting of: No dolomite (D0), dolomite 1 t ha?1 (D1), dolomite 2 t ha?1 (D2), dolomite 3 t ha?1 (D3), dolomite 4 t ha?1 (D4), dolomite 5 t ha?1 (D5) with added Fe-EDTA and for the control treatment, no dolomite and no Fe-EDTA (C0). The results showed that an increase in the dolomite dose can increase the pH, potassium (K), calcium (Ca) and magnesium (Mg) in the soil and can decrease the iron (Fe) in the soil significantly. Increasing the pH, K, Ca and Mg and decreasing the Fe in the soil were seen to influence the growth of the pineapple. In particular, the leaf area of the pineapple plant increased considerably. The other parameters also increased, but not significantly.  相似文献   

6.
不同施肥模式下设施菜田土壤团聚体养分和微生物量特征   总被引:9,自引:1,他引:8  
【目的】针对设施蔬菜生产中普遍存在的化肥施用严重超量、化肥与有机肥配施模式不合理等现象,利用日光温室蔬菜有机肥/秸秆替代化肥模式定位试验,研究了不同施肥模式对设施菜地土壤团聚体养分、微生物量碳氮含量的影响,为设施蔬菜优质高效生产和减量施用化肥提供科学依据。【方法】将25%或50%的无机氮肥用玉米秸秆或猪粪中氮替代,进行温室蔬菜田间定位试验。试验共设5个处理(各处理等氮、等磷、等钾):1)全部施用化肥氮(4/4CN);2) 3/4化肥氮+1/4猪粪氮(3/4CN+1/4MN);3) 2/4化肥氮+2/4猪粪氮(2/4CN+2/4MN);4) 2/4化肥氮+1/4猪粪氮+1/4秸秆氮(2/4CN+1/4MN+1/4SN);5) 2/4化肥氮+2/4秸秆氮(2/4CN+2/4SN)。在定位试验第6年冬春茬黄瓜季拉秧期采取耕层土壤样品,分析土壤团聚体分布规律和稳定性,并测定各粒级团聚体中土壤养分和微生物量碳、氮含量。【结果】设施菜地土壤团聚体以250~1000μm团聚体和> 2000μm团聚体为主,其含量分别平均为32.0%和38.4%。较4/4CN模式,有机肥/秸秆替代化肥模式提高了土壤大团聚体(> 250μm)比例。配施秸秆模式对土壤团聚体分布影响相对较大,并显著提高土壤团聚体机械稳定性,平均重量直径(MWD)和平均几何直径(GMD)分别提高6.1%和11.2%。在<250μm团聚体、250~1000μm团聚体、1000~2000μm团聚体和> 2000μm团聚体中,不同有机肥化肥配施模式(3/4CN+1/4MN、2/4CN+2/4MN、2/4CN+1/4MN+1/4SN、2/4CN+2/4SN)土壤有机碳含量较4/4CN模式分别增加36.8%~89.6%、34.9%~100.3%、29.5%~69.2%和21.7%~72.1%,分别平均增加69.8%、76.6%、56.9%和49.2%。不同施肥模式对有机碳、全氮、硝态氮、速效磷的影响规律基本一致。土壤有机碳、全氮主要分布在250~1000μm团聚体和> 2000μm团聚体中,平均分别占土壤有机碳储量的34.1%、35.2%和土壤全氮储量的34.0%、36.4%。土壤硝态氮在250~1000μm团聚体与1000~2000μm团聚体中含量较高,土壤速效钾、微生物量碳氮含量表现为随土壤团聚体直径的增大而提高,而速效磷则随土壤团聚体直径的增大而降低。【结论】设施菜田土壤团聚体优势粒级为> 2000μm团聚体和250~1000μm团聚体,配施秸秆模式显著提高土壤团聚体的机械稳定性。有机肥/秸秆替代化肥模式提高土壤各级团聚体有机碳、全氮、硝态氮和速效磷含量。设施菜地土壤有机碳氮主要分布在250~1000μm团聚体和> 2000μm团聚体中,而微生物量碳、氮含量随土壤团聚体直径的减小而呈增加的趋势。  相似文献   

7.
Several experimental series are described to investigate the compensation effects of buffer substances against acid deposition in forest ecosystems. Laboratory tests with different basic buffer substances showed, that their neutralization capacity depend more on the particle size fractions than on the contents of bases. Comparisons of the effects of dolomite, enriched volcanic silicate rock meal and volcanic silicate rock meal as well as dolomite suspensions and coarsely ground dolomite in field experiments confirmed the laboratory tests to a large extent. The following short-term effects were ascertained: (1) the pH in the mineral soil could not be influenced within 2 yr, and (2) the stock of accumulated acids in the mineral soil decreased in dependency on the kind of buffer substance. The results of these experiments show after a short time, that compensation of acid deposition in forest ecosystems by basic buffer substances is justified as soil protection and strongly necessary.  相似文献   

8.
Several experimental series are described to investigate the compensation effects of buffer substances against acid deposition in forest ecosystems. Laboratory tests with different basic buffer substances showed, that their neutralization capacity depend more on the particle size fractions than on the contents of bases. Comparisons of the effects of dolomite, enriched volcanic silicate rock meal and volcanic silicate rock meal as well as dolomite suspensions and coarsely ground dolomite in field experiments confirmed the laboratory tests to a large extent. The following short-term effects were ascertained: (1) the pH in the mineral soil could not be influenced within 2 yr, and (2) the stock of accumulated acids in the mineral soil decreased in dependency on the kind of buffer substance. The results of these experiments show after a short time, that compensation of acid deposition in forest ecosystems by basic buffer substances is justified as soil protection and strongly necessary.  相似文献   

9.
Ten glutenin fractions were separated by sequential extraction of wheat gluten protein with dilute hydrochloric acid from defatted glutenin‐rich wheat gluten of the Canadian hard red spring wheat (HRSW) cultivar Glenlea. The molecular weight distribution (MWD) of 10 different soluble glutenin fractions was examined by multistacking SDS‐PAGE under nonreduced conditions. Also, the subunit composition of the different glutenin fractions was determined by SDS‐PAGE under reduced conditions. The MWD of the fractions (especially HMW glutenins) varied from fraction to fraction. From early to later fractions, the MWD shifted from low to high. The early extracted fractions contained more LMW glutenin subunits (LMW‐GS) and less HMW glutenin subunits (HMW‐GS). The later extracted fractions and the residue fraction contained much more HMW‐GS (2*, 5, and 7 subunits) than the early extracted fractions. The trend in the amounts of 2*, 5, and 7 subunits in each fraction from low to high matched the extraction solvent sequence containing from lower to higher levels of HCl. The influence of glutenin protein fractions from the extra‐strong mixing cultivar, Glenlea, on the breadmaking quality of the weak HRSW, McVey, was assessed by enriching (by 1%) the McVey base flour with isolated glutenin protein fractions from Glenlea. The mixograph peak development times and loaf volumes of enriched flour were measured in an optimized baking test. The results indicated that the higher content in Glenlea glutenin of HMW‐GS with higher molecular weight, such as 2*, 5, and 7, seem to be the critical factor responsible for the strong mixing properties of Glenlea. Our results confirmed that subunit 7 occurred in the highest quantity of all the HMW‐GS. Therefore, it seems that the greater the content of larger molecular weight glutenin subunits, the larger the glutenin polymers and the stronger the flour.  相似文献   

10.
A rhizobox experiment was conducted to study the changes of various zinc (Zn) forms in rhizosphere and nonrhizosphere soils of maize (Zea mays L.) plants grown under well-watered and drought conditions. The tested soil was earth-cumulic orthic anthrosol sampled from the Shaanxi Province of China. The experiment was set at two levels of Zn, 0 and 5.0 mg Zn kg?1 soil, and at two treatments of soil water content, 45%–50% (drought) and 70%–75% (well watered) of soil water-holding capacity. A completely randomized factorial design (2 Zn treatments × 2 water levels × 3 replicates) was set up. Adequate soil water supply enhanced growth and Zn accumulation of maize plants. Applying Zn increased plant biomass and Zn content more notably under well-watered conditions rather than drought conditions. Soil Zn was defined as water-soluble plus exchangeable (WSEXC) Zn, carbonate-bound Zn (CA), iron–manganese oxide–bound Zn (FeMnOX), organic matter–bound Zn (OM), and residual Zn (RES) forms using the sequential extraction procedure. Most of Zn was predominantly in the RES fraction. Zinc application increased the contents of WSEXC Zn, CA Zn, and FeMnOX Zn in soil. When Zn was added to the soil, the concentrations of CA Zn within 0–2 mm and 0–4 mm apart from the central root compartment (CC) were greater than other zones under the conditions of adequate and limited soil water supplies, respectively. Zinc application also resulted in an accumulation of FeMnOX fractions at a distance of 2 mm from CC. The FeMnOX Zn content in this compartment increased with soil drought. Under well-watered conditions, dry-matter weight and Zn concentration of shoots presented better correlations with CA Zn and FeMnOX Zn fractions in and near the rhizosphere as compared with drought conditions. It is suggested that in an earth-cumulic orthic anthrosol, soil moisture conditions affect the transformation of the added Zn into the CA and FeMnOX fractions near the rhizosphere and their bioavailability to maize plants.  相似文献   

11.
Abstract

Charred plant fragments were isolated from 5 Ando soil samples, containing Type A humic acids, by the specific gravity (s.g.) method using a sodium polytungstate solution as heavy solution. Microscopic observation indicated that the charred plant fragments, which are black or blackish brown, were the main components in both fractions of less than s.g. 1.6 Mg m?3 that had been isolated before and after HCl-HF treatment of the soil samples. Furthermore, it was suggested that most of the fragments in the < 1.6 fractions isolated before the treatment originated from woody plants. On the other hand, the fragments in the < 1.6 fractions isolated after the treatment were mainly amorphous, although the shape of several fragments was similar to that of vascular tissues of woody and herbaceous plants. The sum of the organic-C contents of both < 1.6 fractions ranged from 4.08 to 47.8 g kg? whole soil, and 3.8–32.7% of total organic-C of the whole soil originated from these fractions. No constant relationship was observed between the organic-C contents of both fractions and the morphological characteristics of the charred plant fragments.  相似文献   

12.
High temperature during grain filling has been identified as a major factor in the end-use properties of bread wheat (Triticum aestivum L.). Our objectives were to assess the effect of high temperature during maturation on the grain characteristics, milling quality, and flour quality of hard red winter wheat. In three separate experiments, plants of wheat cultivar Karl 92 were subjected to regimes (day-night) of 20–20, 25–20, 30–20, and 35–20°C from 10 and 15 days after anthesis (DAA) until ripeness, and 25–20, 30–20, and 35–20°C from 20 DAA until ripeness. In other experiments, plants of wheat cultivars Karl 92 and TAM 107 were dried at 20 and 40°C, and spikes of Karl 92 were dried at different temperature and humidity conditions to asses the effects on quality of high temperature and drying rates during grain ripening. Flour yield correlated positively with kernel weight and diameter, test weight, and proportion of large kernels. Flour yield decreased as temperature increased and correlated negatively with hardness index and proportion of small grains. High growth temperatures and rapid grain desiccation decreased mixing time and tolerance of the flours. The greatest damage occurred when high temperature was maintained continuously from early grain filling until ripeness. Weakening of dough properties by rapid desiccation during ripening suggest that temperature, humidity, and possibly soil moisture all contribute to the final quality of bread wheat.  相似文献   

13.
Due to selenium (Se) deficiency, Se fortification of food and feed is applied in many countries. Therefore, potential use of Se‐enriched kenaf was investigated based on its Se accumulation, its potential to transform accumulated Se to other Se species, and effect of Se accumulation on its growth. Kenaf was grown with different levels of two Se fertilizers (selenite and selenate) at concentrations ranging from 0 to 4 mg Se (kg soil)–1. Total Se concentrations in the plants grown on selenate‐treated soil amounted to (1019 ± 136) mg Se (kg dry weight)–1 and were much higher compared to plants grown on selenite‐treated soil. Identified Se species were selenite, selenate, Se‐methionine, and Se‐cystine. Biomass yield, net photosynthesis, and chlorophyll index of the plants decreased when plants were grown on soils treated with high doses of selenate.  相似文献   

14.
Fe and Zn deficiencies are global nutritional problems. N supply could increase Fe and Zn concentrations in wheat grain. This study was conducted to determine the impacts of different N rates (0, 122, 174, and 300 kg/ha) on the distribution and speciation of Fe and Zn in wheat grain milling fractions under field conditions. Zn and protein concentrations were increased, whereas Fe was less affected in the flour fractions with increasing N rates. Further analysis with size‐exclusion chromatography coupled with inductively coupled plasma mass spectrometry revealed that Fe and Zn bound to low‐molecular‐weight (LMW) compounds in the flour fractions (probably Fe‐nicotianamine [NA], Fe‐deoxymugineic acid, or Zn‐NA) were less affected by increasing N supply, representing 3.5–10.9% of total Fe and 2.5–56.6% of total Zn. In the shorts fraction, LMW‐Fe was absent, and LMW‐Zn with higher N supply was over twice as high as that in control and 3–27 times as high as that in the other milling fractions. In the flour fractions, the molar ratios of phytic acid (PA)/Fe and PA/Zn (both less than 30.5) decreased, whereas soluble LMW‐Fe/Zn was not affected with increasing N rates.  相似文献   

15.

Purpose

Metal distribution patterns among geochemical fractions are informative for metal phytoavailability. Compost added to polluted soils may adsorb metals on the less phytoavailable fractions. A bioassay experiment was conducted to establish possible correlations between metal concentrations in different soil fractions and metal contents in edible plant parts and to investigate the influence of different compost loads on heavy metal availability to plants.

Materials and methods

Chinese cabbage plants were grown in pots with sandy and clayey soils and soils mixed with different doses of biosolid compost spiked with soluble heavy metal salts (Cd, Cu, and Pb). The metals’ distribution pattern in the soil and mixed samples was determined by sequential extraction procedure (modified BCR protocol). The studied fractions, from most to least bioavailable, were water-extractable (WE), exchangeable-adsorbed (EXC), associated with carbonates and acetic acid-soluble forms (CARB), occluded by reducible (hydro)oxides of Fe and Mn (RO), and associated with organic matter (OM) and a residual fraction (RES). Metal concentrations in soil extracts and in the digested plant tissue were measured by ICP-AES.

Results and discussion

The highest compost doses (72 and 115 Mg ha?1) enhanced cabbage yield significantly. No excessive phytoaccumulation of metals was observed in plants grown in the clayey soil or its mixtures with compost. The compost dose of 72 Mg ha?1 was optimal in decreasing Cu accumulation by plants grown in sandy soil, and 28.8 Mg ha?1 was found to be effective in reducing Cd and Pb uptake. Metals were accumulated in plants primarily from the WE, EXC, and CARB fractions, whereas other fractions decreased phytoaccumulation. Compost addition suppressed heavy metal mobility, but different fractions were active in pollutant sorption, depending on soil type and metal.

Conclusions

Compost addition increased metal proportions in the RO and OM fractions, reducing metal phytoavailability. This is especially important for sandy soils with low adsorption ability and higher vulnerability to metal pollution than clayey soils. A compost dose of 20% v/v (or 28.8 Mg ha?1) effectively reduced plant accumulation of Cd and Pb. We propose using the first three steps of the modified BCR protocol as a three-step sequential-extraction procedure for the most phytoavailable fractions of heavy metal: WE, EXC, and CARB.  相似文献   

16.
Several anthropogenic activities lead to the production of substantial amounts of aqueous effluents that contain various toxic trace and heavy metals and which pose potential threats to the wild habitat of wetlands. As a part of the remediation of heavy metals, it is necessary to identify some aquatic hyperaccumulator plants. To this end, a greenhouse study was conducted to investigate the phytotoxicity resulting from lead (Pb) and its accumulation in selected plant species. Lead was added from low to very high levels in a swell–shrink clayey soil (Typic Haplustert). Seven levels of Pb (0, 50, 100 200, 400, 600, and 800 mg kg–1 soil) were applied. Typha angustifolia L. of Typhaceae and Behaya plant (Ipomoea carnea L.) of the Convolvulaceae family were taken as test plants. Lead was added at high and low concentrations to determine whether an increase in concentration would Pb to an increased toxicity to the plants. Recorded weight of the Typha crop was reduced (6%) at 600 mg Pb kg–1 soil, and at greater doses of Pb, the dry-matter yield was inhibited considerably. In the case of Ipomoea, no growth retardation from Pb was observed. Most Pb accumulated in roots and then was transported to shoots. The Typha angustifolia L. and Ipomoea carnea L. plants show promise for the removal of Pb from contaminated wastewater because they can accumulate high concentrations of Pb in roots (1200 and 1500 mg Pb kg–1 respectively) and shoots (275 and 425 mg Pb kg–1 respectively). Lead uptake by both the plants increased with the increasing doses of Pb (50 to 800 mg kg–1 soil). Physiological parameters such as photosynthesis, respiration, chlorophyll content, and different enzyme activities including nitrate reductase (NR), peroxidase (POD), and succinate dehydrogenase (SD) were also studied for the evaluation of these plant species. In Typha plants, at greater doses of Pb, the rate of photosynthesis and chlorophyll content decreased whereas POD and SD activities increased to combat oxidative stress.  相似文献   

17.
采集喀斯特地区灰质白云岩发育的乔木林下土壤,全部湿筛分为>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级团聚体,再将5个粒级团聚体进行碳水化合物提取后后再次分别湿筛,收集>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级的团聚体样品.对两次湿筛中5个粒级的土壤分别进行团聚体含量、土壤有机碳、土壤可氧化态有机碳测定,分析土壤团聚体稳定性与土壤有机碳、土壤可氧化态有机碳的关系.结果表明:灰质白云岩乔木林下土壤在经过提取碳水化合物的第二次湿筛后,大粒级团聚体(>5mm,5~2mm)向小粒级(2~1mm,1~0.5mm,0.5~0.25mm)转移;有机碳主要存在于较大粒级团聚体中,但各粒级团聚体有机碳并不随之转移;各粒径团聚体可氧化态碳含量均减少,但较大粒级(>5mm,5~2mm)可氧化态有机碳含量多,较小粒级(2~1mm,1~0.5mm,0.5~0.25mm)可氧化态有机碳含量少,故推测较大粒级团聚体(>2mm)保护土壤活性有机碳能力比较小粒级团聚体(<2mm)强.  相似文献   

18.
Recovering starch from barley is problematic typically due to interference from β‐glucan (the soluble fiber component), which becomes highly viscous in aqueous solution. Dry fractionation techniques tend to be inefficient and often result in low yields. Recently, a protocol was developed in our laboratory for recovering β‐glucan from barley in which sieving whole barley flour in a semiaqueous (50% ethanol) medium allowed separation of the starch and fiber fractions without activating the viscosity of the β‐glucan. In this report, we investigate an aqueous method which further purifies the crude starch component recovered from this process. Six hulless barley (HB) cultivars representing two each of waxy, regular, and high‐amylose cultivars were fractionated into primarily starch, fiber, and protein components. Starch isolates primarily had large granules with high purity (>98%) and yield range was 22–39% (flour dry weight basis). More importantly, the β‐glucan extraction efficiency was 77–90%, meaning that it was well separated from the starch component during processing. Physicochemical evaluation of the starch isolates, which were mainly composed of large granules, showed properties that are typical of the barley genotypes.  相似文献   

19.
An experiment was conducted using three related wheat (Triticum aestivum L.) genotypes grown on two different soil types (a grey vertosol and a red kandosol) using two different tillage practices (complete and zero) to test the effects of environmental influence on grain quality. Wheat grains from plants grown in each environment were milled into flour; protein and starch were analyzed. The soil type had the biggest impact on both protein and starch content, with the grains from the grey vertosol soil having higher total, insoluble, and soluble protein contents, and lower starch content and flour swelling values. When protein was analyzed using SDS‐PAGE, the major difference observed between grains from the two soil types was an increased intensity of polypeptide bands corresponding to β‐amylase in grains from plants grown on grey vertosol soils.  相似文献   

20.
Liming of acidic agricultural soils has been proposed as a strategy to mitigate nitrous oxide (N2O) emissions, as increased soil pH reduces the N2O/N2 product ratio of denitrification. The capacity of different calcareous (calcite and dolomite) and siliceous minerals to increase soil pH and reduce N2O emissions was assessed in a 2-year grassland field experiment. An associated pot experiment was conducted using homogenized field soils for controlling spatial soil variability. Nitrous oxide emissions were highly episodic with emission peaks in response to freezing–thawing and application of NPK fertilizer. Liming with dolomite caused a pH increase from 5.1 to 6.2 and reduced N2O emissions by 30% and 60% after application of NPK fertilizer and freezing–thawing events, respectively. Over the course of the 2-year field trial, N2O emissions were significantly lower in dolomite-limed than non-limed soil (p < .05), although this effect was variable over time. Unexpectedly, no significant reduction of N2O emission was found in the calcite treatment, despite the largest pH increase in all tested minerals. We tentatively attribute this to increased N2O production by overall increase in nitrogen turnover rates (both nitrification and denitrification) following rapid pH increase in the first year after liming. Siliceous materials showed little pH effect and had no significant effect on N2O emissions probably because of their lower buffering capacity and lower cation content. In the pot experiment using soils taken from the field plots 3 years after liming and exposing them to natural freezing–thawing, both calcite (p < .01) and dolomite (p < .05) significantly reduced cumulative N2O emission by 50% and 30%, respectively, relative to the non-limed control. These results demonstrate that the overall effect of liming is to reduce N2O emission, although high lime doses may lead to a transiently enhanced emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号