首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensitivity of crop genotypes determines the level of growth reduction by salinity. Effect of salinity levels (7.5 and 15 dihydrate m?1) using completely randomized design (CRD) with four replications per treatment were compared on germination, chlorophyll content, water potential, ionic sodium and potassium (Na+, K+) balance, and other growth-related parameters of six wheat genotypes for varietal differences under long-term salinity stress. Chlorophyll contents at flowering stage and yield aspects at maturity of all the wheat genotypes decreased with increasing salinity. The maximum Na+ concentration was observed at 7.5 and 15 dS m?1 in Bhakhar and Saher-2000, respectively, while minimum Na+ concentration was observed for 9476. However, the maximum K+ concentration and water potential was noticed in 9476 at 7.5 dS m?1. Careful selection of salt-tolerant genotypes for field crops is an important perspective especially in the developing countries facing salinity problem. Our results revealed that the wheat genotype 9476 performed best regarding growth and physiological parameters compared to other wheat genotypes.  相似文献   

2.
An experiment with factorial arrangement of treatments on a randomized complete block (RCB) design basis with three replications was conducted in a greenhouse during Spring 2010 to investigate changes in sodium ion (Na+), potassium ion (K+), Na+/K+ and to determine proline, protein content, and superoxide dismutase (SOD) of four wheat and four barley cultivars. Three salt levels {1, control (no salt), 7, and 13 dS m?1 [2.5 and 5 g salt [sodium chloride (NaCl) and sodium sulfate (Na2SO4) in 1:1 ratio] per kg of soil, respectively]} were used in this investigation. Salt stress treatments were applied 4 weeks after planting (at 2 leaf stage). Leaf samples were taken four weeks after imposition of salt treatment. The results showed that salinity caused an increased in proline and protein content, and SOD in all wheat and barley cultivars. The highest proline and protein content of barley and wheat cultivars at all salinity levels were observed in ‘Nimrooz’ and ‘Bam’ cultivars, respectively. At all salinity levels, wheat and barley cultivars ‘Kavir’ and ‘Nimrooz’, respectively, had the lowest Na+ content. Barley cultivar ‘Kavir’ and wheat cultivar ‘Bam’ had higher K+ and K+:Na+ ratios. This might be related to salt tolerance in these two cultivars. Wheat and barley cultivars showed differences with regard to proline, protein, and SOD content, Na+, K+, and K+:Na+ ratio, indicating existence of genetic diversity among the cultivars. These findings indicated that higher K+, K+:Na+ ratio, proline, protein, and SOD content could be the key factors, which offer advantage to barley over wheat for superior performance under saline conditions.  相似文献   

3.
Eight barley genotypes contrasting in their salinity tolerance were assessed for their chlorophyll fluorescence, photosynthetic performance, lipid peroxidation level and ionic content. A pot experiment was conducted in Borj-Cedria (Tunisia), in a wire house with a glass roof to avoid rainfall. The assay consisted of three treatments (0, 100 and 200 mM NaCl) with eight barley genotypes following a completely randomized design. Each pot was considered as one replicate and nine replicates were used for each genotype and treatment. The salt-tolerant genotypes Kerkna and Tichedrett recorded the highest tolerance for photosynthesis and potassium accumulation, whereas the susceptible genotypes were mostly affected at severe salinity. Contrasting behavior was noted for fluorescence attributes, while PSII yield was unchanged reflecting good protection against photodamage. Photosynthetic performance, enhanced water use efficiency, maintained leaf K+ and oxidative defense remain the key components for tolerance mechanisms. Salt-tolerant barley could be suitable for management of salt-affected soils.  相似文献   

4.
Thermography is proposed to be an alternative non-destructive and rapid technique for the study and diagnosing of salt tolerance in plants. In a pot experiment, 30 cultivars of wheat (Triticum aestivum L.) were evaluated in terms of their leaf temperature and shoot growth and their ion distribution responses to NaCl salinity at two concentration levels: the control with electrical conductivity (EC) of 1 dS m?1 and salinity treatment with EC of 16 dS m?1 (150 mM). A completely randomized block design with factorial treatments was employed with three replications. The results indicated that thermography may accurately reflect the physiological status of salt-stressed wheat plants. The salt stress-based increase in leaf temperature of wheat cultivars grown at 150 mM NaCl reached 1.34°C compared to the control. According to the results obtained, it appears that thermography has the capability of discerning differences of salinity tolerance between the cultivars. Three salt-tolerant wheat cultivars, namely Roshan, Kharchia and Sholeh, had higher mean shoot dry matter (0.039 g plant?1) and higher mean ratio of leaf K+/Na+ (14.06) and showed lower increase in the mean leaf temperature (0.37°C) by thermography compared to the control. This was while nine salt-sensitive cultivars, namely Kavir, Ghods, Atrak, Parsi, Bahar, Pishtaz, Falat, Gaspard and Tajan, had lower mean plant dry matter production (0.027 g plant?1), lower mean ratio of K+/Na+ (9.49) and higher mean increases in leaf temperature (1.24°C).  相似文献   

5.
Identification of novel wheat (Triticum aestivum L.) germplasm is imperative to develop salt tolerant varieties. In the first phase, 400 accessions were screened against high salt stress (200 mM NaCl) on the basis of Na+ accumulation in leaf blade, and 40 genotypes with contrast reaction to salinity were selected. Salt tolerant group (25 genotypes) had higher leaf K+/Na+ ratio, maximum root and shoot lengths, leaf fresh/dry weights and chlorophyll content as compared to the salt sensitive group (15 genotypes). In second phase, physiologically based screening was performed on selected genotypes against varying salinity levels (0, 100 and 200 mM NaCl). GGE biplot analysis indicates that genotypes TURACO, V-03094, V0005, V-04178, Kharchia 65 and V-05121 were the most salt-tolerant and declared winners as depicted by more gaseous exchange relations and growth potential which was strongly correlated with proper Na+, K+ discrimination in leaf and root tissues. Genotypes PBW343*2, NING MAI 50, PGO, PFAU, V-04181, PUNJAB 85, KIRITATI, TAM200/TUI and TAM200 were poor performer due to more Na+ accumulation in leaf ultimately retarded growth. In conclusion, low Na+ accumulation in leaf can be used as the best screening criteria, employing a large set of genotypes in a breeding program.  相似文献   

6.
To investigate the influence of potassium (K+) on the salinity tolerance of Chinese cabbage (Brassica pekinensis Rupr.) seedlings, the plants were cultured at three K+ levels (0, 5, or 10?mM), under normal (0?mM NaCl) and high-salt (100?mM NaCl) conditions. The results indicated that the dry weight of Chinese cabbage increased with the application of K+ under salt stress. Addition of K+ increased K+ concentrations and suppressed sodium (Na+) concentration, which eventually increased the K+/Na+ ratios in roots or shoots. Application of K+ enhanced the uptake of K+ and suppressed the uptake of Na+. Moreover, the ratios of shoot-K+/root-K+ increased considerably, but the ratios of shoot-Na+/root-Na+ decreased in response to K+ application. It was concluded that the application of K+ could enhance the salt stress tolerance in Chinese cabbage because more K+ than Na+ was absorbed and translocated from roots to shoots.  相似文献   

7.
Soil salinity is a concern in the wake of climate change challenges due to rising sea levels and coastal salinity in Papua New Guinea. A greenhouse experiment was conducted in Split Plot design, with five elite sweet potato genotypes (main-plot factors) and three levels of sodium chlroide (NaCl) concentrations (sub-plot factors) replicated six times. The vine cuttings of genotype RAB 45 showed very low mortality percentage (33%) at 600 mM NaCl concentration. At salinity level of 200 mM NaCl, aerial dry biomass of the genotypes was inversely but significantly (r = –0.40; p < 0.05) related to the accumulation of sodium (Na+) in the tissues. The Na+ accumulation in the tissues was antagonistic to the potassium (K+) and calcium (Ca2+) ions. Among the sweetpotato genotypes, Na+/K+ ratio decreased in the following order: RAB 45> KAV 11 > Northern Star > DOY 2 > L 46, which was more or less corroborated with the trend in the aerial dry matter.  相似文献   

8.
Twenty genotypes of wheat resulting from different crossings between some wheat parental lines were compared for salt stress (control and gradually increasing salinity). Ion content in root, shoot, and flag leaves and also the root and shoot dry weights were measured. Based on these results, eight genotypes among the twenty were selected as susceptible, semi-tolerant, and tolerant genotypes for evaluating their biochemical characteristics. Results indicated that concentration of sodium (Na+) and potassium (K+) in shoot, root, and flag leaves of stressed plants were, respectively, higher and lower than that in the non-stressed plants. Overall, salinity stress caused reductions in root and shoot dry weights and relative water content (RWC), but enhancement in pigments content. Concentrations of the total carbohydrate, total protein, and soluble proline were higher in plants under salt stress condition. Salinity stress induced higher production in hydrogen peroxide (H2O2) and malondialdehyde (MDA) and also higher activity of catalase (CAT) and ascorbic peroxidase (APX) as antioxidant enzymes, but lower activity of peroxidase (POD). Genotypes 4s, Arg, and 386dh had generally higher enzymatic activity and other tolerant indices, and hence they can be introduced as tolerant genotypes for more study by the plant breeders. On the other hand, genotype 278s was most susceptible based on the most results.  相似文献   

9.
K+/Na+ and Cl effects on activity of amylases as well as on their isoenzyme pattern in leaves of bushbeans and sugarbeets at the beginning of salinity stress were investigated, in plants grown in water culture under controlled environmental conditions. Alpha‐ and beta‐amylase activity in beans increased, particularly due to K+ and Cl supplied. In sugarbeets amylase activity remained unchanged as a result of K/Na treatment in combination with Cl and decreased using SO4 2‐ as counterion. A direct correlation of amylase activity to the starch content of both species was not detctable. Particularly α‐but also ß‐amylase was most strongly inhibited by KCl “in vitro”. Independent on their origin, amylases from bushbeans and sugarbeets did not show any differences in ionic inhibition “in vitro”. The isoenzyme pattern of the species was different, but no clear ionic effect was detectable. Amylolytic activity is evidently not a causative factor for restricted starch mobilization in leaves under an early salinity stress. It is suggested that amylases are indirectly involved in starch formation via degradation due to a lack of a carbohydrate sink under salinity stress. Differences in salt tolerance of the investigated crops are obviously not related to different “in vitro” properties of amylases.  相似文献   

10.
The introduction of an active Na+ excretion system from salt-tolerant plants in salt-sensitive crop plants might necessitate enhancement of the robustness of K+ homeostasis and lead to improved plant growth under salt stress. To address this issue, we compared the acquisition and retention of K+ under excess Na+ concentrations in the common reed, which possesses excellent Na+ excretion ability, and low-Na+ excreting rice. Under excess Na+ concentrations, common reed maintained constant K+ content in all plant parts, whereas K+ content in rice decreased with increasing Na+ concentration. Preferential uptake of K+ against high Na+/K+ ratio in nutrient solution was approximately 10 times higher in common reed than in rice. The impact of excess Na+ on net K+ absorption rate of common reed was small. On the other hand, the net K+ absorption rate of rice was decreased by excess Na+ concentration. However, after the Na+ concentration in the nutrient solution was decreased from 50 to 1 mM, K+ absorption in rice recovered immediately. Thus, selectivity of K+ transporters or channels for K+ over Na+ in roots could be involved in the differences in K+ accumulation in rice and common reed.  相似文献   

11.
Mineral regulation of two soybean varieties Jackson and Lee was investigated in long term water culture experiments using saline solutions. The effects of extreme K:Na ratios using chloride and sulfate as counterions were studied in the early stages of salinity.

The growth rates of both varieties were not affected by salinization. A K+ stimulated, intensive acropetal Cl translocation was observed in the salt sensitive variety Jackson. The varieties did not differ in Na+ translocation and in the suppression of Ca2+ and Mg2+ in the leaves. But the effect of the nature of salinization indicates already differences in Na uptake and translocation of the cultivars.

The avoidance of Cl, but also of Ha+, in connection with influences of the resulting ionic imbalance on metabolic pathways are probably the most causative factors for the different tolerance to salinity of the two soybean varieties.  相似文献   

12.
Abstract

The effect of salinity on some physiological parameters in 16 barley genotypes with different salt tolerance was investigated. The results showed 50 mM NaCl treatment increased Na+/K+ ratio, malondialdehyde (MDA) and proline contents, and decreased cell membrane stability index (CMSI) and fresh shoot biomass (FSB) of all tested genotypes. Salt stress also resulted in a decreased chlorophyll (Chl) content and net photosynthesis (Pn) for most genotypes. Under higher salt stress (300 mM NaCl), the marked increase for Na+/K+, MDA, and proline content, and decrease for other parameters were found for all genotypes. The affected extent of these parameters by salt stress varied with genotypes. Proline accumulation in barley was associated with injured extent under salt stress, indicating it is not a defensive reaction to the stress. K+ uptake was less affected, whereas Na+ accumulation in plants was enhanced under high salt stress. The correlation analysis showed that MDA and proline content, Na+ concentration and Na+/K+ were negatively correlated with FSB, whereas other parameters examined in the study were positively correlated with FSB.  相似文献   

13.
ABSTRACT

The effects of three sodium chloride (NaCl) levels (0, 1200, and 2400 mg kg? 1 soil) and three irrigation intervals (3, 7, and 14 d) on the growth and chemical composition of two Pistacia vera rootstocks (‘Sarakhs’ and ‘Qazvini’) were investigated under greenhouse conditions. Eight-week-old pistachio seedlings were gradually exposed to salt stress which afterward, water stress was initiated. At any irrigation interval, plant height and shoot and root dry weights of both rootstocks were reduced with increasing salinity. However, increasing irrigation intervals alleviated the adverse effects of soil salinity. A negative relationship observed between relative shoot growth and electrical conductivity of soil saturation extract (ECe) confirmed the above findings. Under 3-d irrigation interval, the ECe required to cause a 50% growth reduction was lower than those under 7- and/or 14-d irrigation intervals. Shoot and root chemical analyses indicated that the salinity as well as irrigation regime affected the concentration and distribution of sodium (Na+), potassium (K+), and chloride (Cl?) in pistachio. The concentration of Na+, K+ and C1? ions increased with a rise in NaCl level, and was generally declined with increasing irrigation interval. Based on plant height, shoot and root dry weights and the concentrations of Na+, K+, and C1? in the plant tissues, at lowest irrigation intervals ‘Sarakhs’ shows a higher sensitivity to soil salinity than ‘Qazvini’, but with increasing irrigation interval, ‘Sarakhs’ and ‘Qazvini’ can be classified as resistant and sensitive to salinity, respectively.  相似文献   

14.
局部根系盐胁迫对冬小麦生长和光合特征的影响   总被引:3,自引:1,他引:2  
通过分根装置设置无盐胁迫(0|0)、局部根系150 mmol-L-1NaCl胁迫(0|150)、全部根系75 mmol-L-1NaCl胁迫(75|75)、全部根系150 mmol-L-1NaCl胁迫(150|150)4种处理,研究根系局部盐胁迫对冬小麦生长及光合特征的影响。结果表明:盐胁迫显著抑制了小麦幼苗的生长,并且随着盐胁迫浓度的增加,小麦受抑制程度加重;根系盐胁迫方式对小麦幼苗生长影响显著,局部根系胁迫处理(0|150)小麦幼苗地上部干重比等浓度150 mmol-L-1NaCl全部盐胁迫处理(150|150)增加23.5%,比等浓度75 mmol-L-1NaCl全部盐胁迫处理(75|75)增加17.2%。在局部根系盐胁迫下,非盐胁迫一侧根系(0|150-0)补偿生长,其根长、侧根数、侧根长比盐胁迫一侧根系(0|150-150)分别增加195.2%、206.2%和237.8%,盐胁迫一侧根系吸收的Na+部分向非盐胁迫一侧根系运输,盐胁迫一侧根系(0|150-150)的Na+含量比全部胁迫处理(150|150)减少12.1%。与全部根系盐胁迫相比,局部根系盐胁迫减少了Na+在叶片中的积累,降低了钠/钾值。局部根系盐胁迫叶片净光合速率、气孔导度、胞间CO2浓度和叶绿素荧光参数(Fv/Fm)均高于同浓度完全盐胁迫处理的小麦幼苗,进而增加地上部和根系的生物量。因此,局部根系胁迫显著缓解了全部盐胁迫对小麦地上部和根系生长的抑制作用。  相似文献   

15.
A study of the salinity effect on mineral content in rice genotypes differing in salt tolerance was conducted in a factorial Completely Randomized Design experiment. The results indicated that the genotypes developed differently by mutation conventional breeding. NS15 represented as salt-sensitive, Pokkali was included as an internationally salt-tolerant check and Iratom24 was moderately tolerant. The content of Na+, Ca2+, Mg2+ and Cl? followed an increasing pattern in roots and shoots of all the rice genotypes due to increasing salinity levels except Ca2+ and Mg2+ in the root. However, the concentration of K+ showed more or less an increasing pattern in root and a decreasing pattern in shoot. The concentration of Na+ and Ca2+ sharply increased with increasing the salinity levels in both the roots and shoots of NS15. The concentration of K+ sharply decreased in shoot and increased in the root of susceptible genotype NS15 with increasing salinity over 6 dS m?1 salinity levels, where the transformation of K+ from root to shoot was disrupted by Na+. The Cl? content sharply increased with increasing salinity in the root of NS15 as compared to shoot. The effect of different salinity levels on Na+/K+ ratio in the shoots of the selected rice genotypes sharply increased in susceptible genotype NS15 as compared to the other genotypes.  相似文献   

16.
Wheat (Triticum aestivum L.) line, Saline Agriculture Research Center line 1 (SARC), was selected in a salinity tolerance improvement program at the University of Agriculture, Faisalabad, Pakistan. In this study we compared SARC with Pothowar which is a common wheat cultivar grown in the same region, in order to study the mechanism of salinity tolerance in the SARC line. Two wheat lines were planted in pots and were subjected to salt stress by daily application of a 200 mM NaCI solution for 30 d during the vegetative growth stage. Dry weight of plant parts, leaf area, leaf water status, and solute concentrations in the cell sap of the leaf tissues were determined at 13 and 30 d after initiation of the stress treatment. Decrease in the plant dry weight and leaf area due to salt stress was more pronounced in Pothowar than in SARC, indicating that SARC was more tolerant to salinity. SARC maintained a higher turgor at low leaf water potentials and showed a higher capacity of osmotic adjustment compared to Pothowar. Major osmotic a that increased by salinity in order to maintain a lower osmotic potential in the two lines were Na+, Cl-, K+, and glycinebetaine. Increase in the concentrations of Na+, Cl-, and glycinebetaine was much higher in SARC than in Pothower. These results suggested that the SARC line had a physiological mechanism that conferred a higher salinity tolerance.  相似文献   

17.
A field experiment was conducted under two natural field conditions at the Research Farm (normal soil) and Proka Farm (salt-affected soil) of The Institute of Soil and Environmental Sciences (ISES), University of Agriculture, Faisalabad, Pakistan, to evaluate the performance of 11 rice genotypes in normal and salt-affected conditions. The experiment was laid out in randomized complete block design (RCBD) with three replications. The gas exchange attributes were measured at vegetative stage whereas the grain and straw yields and the yield components were recorded at maturity. After harvesting, the ionic parameters including sodium (Na+) and potassium (K+) were determined. Afterward, grain quality in terms of length, width, milling recovery, broken fraction, and chalkiness was also determined for the selected genotypes. Salt-affected conditions adversely affected the physiology, yield, and quality of the tested genotypes. The genotypes KS-282 followed by Shaheen Basmati showed significantly higher photosynthetic rate, transpiration rate, and stomatal conductance under both normal and salt-affected conditions, whereas the genotypes 99404 followed by 99417 showed minimum values of gas exchange attributes. The grain and straw yields were the highest in the case of KS-282 at both sites, whereas the lowest grain and straw yields were observed in the case of 99440 followed by 99417 under both normal and salt-affected conditions. Regarding the quality attributes, Super Basmati produced longer grains but with higher broken fraction and lower milling recovery, whereas the reverse was observed in the case of KS-282.  相似文献   

18.
Net uptake and partitioning of sodium (Na+) and potassium (K+) in plants of two sesame cultivars (Sesamum indicum cv. ‘PB-1’ and cv. ‘UCR’) exposed to 20 mM sodium chloride (NaCl) were studied over a period of 28 days. Both cultivars showed a marked discrimination between K+ and Na+ during uptake. The reduction of K+ in the plants caused by the NaCl treatment was of similar magnitude in the two cvs. The cv. ‘UCR’ showed lower Na+ concentrations in the shoot tissues than ‘PB-1’ and K+/Na+ selectivity ratios were higher in cv. ‘UCR’ than in cv. ‘PB-1’. At the last sampling on day 28 there was a marked decrease of shoot growth in cv. ‘PB-1’ in comparison to the cv. ‘UCR’. Leaves of cv. ‘PB-1’ showed clear toxic symptoms, while those of cv. ‘UCR’ did not. It is concluded that Na+ exclusion from the shoot contributes to salt tolerance of sesame, cv. ‘UCR’.  相似文献   

19.
Pistachio is one of the most important horticultural crops in Iran. The majority of the pistachio producing regions is located in arid and semi-arid areas with saline conditions. Therefore, selection of suitable rootstocks is important for increasing yield efficiency of this important nut crop. In this study, the effect of four water salinity levels (0.75, 5, 10 and 15 ds m?1) on growth indices and physiological parameters of four Pistacia vera L. rootstocks (Badami-e-Zarand A, Badami-e-Zarand B, Qazvini, and Sarakhs) were investigated under greenhouse conditions. After treatment for three months, leaf dry weight was reduced by about 30-50% at an irrigation water electrical conductivity (ECw) of 10 ds m?1. Badami-e-Zarand B was the most vigorous rootstock at the highest EC. Decreases in root and stem dry weight (average of all rootstocks combined) occurred at water salinity of 10 ds m?1. Chemical analysis of shoot and root indicated that the salinity affected the concentration and distribution of sodium (Na+), potassium (K+), and calcium (Ca2+) in pistachio rootstocks. The concentrations of Na+ and K+ increased with a rise in water salinity levels. Comparison between Na+ concentration of shoot and root showed that all examined rootstocks limited the Na+ transportation to shoot tissue up-to 15 ds m-1, and retained it in the roots. However, this ability was less in the Sarakhs rootstock. Based on measured parameters, Badami-e-Zarand B and Sarakhs could be considered as tolerant and sensitive pistachio rootstocks to water salinity, respectively.  相似文献   

20.
Abstract

The concentrations of K+, Na+, and proline and the ratio of K+ to Na+ (K+ / Na+) were analyzed in NaCl-unadapted and NaCl-adapted tobacco (Nicotiana tabacum) cells in suspension culture. At 3 to 5 d after inoculation, the NaCl-unadapted cells cultured in 100 mmol L?1 NaCl saline culture medium (Na100 medium) accumulated 28.7 mmol L?1 proline with a low ratio of K+ to Na+ (= 2.8) and the NaCl-adapted cells cultured in the Na100 medium contained 6.28 mmol L?1 proline with a high K+ / Na+ ratio (≧ 7.5). The contents of amino acids for the NaCl-adapted cells in the Na100 medium were similar to those for the NaCl-unadapted cells in a modified LS medium (standard medium). At 14 d after inoculation, the NaCl-unadapted cells in the Na100 medium contained 4.77 mmol L?1 proline and restored the K+ / Na+ ratio from 2.8 to 6.2. These results indicate the presence of a negative correlation between the K+ / Na+ ratio and proline accumulation and suggest that a balance between the K+ / Na+ ratio and proline accumulation may be the factor involved in determining the salt tolerance of plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号