首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
塔河流域天然胡杨林不同林龄地上生物量及碳储量   总被引:1,自引:0,他引:1  
[目的]探讨不同林龄单株胡杨地上部分生物量、林分的生物量及碳储量的分布特征,为进一步开展胡杨天然林生态系统碳循环、碳储量、固碳速率和潜力研究提供基础。[方法]以新疆维吾尔自治区轮台县天然胡杨林为研究对象,利用不同林龄下不同径阶的标准解析木样本数据,构建胡杨地上部分各器官的生物量回归模型,探讨不同林龄胡杨地上部分的生物量组成、分配以及各器官生物量随年龄的变化规律。[结果]随着林龄的增加,单株胡杨地上部分各器官生物量呈上升趋势,其中树干占主导地位。幼龄林、中龄林、近熟林、成熟林、过熟林的林分地上生物量分别为:4.91,7.95,19.47,61.95,47.64t/hm2,且随林龄的增加胡杨林地上部分生物量先增加后稍有降低;胡杨林地上部分不同器官平均含碳率从大到小依次为:树干(48.17%)树枝(47.75%)树皮(46.13%)树叶(44.90%),且随林龄的增加不同器官含碳率先增加后降低,但各器官之间含碳率差异不显著;塔河流域胡杨林碳储量随林龄先增加后降低,大小顺序为成熟林(30.38t/hm2)过熟林(23.26t/hm2)近熟林(9.30t/hm2)中龄林(3.69t/hm2)幼龄林(2.20t/hm2)。[结论]地上部分各器官碳储量按依次排列为:树干树枝树皮树叶,树干是胡杨林地上部分碳储量的主要器官。  相似文献   

2.
[目的]定量分析淹灌对典型断面荒漠河岸林植物群落的长势、植物多样性的影响,为今后改进干旱区科学补水方案,实现生态水高效利用提供理论依据。[方法]通过2016—2018年6次在塔里木河上中游进行植被调查获得数据,运用Pielou指数、Shannon-Wiener指数、Simpson指数以及重要值等指标对淹灌的影响进行分析。[结果]淹灌2 a后,塔里木河上中游新增了11种植物,主要是胡杨苗、柽柳苗、喜湿植物以及一年生草本,其中胡杨苗密度增加0.72株/m~2,增长率为855.9%;柽柳新枝长增加41.8 cm,增长率为71.58%,胡杨长势得到好转:优、中等胡杨出现频率增加0.11株/m~2,增长率为32%;随着距生态闸距离的增加,胡杨林密度有减小的趋势,林龄老龄化也逐渐凸显;林下物种多样性有随淹灌距离的增加而减少的趋势;距生态闸300 m范围内以胡杨、柽柳幼苗及喜湿的一年或多年生草本植物成为优势种(其重要值分别为0.243,0.195,0.248),大于300 m后优势种逐渐被柽柳、耐旱的多年生草本植物所取代,一年生草本植物、胡杨苗在距生态闸450 m后消失。[结论]淹灌使荒漠河岸林植物群落更新能力增强,物种多样性增加。为了维持目前的生态好转趋势,淹灌工程需要继续开展。  相似文献   

3.
分析干旱胁迫下胡杨(Populus euphratica Oliv.)茎木质部解剖结构与水力特性的变化对解读其抗逆性机理具有重要意义.本文采用水分控制试验,分析胡杨幼株茎木质部解剖结构和水力特性对不同土壤干旱胁迫处理的响应.结果表明:在解剖结构方面,随着干旱胁迫的加剧,胡杨茎木质部导管密度呈极显著减小(P<0.01)趋势,而导管内径、导管壁厚度、管壁机械强度呈极显著增大(P<0.01)趋势,穿孔直径和纹孔直径显著增大(P<0.05);但导管分子形态却没有发生显著变化,都具有孔纹式和螺纹式两种类型,其中纹孔多为具缘纹孔,呈互列式排列,端壁穿孔为单穿孔类型,并具有螺纹加厚现象;在水力特性方面,随着干旱胁迫的加剧,胡杨茎的木质部比导率(Ks)和自然栓塞程度(PLC)呈显著增加趋势(P<0.05).为了适应干旱的环境,胡杨茎木质部结构和水力特性发生相应的变化,一定程度上弥补了干旱胁迫所带来的不利影响.  相似文献   

4.
Abstract

Phytoremediation is a good technique for removing cadmium (Cd) from farmland soils. To remove Cd from these soils effectively, it is necessary for Cd ions to be transported to the shoot organs for later harvest. However, the mechanism of Cd translocation to shoot organs via xylem vessels has not yet been elucidated. We selected oilseed rape plants (Brassica napus L.) and established a method to collect xylem exudates from these plants. After 3 days of Cd treatment (10 µmol L?1 and 30 µmol L?1) the Cd concentrations in the xylem exudates were approximately 6.5 µmol L?1 and 16 µmol L?1, respectively. The detection of Cd in the xylem exudate indicated that Cd was moving to shoot organs via xylem vessels. The effect of these Cd treatments on the amino acid, organic acid and protein composition of xylem exudates from oilseed rape plants was investigated. The level of amino acids and organic acids detected was enough to bind Cd transported via the xylem. Sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis revealed that proteins with molecular weights of 36 kDa and 45 kDa clearly increased in the exudates with Cd treatment. The possibility that these compounds are binding Cd in the xylem exudates was discussed.  相似文献   

5.
In relation to radial ion transport to xylem vessels in higher plant roots, some features of stele, cortex, and root tip freshly isolated from 2-day-old corn roots grown under moistened or submerged condition were investigated. The contents of P, K, and Mg in primary roots decreased gradually from the apical to the basa1 region axially. The stele contained P, Na, Cu, Fe, and Mn in higher level than the cortex. The O2 uptake rate of root tip was much higher and that of freshly isolated stele was as high as that of fresh cortex. In stele, more CN sensitive respiration was observed than in cortex. Although isolated stele absorbed tess 32p than cortex and root tip, the incorporation of 32p into organic compounds in stele was as much as in root tip. These results show that the freshly isolated stele has high metabolic activity and must play an inherent role in radial and selective ion transport in situ.  相似文献   

6.
This study is aimed to examine if cotyledon node zone may play a role in salt and/or alkali tolerance. Seedlings of halophyte plant Kochia sieversiana and glycophyte plant Lycopersicon esculintum Mill were treated with salt and alkali respectively, xylem sap was collected from above or below cotyledon node zone, and components and contents of inorganic ions in the sap were examined. When compared with that collected from below cotyledon node zone, xylem sap collected from above cotyledon node zone in K. sieversiana contains less Na+ under both salt and alkali stresses, and less chloride (Cl–) under salt treatment. Both Na+ and Cl remain nearly the same in xylem sap collected from below and above cotyledon node zone in L. esculintum Mill. Cotyledon node zone in K. sieversiana selectively restricted ion transport under both salt and alkali stresses, which may represent a novel mechanism of salt and alkali resistance in halophyte plants.  相似文献   

7.
Abstract

Surface‐applied manures create a potential phosphorus (P) runoff hazard, especially when unincorporated. In such cases, the concentration of water‐extractable P in the manure has been correlated to soluble P concentrations in runoff. This study evaluated the influence of holding time, sample‐handling procedure, and filtration method on measurement of the water‐extractable P content of manures in a 3×3×2 factorial arrangement of treatments. A two‐way interaction between holding time and sample‐handling procedure occurred for most samples. Six samples had water‐extractable P concentrations that were less than or equal to dried and dried/ground treatments. Only one sample had higher water‐extractable P concentrations for fresh than for dried and dried/ground treatments. When significant differences occurred as a result of the filtration method, results for Whatman No. 40 filters, with a larger pore size than 0.45 µm nitrocellulose membranes, were usually higher. There was no significant difference in the coefficient of variation across sample‐handling procedures, suggesting that efforts to dry and/or grind samples were not needed. These results support the adoption of a standardized protocol for measuring water‐extractable P in manures that represents the appropriate balance between the ease of implementation and the strength of the correlation to P runoff concentrations.  相似文献   

8.
[目的] 明确风沙区不同配置农田防护林产生的防护效果差异以及影响田间土壤含水率的作用因子,为该地区水分管理和土地利用提供理论依据。 [方法] 选择南疆阿拉尔市十团3种典型配置的农田防护林,研究不同配置防护林内土壤含水率、风速、光照强度、空气温湿度等因素,综合分析土壤含水率变异性决定因子。 [结果] 疏透度为41%的5行新疆杨对田间小气候改善作用在0~1 H范围最显著,疏透度为47%的1行胡杨+2行新疆杨的林内有效防护距离最长,且田间土壤含水率显著大于5行新疆杨且大于4行新疆杨。5行新疆杨林内土壤含水率主要受空气温度、湿度、光照强度的影响,4行新疆杨和1行胡杨+2行新疆杨土壤含水率与防护林距离和土层深度有关。总体来看,林带疏透度对土壤含水率有直接负向作用,同时土壤容重随土层深度变化间接对含水率产生负向影响。 [结论] 合理调整农田防护林配置结构,能够提高防护林防护效益,为风沙区作物生长提供有利条件,同时促进当地水资源合理利用和可持续发展。  相似文献   

9.
Abstract

Interactions of P and Zn in roots and shoots of maize were studied in greenhouse using three different type of Egyptian soils (one alluvial and two calcareous). No Zn deficiency symptoms were seen in maize. The concentration of Zn in shoots was reduced due to P application. Its concentration in roots was hardly influenced by added P. Added P increased its concentration in the shoots much more than in the roots. Added Zn increased its concentration in roots more than in shoots. These findings suggest that applied P had no effect on Zn absorption by the roots. The main effect was a physiological inhibition in the translocation of Zn from roots to shoots, probably due to the indirect effect on increasing salt concentration in the root medium added as CaH2PO4. This may have depolarized the xylem potential resulting in increasing the anion influx and decreasing that of the cation into the relatively less negatively charged xylem vessels. As the xylem potential appears to be in the stele at the interface between the xylem vessels and the pericycle cells. Results of the calcareous soils suggest that excess of CaCO3 influences P‐Zn relationship within the plant by decreasing the translocation of Zn and increasing that of P from roots to shoots.  相似文献   

10.
[目的]分析胡杨生长期内各环境因子对树干液流速率的影响程度,为干旱区自然植被耗水量的计算提供了新的方法和科学依据。[方法]对塔里木河下游2012单木胡杨整个生长季内树干液流以及空气温度、风速、有效光合辐射强度、空气湿度、土壤温湿度等环境因子进行连续观测。[结果]胡杨在整个生长季内的液流呈单峰波动曲线,有明显的昼夜变化规律;在生长期内,不同的观测尺度下,影响胡杨液流速率的环境因子不同。回归分析结果表明,对于瞬时液流流速,相关性较大的环境因子主要是大气温度、10cm深处的土壤温度;对于日液流量,主要影响因子为太阳净辐射;对于月液流量,主要影响因子为大气温度和太阳净辐射。[结论]研究区内胡杨生长受大气温度和太阳净辐射影响程度较其他因素大,并且回归方程具有很高的拟合精度。  相似文献   

11.
The plant nutrient phosphorus (P) is spread throughout the plant within the transpiration stream after uptake in the form of phosphate via the roots. Short‐term distribution is therefore strongly dependent on transpiration rather than on sinks, so that P mainly enters adult leaves. The objective of this work was to investigate the transport of phosphate in leaf veins and its distribution within the leaf. Experiments were performed with broad bean (Vicia faba L. var. Scirocco) using radioactively labeled phosphate. In a relatively new approach, the tracer was monitored by a sensitive imaging plate using Fujifilm's Bioimaging Analyzer System. Radioactive label could be monitored in fresh leaves (without fixing) using exposure times of only 5–20 min. For this reason, the method offered the possibility to obtain several subsequent autoradiographic images of the same sample after different feeding times. Phosphate tracer quickly reached small veins, which were then more intensely labeled than the tissue between them. Within the first 15 min, intercostal fields were only slightly stained. After application of phosphate tracer onto the leaf blade, export from the leaf was pronounced and started within 30 min. Phosphorus is effectively redistributed from adult leaves to sinks such as the terminal bud or growing root tips. Using the imaging method, an impression of the high velocity and effectiveness of this process was obtained. The results furthermore imply that leaf veins may be one of the most important locations where exchange between xylem and phloem transport takes place, although exchange between xylem and phloem was also observed in the shoot axis and in the petioles.  相似文献   

12.
Thirty eight accessions of brown mustard (Brassica juncea (L.) Czern. and Coss.) were screened after two weeks growth in solution culture containing 120 mol m‐3 NaCl. Considerable variation for salt tolerance was observed in this set of germplasm, since some accessions showed relatively vigorous growth in saline medium.

In order to determine the consistency of degree of salt tolerance at different growth stages of crop life cycle two salt tolerant accessions, P‐15 and KS‐51 and two salt sensitive 85362 and 85605 were tested at the adult stage in 0(control), 100 and 200 mol m‐3 NaCl. Both the tolerant accessions produced significantly greater fresh and dry biomass and had considerably higher seed yield than those of the salt sensitive accessions. Analysis of different ions in the leaves showed that salt tolerant accessions contained greater amounts of Na+, K+ and Ca2+ than the salt sensitive accessions, although they did not differ significantly for leaf Cl. Only one salt tolerant accession P‐15 had greater leaf K/Na ratio and K+ versus Na+ selectivity compared with the tolerant KS‐51 and the two salt sensitive accessions.

From this study it was established that there is a considerable variation for salt tolerance in B.juncea which can be exploited by selection and breeding for improvement of its salt tolerance. Since the degree of salt tolerance in B.juncea does not change at different growth stages of the crop life cycle, selection for salt tolerance at the initial growth stages could provide individuals that would be tolerant at all other growth stages. Accumulation of Na+, K+ and Ca2+ in the leaves are important components of salt tolerance in B.juncea.  相似文献   

13.
酸枣荆条耗水特征及其茎木质部解剖构造   总被引:1,自引:0,他引:1  
[目的]研究酸枣和荆条耗水特征与其茎木质部解剖构造之间的关系,为中国北方干旱区造林树种的选择提供技术支持。[方法]采用热扩散式液流探针(TDP)法对酸枣和荆条的树干液流进行监测,并于监测完成后,采用切片法,观察其茎木质部解剖构造。[结果](1)不同季节2树种的耗水特征存在差异,与湿润季节相比,干旱季节两树种树干液流变化均具有较强的波动性,其日均液流速度和日均耗水量均较小;2树种相比,干旱季节时酸枣的最大液流速度、日均液流速度以及日均耗水量均显著大于荆条,而湿润季节与之相反。(2)就其茎木质部解剖构造而言,酸枣的导管形状大小比较均一,而荆条的导管形状大小参差不齐;酸枣的导管直径、长度、面积平均值及边材相对输导面积均小于荆条,而其导管密度大于荆条。(3)酸枣的相对输导率和脆性指数均小于荆条,说明酸枣的水分输导的有效性小于荆条,而其安全性和抗旱性大于荆条;另外,在湿润季节,二者的耗水特征主要取决于其水分输导的有效性,而在干旱季节,主要取决于其安全性和抗旱性,进而阐明了二者在不同季节表现出不同耗水差异的原因。[结论]与荆条相比,酸枣的茎解剖构造更有利于其在干旱季节维持较高的树干液流,进而得以正常的生长,因此更适合于干旱区造林。  相似文献   

14.
极端干旱区不同水分条件下胡杨林生态耗水特征   总被引:5,自引:2,他引:3  
以极端干旱区胡杨林为研究对象,探究不同水分条件下胡杨林土壤水分运动规律和胡杨生态耗水特征。结果表明:HYDRUS-1D模型对极端干旱区胡杨林土壤水分运动和蒸散发过程具有良好的模拟效果。不同水分条件下胡杨林土壤水分运动特征和生态耗水变化差异明显。随着下垫面水分条件趋于湿润,土壤水分含量和湿润锋入渗深度均出现增加,入渗深度分别达到100,120,150cm。下垫面水分条件改变导致土壤水分存蓄情况发生变化。下垫面水分补给增加的同时胡杨林蒸散发呈明显增加,其中植被蒸腾增加显著。随着水分条件逐渐湿润植被蒸腾占总蒸散比例由55%升至65%。研究显示,随着下垫面水分条件逐渐湿润,极端干旱区胡杨林生态耗水量逐渐增加,其中植物蒸腾消耗是造成水分耗散增加的主要原因。  相似文献   

15.
Temporal changes in soil CO2‐efflux rate was measured by a canopy‐gap method in a Populus euphratica forest located at the both sides of Tarim River banks (W China). Soil CO2‐efflux rates in situ were correlated with key soil biotic (e.g., fungal, bacterial, and actinomycetes populations) and abiotic (e.g., soil moisture, temperature, pH, organic C) variables. Two kinds of measurement plots were selected: one under the crown of a living Populus euphratica tree and the other under a dead standing Populus euphratica tree. Diurnal variations in soil respiration in these plots were measured both before and after the occurrence of the first frost. Soil respiration of the dead standing Populus euphratica (Rd) was assumed to be a measure of heterotrophic respiration rate (Rh), and root respiration rate (Rr) was estimated as the difference between soil respiration under living (Rl) minus soil respiration under dead standing Populus euphratica. Daily variation of Rr contribution to the total soil respiration in Populus euphratica forests were analyzed before and after the frost. The contribution of root respiration to total soil respiration before and after frost varied from 22% to 45% (mean 30%) and from 38% to 50% (mean 45%), respectively. In addition, Rh was significantly correlated with soil temperature both before and after frost. In contrast, Rr was not significantly correlated with soil temperature. Change in Q10 of Rr was different from that of Rh from before the frost to after the frost. Variation of Q10 of Rr from before the frost to after the frost was larger than that of Q10 of Rh. Thus, the results indicate that different soil respiration models are needed for Rr and Rh because different factors control the two components of soil respiration.  相似文献   

16.
ABSTRACT

A pot experiment was carried out to investigate the tolerance of cucumber plants (Cucumis sativus L.) to root-knot nematode after inoculation with Glomus intraradices. Plants were inoculated with G. intraradices for four weeks and then transplanted in soil treated with Meloidogyne incognita for a further five weeks. The low phosphorus (P) loamy soil was amended with 50 and 100 mg P kg?1 soil. Mycorrhizal colonization increased shoot dry weight, shoot length, leaf numbers, root fresh weight and shoot P concentration, whereas nematode penetration and reproduction were significantly decreased. Similarly, P fertilization usually increased shoot growth and significantly decreased the number of galls and the number of egg masses and eggs per g root. Our results indicate that inoculation with G. intraradices and P fertilizer confer tolerance of cucumber plants to M. incognita by enhancing plant growth and by suppressing reproduction and/or galling of nematodes during the early stages of plant growth.  相似文献   

17.
《Journal of plant nutrition》2013,36(8):1457-1470
Abstract

The influence of silicon (Si) on water use efficiency (WUE) in maize plants (Zea mays L. cv. Nongda108) was investigated and the results showed that plants treated with 2 mmol L?1 silicic acid (Si) had 20% higher WUE than that of plants without Si application. The WUE was increased up to 35% when the plants were exposed to water stress and this was accounted for by reductions in leaf transpiration and water flow rate in xylem vessels. To examine the effect of silicon on transpiration, changes in stomata opening were compared between Si-treated and nontreated leaves by measuring transpiration rate and leaf resistance. The results showed that the reduction in transpiration following the application of silicon was largely due to a reduction in transpiration rate through stomata, indicating that silicon influences stomata movement. In xylem sap of plants treated with 2 mmol L?1 silicic acid, the Si concentration was 200-fold higher, while the Ca concentration which is mainly determined by the transpiration rate, was 2.5-fold lower than that of plants grown without Si. Furthermore, the water flow rate in xylem vessels of plants with and without Si was compared. Flow rate in plants with 2 mmol L?1 Si was 20% lower than that without Si, which was accounted for by the increased affinity for water in xylem vessels induced by silica deposits. These results demonstrated the role of Si in improving WUE in maize plants.  相似文献   

18.
为了明确灰枣不同枝龄二次枝果实品质差异性,比较同一树龄灰枣树不同枝龄二次枝的果实品质指标并对其进行因子分析和综合评价,为灰枣不同枝龄果实品质形成机理研究及科学整形修剪管理提供理论依据。该研究以新疆红枣主栽品种“灰枣”作为研究对象,测定枝龄不同的二次枝果实21项品质指标,对其进行因子分析,建立综合品质评价模型,并根据综合品质得分进行优良度排序。灰枣不同枝龄二次枝果实21项品质指标的变异系数(CV)均有所差异,其中P、Mn、Cu和总酸含量的变异系数均大于15.0%,其中果实P含量的CV最大,为19.2%;Vc、Ca和Fe含量及色差值b*的CV均在10.0~15.0%之间;总黄酮和Zn含量、色差值L*a*的CV均在5.0~10.0%之间;其余品质指标的CV均小于5.0%。经因子分析提取特征根值大于1的3个公因子,其累计方差贡献率达100.00%,第1公因子(f1)的贡献率为44.81%,主要由果实表面色差值L*a*b*、果实纵径、果实横径、果形指数、单果质量和Mg含量8个因子决定,主要反映了果实表面颜色、果实大小等果实外观品质指标。第2公因子(f2)的贡献率32.21%,由蛋白质、总黄酮、可溶性固形物、总糖、K、总酸和Cu含量7个因子决定,主要反映了果实酸甜口感品质及部分矿质元素含量的高低水平。第3公因子(f3)的贡献率22.99%,由P、Zn、Ca、Mn、Fe和Vc 含量6个因子决定,主要反映了大部分果实矿物质元素和Vc含量的高低水平。总之而言,灰枣4种枝龄二次枝果实综合品质优良度排序为3年生二次枝果实>4年生二次枝果实>2年生二次枝果实>1年生二次枝果实,在灰枣生产过程中,可以根据不同枝龄二次枝果实的不同优势,形成因地制宜的灰枣栽培模式,整形修剪中多留2年生以上的结果枝,应尽量减少1年生二次枝上结果。  相似文献   

19.
Aluminum (Al) and cadmium (Cd) are two elements that contaminate soil in different ways as waste products of some industrial processes and that can be tolerated by some plant species in different concentrations. In this study, growth parameters of leaves and stems (fresh and dry weights, stem lengths, leaf surface area, and lamina thickness), anatomical changes in leaves (lower and upper epidermis, stomata and mesophyll tissue), and photosynthetic pigment contents (chlorophyll a and b, total chlorophyll, and carotenoids) were investigated in cotton (Gossypium hirsutum L. cv. Nazilli 84S), which was treated with Al and Cd for 3 months. Cotton seedlings were grown in greenhouse conditions and watered with Hoagland nutrient solutions, which contained 0, 100, and 200 μM aluminum chloride (AlCl3) and cadmium chloride (CdCl2). It was observed that reduced soil pH positively affected many parameters in cotton plants. Aluminum accumulation was greater in leaves than stems while the opposite was true for Cd accumulation. Leaves and stems of cotton plants treated with 100 and 200 μM Al and Cd showed slight growth changes; however, high concentrations of Al (200 μM) caused significant reductions in leaf area and leaf fresh weight, whereas stem fresh weight decreased with 200 μM Cd treatment. Anatomical parameters were mostly affected significantly under both concentrations of Al and Cd solutions (100 and 200 μM). The results revealed that the anatomical changes in the leaves varied in both treatments, and the long-term effect of the tested metals did not include harmful effects on anatomical structures. Moreover, the variations could be signals of tolerance or adaptive mechanisms of the leaves under the determined concentrations.  相似文献   

20.
ABSTRACT

The present investigation was based on the hypothesis that the endophytes residing in the roots of halophytes have better adaptation to saline conditions. Six halophytic herbs were collected from Khewra salt range (EC = 4.7 dS m?1 and SAR = 25.7). From these herbs, root pieces of Cenchrus ciliaris were shade dried; finely ground to powder and three plant growth promoting rhizobacteria (PGPR), Bacillus cereus, Pseudomonad moraviensis, and Stenotrophomonas maltophilia, were isolated. Root powder in sterilized and unsterilized forms was added in the saline-sodic field on wheat and mixed with soil in pot experiment with induced NaCl (150 mM). Sterilized root powder increased organic matter NO3-N and P contents of soil and leaves, fresh weight, sugar content, and yield attributes. The root powder application in unsterilized form significantly decreased EC, SAR, and Na content of field soil with concomitant increase in soil and leaves K, P, and NO3-N. The farmer’s benefit was increased by 33% at yield. Root powder-induced salt tolerance was mediated by the PGPR (residing inside the root) through increased growth and better physiological adaptations. It is inferred that root powder harboring the PGPR may be an alternative to biofertilizer with longer shelf life and may also serve as carrier for the preparation of effective biofertilizer for saline land using other PGPR bio-inoculants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号