首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of fluorescent pseudomonads isolates (pf0, pf1, pf2, and pf3) and zinc (Zn) (0 and 5 mg kg?1 soil) interactions in alleviating salinity in pistachio seedlings were investigated. The experiment was conducted following completely randomized design with three replicates. The results revealed that salinity decreased the growth parameters, while application of PGPR (plant growth-promoting rhizobacteria) and Zn increased these parameters. Application of PGPR significantly enhanced phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), Zn, Ca/sodium (Na), and K/Na contents, while decreased the accumulation of Na and chloride (Cl). Application of PGPR and Zn increased the phenolic compounds, sucrose, membrane stability index (MSI), and relative water content (RWC) but reduced the malondialdehyde (MDA) amount. A positive correlation was observed between Zn concentrations with seedling dry weights, phenolic compounds, MSI, and RWC contents. These results indicated that the combined application of PGPR and Zn could be a simple treatment for growth and establishment of pistachio seedlings under Zn deficiency and soil salinity.  相似文献   

2.
Phosphogypsum (PG), which contains Ca, P and S and has an acidic effect, may be applied to manage soil constraints such as alkalinity and salinity. For increasing nutrients bioavailability, biofertilizers are commonly applied. Therefore, the aim of this study was to assess PG effect either alone or in combination with the mixed co-inoculation of plant growth promoting rhizobacteria on a saline soil. In a greenhouse pot experiment with maize (Zea mays L.), the inoculated and non-inoculated saline soils were treated with PG at 10 g kg?1 (PG10), 30 g kg?1 (PG30), and 50 g kg?1 (PG50). The soil pH, electrical conductivity (ECe), and macro-(NPK) and micronutrients (Fe, Mn, Zn, and Cu) availability to mays were examined. Applying PG reduced soil pH and co-inoculation induced significant decreases in soil ECe. Applying PG increased significantly soil available P. Applying PG combined with co-inoculation effectively increased the soil available K. The soil available micronutrients decreased significantly with PG. However, the inoculated maize treated with PG showed significant higher dry weight (82.1–127.4%) and nutrients uptake than the control. It could be concluded that PG along with co-inoculation may be an important approach for alleviating negative effects of salinity on plant growth.  相似文献   

3.
A greenhouse study was conducted to evaluate effects of phosphorus (P) levels (0, 50 and 100 mg kg?1 soil) under saline (0, 1000 and 2000 mg sodium chloride (NaCl) kg?1 soil) conditions on growth and chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-zarand’ in a completely randomized design (CRD) with four replications. Results showed that salinity application decreased leaf, stem, and root dry weights, number of leaf, length of stem and leaf area, while this effect diminished with P fertilization. By increasing salinity levels, all of the nutrients concentration in leaf, stem and root except sodium (Na) content were reduced. P application increased P and potassium (K) concentrations in the leaves, stem and root, while decreased Na and Zinc (Zn) leaf, stem and root concentrations. However, the results indicated that proline accumulation and reducing sugar content were increased by salinity, P and their interaction application. The results suggest that fertilization of phosphorus can diminish some adverse effects of high salinity on growth and chemical composition of pistachio seedlings.  相似文献   

4.
The partial sterilization of soil eliminates useful microorganisms, resulting in the reduced growth of mycorrhizae-dependent citrus plants, which are often unresponsive to the application of fertilizer. Research was conducted to test the hypothesis that indigenous mycorrhizae (IM) inoculation is as efficient as selected mycorrhizal inoculation under sterile and non-sterile soil conditions. Rhizophagus clarus and indigenous mycorrhiza spores, isolated from citrus orchards, were used as arbuscular mycorrhizae fungi under greenhouse conditions with sterile and non-sterile Çanakçi series (Typic xerofluvent) soils with low phosphorus (P) fertility. Different P (0 and 100 mg kg?1) and zinc (Zn) (0, 5 and 10 mg kg?1) concentrations were used at the start of the experiments. The shoot, root dry weight (RDW), root colonization, and P, Zn, iron (Fe), copper (Cu) and manganese (Mn) concentrations of the shoot were determined; mycorrhizae dependency (MD) was also calculated.

The results indicate that R. clarus and indigenous mycorrhiza in sterile and non-sterile soil conditions considerably increased the growth of citrus plants. Owing to existing beneficial indigenous rhizosphere microorganisms, citrus plant growth without inoculation was better in non-sterile soils than in the sterile soils. In non-sterilized soil, the plant growth parameters of R. clarus-inoculated soils were higher than those of indigenous mycorrhiza-inoculated soils. Mycorrhizae infection increased certain citrus plant growth parameters, such as root infection, biomass and nutrient uptake (P, Zn, Fe, Mn and Cu). In sterile soil, the addition of up to 5 mg kg?1 soil Zn and the inoculation of R. clarus significantly increased plant growth; inoculation with indigenous mycorrhiza produced more dry weight upon the addition of up to 100 mg kg?1 phosphorus pentoxide (P2O5). Under sterile soil conditions, without considering fertilizer addition, MD was found to be higher than that of non-sterile soils. In general, the contribution of the indigenous soil spores is significant. However, indigenous soil mycorrhizae may need to be managed for better efficiency in increasing plant growth and nutrient uptake. The major finding was that the inoculation of citrus seedlings with mycorrhiza is necessary under both sterilized and non-sterilized soil conditions.  相似文献   

5.
To study the effect of nitrogen and salinity on growth and chemical composition of pistachio seedlings (cv. ‘Badami’), a greenhouse experiment was conducted. Treatments consisted of four salinity levels [0, 800, 1600, and 2400 mg sodium chloride (NaCl) kg?1 soil], and four nitrogen (N) levels (0, 60, 120, and 180 mg kg?1 soil as urea). Treatments were arranged in a factorial manner in a completely randomized design with three replications. The highest level of nitrogen and salinity decreased leaf and root dry weights. Nitrogen application significantly increased the concentration of shoot N and salinity suppressed shoot N concentration. Salinity and nitrogen fertilization increased shoot and root sodium (Na), calcium (Ca), and magnesium (Mg) concentrations. Nitrogen application increased proline concentration and reducing sugar content. Although salinity levels increased proline concentration a specific trend on reducing sugars content was not observed.  相似文献   

6.
ABSTRACT

The effects of three sodium chloride (NaCl) levels (0, 1200, and 2400 mg kg? 1 soil) and three irrigation intervals (3, 7, and 14 d) on the growth and chemical composition of two Pistacia vera rootstocks (‘Sarakhs’ and ‘Qazvini’) were investigated under greenhouse conditions. Eight-week-old pistachio seedlings were gradually exposed to salt stress which afterward, water stress was initiated. At any irrigation interval, plant height and shoot and root dry weights of both rootstocks were reduced with increasing salinity. However, increasing irrigation intervals alleviated the adverse effects of soil salinity. A negative relationship observed between relative shoot growth and electrical conductivity of soil saturation extract (ECe) confirmed the above findings. Under 3-d irrigation interval, the ECe required to cause a 50% growth reduction was lower than those under 7- and/or 14-d irrigation intervals. Shoot and root chemical analyses indicated that the salinity as well as irrigation regime affected the concentration and distribution of sodium (Na+), potassium (K+), and chloride (Cl?) in pistachio. The concentration of Na+, K+ and C1? ions increased with a rise in NaCl level, and was generally declined with increasing irrigation interval. Based on plant height, shoot and root dry weights and the concentrations of Na+, K+, and C1? in the plant tissues, at lowest irrigation intervals ‘Sarakhs’ shows a higher sensitivity to soil salinity than ‘Qazvini’, but with increasing irrigation interval, ‘Sarakhs’ and ‘Qazvini’ can be classified as resistant and sensitive to salinity, respectively.  相似文献   

7.
Low organic matter and high salinity are widespread throughout all pistachio (Pistacia vera L.) growing areas of Iran. The objective of this study was conducted to investigate effect of pistachio waste (PW), salinity, and their interaction on growth and chemical composition of pistachio seedlings. The experiment was carried out based on factorial and completely randomized design (CRD) with four replications. The treatments contained salinity in three levels [0, 1000, and 2000 mg sodium chloride (NaCl) kg?1 soil] and PW in three levels (0, 3, and 6%). The results indicated that salinity application decreased leaf, stem, and root dry weights; leaf area; and length of stem, while this effect diminished with 3% PW application. Application of PW at the rate of 6% significantly reduced these parameters and accelerated effect of salinity levels. Leaf, stem, and root potassium (K) and phosphorus (P) concentrations were decreased by salinity application, while leaf, stem, and root sodium (Na) concentrations was increased. However, PW application increased these nutrient concentrations in the leaves, stem, and root, but significantly diminished the effect of salinity. The results showed that proline accumulation and reducing sugar content in the leaves were increased by salinity, PW, and their combination application. The results suggest that application of PW, especially at rate of 3%, can reduce some adverse effects of salinity on growth and chemical composition of pistachio seedlings.  相似文献   

8.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

9.
The effects of four salinity levels [0, 1000, 2000, and 3000 mg sodium chloride (NaCl) kg?1 soil] and three zinc (Zn) levels [0, 5, and 10 mg kg?1 soil as zinc sulfate (ZnSO4.7 H2O)] on growth and chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami’ were studied in a calcareous soil under greenhouse conditions in a completely randomized design with three replications. After 26 weeks, the dry weights of leaves, stems and roots were measured and the total leaf area determined. Salinity decreased leaf, stem, and root dry weights and leaf area, while this effect diminished with increasing Zn levels. Zn fertilization increased leaf, stem and root Zn concentrations, leaf potassium (K) concentration, and stem and root sodium (Na) concentrations, while decreased leaf Na concentration, and stem and root K concentrations. Salinity stress decreased leaf, stem, and root Zn concentrations, and leaf K concentration, while salinity increased leaf, stem and root Na concentrations, and stem and root K concentrations. Proline accumulation increased with increasing salinity levels, whereas the reverse trend was observed for reducing sugar contents. Zn application decreased proline concentration but increased reducing sugar contents. These changes might have alleviated the adverse effects of salinity stress.  相似文献   

10.
The effects of thiamine (vitamin B1) application as seed dressing and of N form supplied (NH4+ versus NO3?) on rhizosphere pH and on rhizosphere microorganisms were evaluated in two different soils. Imbibition of maize (Zea mays L.) seeds with thiamine (1 g kg?1) increased seed thiamine content by a factor of 370. Maize plants from untreated and treated seeds were cultivated in a growth chamber under controlled conditions for 10 d in a sandy loam soil, pH 7.1 (Mascherode soil) or in a sandy soil, pH 4.8 (Niger soil) fertilized with two different N sources (NO3?N or NH4?N with dicyandiamide, 100 and 250 mg N kg?1 soil). The rhizosphere pH was not affected by thiamine, only slightly affected by N source in the Mascherode soil, but markedly affected in the Niger soil. Thiamine application and N source affected the most probable number (MPN) of diazotrophs and total bacteria isolated from the rhizosphere soil of 10 d old maize plants. In the Mascherode soil, thiamine application increased MPN of diazotrophs 4-fold and total bacteria 2-fold when the soil was fertilized with 100 mg NO3?N compared to untreated seedlings. Compared to Mascherode soil, in the Niger soil, MPN of diazotrophs was extremely low, especially after NH4?N treatment which significantly decreased pH of the rhizosphere. Thiamine application had only marginal effects on the MPN of diazotrophs and total bacteria. Total bacteria isolated from Niger soil fertilized with NH4?N were about 10-fold lower compared to the soil from Mascherode. However, in the other two treatments, total bacteria were higher in the Niger soil compared to the Mascherode soil. In the Niger soil, apparently some of the heterotrophs (the Actinomycetes dominated in this soil) might have suppressed the diazotrophs. The results of the present study demonstrate that in many cases seed treatment with thiamine enhances MPN of diazotrophs and total bacteria in the rhizosphere of maize seedlings.  相似文献   

11.
ABSTRACT

The effect of excess Zn and arbuscular mycorrhizal (AM) fungus on bioproduction and trace element nutrition were investigated in tomato. In a completely randomized factorial design, the experimental treatments – Zn addition at 0 (normal) and 300 (excess) mg Zn kg?1 soil, and AM inoculation (non-AM and Rhizophagus irregularis) – were set up in a growth chamber for 10 weeks. Generally, AM effects on the available Zn, Mn, Cu, and Fe in the rhizosphere soil were in tandem with the effects in host tissues. Under normal Zn condition, AM enhanced Cu availability in the rhizosphere, optimized the Cu:Zn balance in shoots, and increased the host biomass production. Excess Zn reduced mycorrhizal colonization in AM plants and the total plant biomass in both AM and non-AM plants. Although AM decreased the Zn concentrations in soil and host tissues under excess Zn, the distortions in host TE balance were not significantly ameliorated by the fungus. While Zn in fruit was within the safety threshold, Mn deficiency in the fruit was observed under excess Zn, alongside increased root-to-fruit Fe and Cu translocations. Mycorrhizal reductions in soil and tissue Mn concentrations were considered a minus in terms of probable symbiont amelioration of Mn:Zn in-balance under excess Zn. Additional microbe(s) that can enhance Mn homeostasis might be helpful in tomato under elevated soil Zn.  相似文献   

12.
The effects of five salinity levels and four Cu levels on growth and chemical composition of Badami pistachio seedlings were studied under greenhouse conditions in a completely randomized design with three replications. Growth parameters were determined on the 24th week after planting. Total elemental uptake amounts in shoot and root of plant were measured. Results showed that salinity decreased leaf area, stem height, and shoot and root dry weights. Application of 2.5 and 5 mg copper (Cu) kg?1 soil significantly increased root dry weight, whereas it had no significant effects on shoot dry weight and leaf area. Application of 7.5 mg Cu kg?1 soil had a negative effect on stem height. Salinity declined shoot and root total Cu and phosphorus (P) uptake amounts but increased shoot and root total sodium (Na) and chlorine (Cl) uptake amounts. Copper increased shoot and root total Cu uptake amounts, root total P uptake, and shoot total Na uptake but decreased shoot total Cl uptake.  相似文献   

13.
The effects of calcium and humic acid on seed germination, growth and macro- and micro-nutrient contents of tomato (Lycopersicon esculentum L.) seedlings in saline soil conditions were evaluated. Different levels of humic acid (0, 500, 1000 and 2000 mg kg?1) and calcium (0, 100, 200 and 400 mg kg?1) were applied to growth media treated with 50 mg NaCl kg?1 before sowing seeds. Seed germination, hypocotyl length, cotyledon width and length, root size, shoot length, leaf number, shoot and root fresh weights, and shoot and root dry weights of the plant seedlings were determined. Macro- and micro-nutrient (N, P, K, Ca, Mg, S, Cu, Fe, Mn and Zn) contents of shoot and root of seedlings were also measured. Humic acid applied to the plant growth medium at 1000 mg kg?1 concentration increased seedling growth and nutrient contents of plants. Humic acid not only increased macro-nutrient contents, but also enhanced micro-nutrient contents of plant organs. However, high levels of humic acid arrested plant growth or decreased nutrient contents. Levels of 100 and 200 mg kg?1 Ca2+ application significantly increased N, Ca and S contents of shoot, and N and K contents of root.  相似文献   

14.
Currently, straw transformation in saline soil is largely unknown. The effect of soil salinity on wheat straw transformation and the roles of nitrogen (N) and phosphorus (P) were evaluated in a greenhouse experiment. By sodium chloride (NaCl) addition, straw was applied at the rate of 30 g kg?1 in various saline soils (2.0–4.0 g kg?1). N or combined N and P added in straw amended saline soil (3.0 g kg?1). Three replications of each treatment were sampled to determine straw residues at 30, 60, and 90 d. Results showed straw application significantly increased microbial biomass, especially fungal biomass. Soil salinity increased by 1.0 g kg?1, which decreased straw decomposed rate by 6.3 ~ 11.1%. N application significantly increased straw decomposed rate (p < 0.05), and high salinity obviously inhibited the humidification process of straw. We suggested that straw carbon transformation regulation and little straw residue accumulation in saline soil should arouse more attentions in future studies.  相似文献   

15.
Drip irrigation offers potential for rice (Oryza sativa L.) production in regions where water resources are limited. However, farmers in China’s Xinjiang Province report that drip-irrigated rice seedlings sometimes suffer salt damage. The objective of this study was to learn more about the effects of soil salinity and soil temperature on the growth of drip-irrigated rice seedlings. The study consisted of a two-factor design with two soil salinity treatments (0 and 1.8 g kg?1 NaCl) and three soil temperature treatments (18°C, 28°C and 36°C). The results showed that shoot biomass, root biomass and root vigor were greatest when seedlings were grown with no salt stress (0 g kg?1 NaCl) at 28°C. Moderate salt stress (1.8 g kg?1 NaCl) combined with high temperature (36°C) significantly reduced root and shoot biomass by 39–53%. Moderate salt stress and high temperature also increased root proline concentration by 77%, root malonyldialdehyde concentration by 60% and seedling mortality by 60%. Shoot and root Na+ concentrations, shoot and root Na+ uptake and the Na+ distribution ratio in shoots were all the greatest when moderate salt stress was combined with high temperature. In conclusion, high soil temperature aggravates salt damage to drip-irrigated rice seedlings. Therefore, soil salinity should be considered before adopting drip-irrigation for rice production.  相似文献   

16.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

17.
Reductive dissolution of soil manganese (Mn) oxides increases potential toxicity of Mn2+ to plants. In order to examine the effect of nitrogen forms on reduction of Mn oxides in rhizosphere soil, a rhizobox experiment was employed to investigate the reduction of Mn oxides due to the growth of soybean and maize in an Oxisol with various contents of NO3-N and NH4+-N and a total N of 200 mg kg?1. The results showed that exchangeable Mn2+ in rhizosphere soil was 9.6–32.7 mg kg?1 higher than that in bulk soil after cultivation of soybean and maize for 80 days, which suggested that plant root exudates increased reduction of soil Mn oxides. Application of ammonium-N promoted reduction of Mn oxides in rhizosphere soil compared to application of nitrate and nitrate together with ammonium. Soybean cultivation led to a higher reduction in soil Mn oxides than maize cultivation. Application of single ammonium enhanced Mn uptake by the plants and led to more Mn accumulating in plant leaves, especially for soybean. Therefore, application of ammonium-based fertilizer can promote reduction of soil Mn oxides, while application of nitrate-based fertilizer can inhibit reduction of soil Mn oxides and thus reduce Mn2+ toxicity to plants.  相似文献   

18.
Root exudates help drive the formation of the rhizosphere by binding soil particles, but the underlying physical mechanisms have not been quantified. This was addressed by measuring the impact of a major component of root exudates, polygalacturonic acid (PGA), on the interparticle bond energy and fracture toughness of clay. Pure kaolinite was mixed with 0, 1.2, 2.4, 4.9 or 12.2 g PGA kg?1 to form test specimens. Half of the specimens were washed repeatedly to remove unbound PGA and evaluate the persistence of the effects, similar to weathering in natural soils. Fracture toughness, KIC, increased exponentially with added PGA, with washing increasing this trend. In unwashed specimens KIC ranged from 54.3 ± 2.5 kPa m?1/2 for 0 g PGA kg?1 to 86.9 ± 4.7 kPa m?1/2 for 12.2 g PGA kg?1. Washing increased KIC to 61.3 ± 1.2 kPa m?1/2 for 0 g PGA kg?1 and 132.1 ± 4.9 kPa m?1/2 for 12.2 g PGA kg?1. The apparent bond energy, γ, of the fracture surface increased from 5.9 ± 0.6 J m?2 for 0 g kg?1 to 12.0 ± 1.1 J m?2 for 12.2 g kg?1 PGA in the unwashed specimens. The washed specimens had γ of 13.0 ± 1.9 J m?2 for 0 g kg?1 and 21.3 ± 2.6 J m?2 for 12.2 g PGA kg?1. Thus PGA, a major component of root exudates, has a large impact on the fracture toughness and bond energy of clay, and is likely to be a major determinant in the formation of the rhizosphere. This quantification of the thermodynamics of fracture will be useful for modelling rhizosphere formation and stability.  相似文献   

19.
Fertilization with nitrogen (N) or phosphorus (P) can improve plant growth in saline soils. This study was undertaken to determine wheat (Triticum aestivum L; cv Krichauff) response to the combined application of N and P fertilizers in the sandy loam under saline conditions. Salinity was induced using sodium (Na+) and calcium (Ca2+) salts to achieve four levels of electrical conductivity in the extract of the saturated soil paste (ECe), 2.2, 6.7, 9.2 and 11.8?dS?m?1, while maintaining a low sodium adsorption ratio (SAR; ≤1). Nitrogen was applied as Ca(NO3)2?·?4H2O at 50 (N50), 100 (N100) and 200 (N200)?mg?N?kg?1 soil. Phosphorus was applied at 0 (P0), 30 (P30) and 60 (P60)?mg?kg?1?soil in the form of KH2PO4. Results showed that increasing soil salinity had no effect on shoot N or P concentrations, but increased shoot Na+ and chlorine ion (Cl?) concentrations and reduced dry weights of shoot and root in all treatments of N and P. At each salinity and P level, increasing application of N reduced dry weight of shoot. At each salinity and N level P fertilization increased dry weights of shoot and root and shoot P concentration. Addition of greater than N50 contributed to the soil salinity limiting plant growth, but increasing P addition up to 60?mg?P?kg?1 soil reduced Cl? absorption and enhanced the plant salt tolerance and thus plant growth. The positive effect of the combined addition of N and P on wheat growth in the saline sandy loam is noticeable, but only to a certain level of soil salinity beyond which salinity effect is dominant.  相似文献   

20.
ABSTRACT

The interaction between soil salinity and infection caused by Verticillium dahliae was studied in pistachio (Pistacia vera) in a greenhouse experiment. Treatments consisted of 0, 1400, 2800, and 4200 mg sodium chloride (NaCl) kg? 1 soil and three rootstocks (Sarakhs, Badami, and Qazvini cultivars). They were gradually exposed to salinity stress before and/or after root inoculation with a water suspension of 107 conidia/mL of a pistachio isolate of V. dahliae. Salt stress significantly increased rootstock shoot and root colonization by V. dahliae. All rootstocks were susceptible to V. dahliae, but symptoms of the disease appeared earlier in Sarakhs, a salt sensitive cultivar. Moreover, salinity and V. dahliae interaction increased the concentrations of sodium (Na), potassium (K) and chloride (Cl), but decreased the K/Na ratio in all rootstocks. Shoot and root tissues of inoculated Sarakhs and Qazvini (a salt tolerant) contained the highest and the lowest concentrations of Na, K,and Cl, respectively. In salinity treatments, shoot and root dry weight of all rootstocks decreased as compared with controls. Sarakhs showed smaller shoot and root dry weight than Qazvini and Badami. Also, increasing the NaCl level increased accumulation of Na, K, and Cl in shoot and root of the rootstocks. Sarakhs showed higher concentrations of ions in the shoot and root. Based on shoot and root dry weights and ion accumulation, Sarakhs and Qazvini were susceptible and tolerant to salinity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号