首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eurasian Soil Science - Pavel Vladimirovich Ototsky was the founder and first editor of the Pochvovedenie journal. The article presents his biography and activity in science and organization of...  相似文献   

2.
This article analyzes publication trends in food-borne disease research for the period 1991–2015, using data collected from the Web of Science Core Collection. A total of 11,725 research articles were used in the analysis. Results showed that the number of publications rose exponentially during the period of study. The average number of authors per article also increased. “Food Science & Technology” was the leading subject category under which the majority of articles placed. The Journal of Food Protection was the most productive journal with 794 articles. “Kang, DH” was the most productive author and the United States was the most productive country, followed by China.  相似文献   

3.
The present long-term study was initiated to quantify the long-term effects of conjunctive nutrient management on soil quality, identify key indicators, and assess soil quality indices under a rainfed maize–wheat system in marginal Inceptisol soils in India. Results of the study revealed that soil organic carbon was significantly influenced by the conjunctive nutrient-management treatments. Among the nine treatments, the application of 100% recommended dose of nitrogen (RDN) (80 kg N ha?1), 15 kg N (compost) + 20 kg N ha?1 (inorganic), 25 kg N (compost), and 15 kg N (compost) + 10 kg N ha?1 (green leaf) resulted in greater organic carbon contents of 5.57, 5.32, 5.27, and 5.26 g kg?1, which were greater by 29.5%, 24%, 23%, and 22%, respectively, over the control. The greatest soil quality index (1.61) was observed with application of 25 kg nitrogen (N; compost) as well as with application of 15 kg N (compost) + 10 kg N ha?1 (green leaf). The order of percentage contribution of key indicators toward soil quality indices was available potassium (K) (34%) > available phosphorus (P) (32%) > available N (13%) > microbial biomass carbon (12%) > exchangeable calcium (Ca) (9%). The linear regression equation revealed the principal role of soil quality indicators in maize crop yield. The methodology and the results of the study could be of great relevance in improving and assessing soil quality not only for the study locations but also for other climatically and edaphically identical regions across the world.  相似文献   

4.
The influence of dual inoculation of arbuscular mycorrhizal fungi (AMF) and Rhizobium was assessed on garden pea productivity, root morphology and soil fertility during 2011–2012 at Palampur, India, in a medium phosphorus (P) acid Alfisol. Field experimentation comprised 13 treatments involving Rhizobium, AMF and inorganic fertilizers in (RBD) replicated thrice. The dual inoculation of Rhizobium and AMF exhibited nominal effect on pea pod length, pod girth and number of seeds per pod. However, average pod weight (APW) and productivity increased by 14.1 and 20% following dual inoculation, respectively, over generalized recommended nitrogen, phosphorus and potassium (NPK) dose general recommended dose (GRD). Dual inoculation of pea seed with both symbionts sharply increased the root volume (RV), root dry weight (RDW), root weight density (RWD) and root nodules per plant by 34.5, 13.3, 13 and 44%, respectively. Similarly, the highest AMF root colonization was registered under dual-inoculated plots compared to sole application of Rhizobium or AMF. Different treatments including dual-inoculated ones did not alter the soil organic carbon (SOC), available N, K and diethylenetriaminepentaacetic acid (DTPA)-extractable micronutrients iron, zinc, copper and manganese (Fe, Zn, Cu and Mn) status significantly; however, a nominal buildup in the above-mentioned parameters was registered under dual inoculation. Available P status increased to the tune of 6.7 and 8.7% following dual inoculation with Rhizobium and AMF over their respective sole inoculations. Overall, the current study suggests that Glomus–Rhizobium symbiosis has great potential in enhancing productivity through better proliferation of the root system and improved soil fertility status. Furthermore, dual inoculation of AMF and Rhizobium can save up to 25% fertilizer N and P in garden pea in acid Alfisol of the northwestern Himalayas (NWH).  相似文献   

5.
6.
To evaluate diffuse reflectance Fourier transform–infrared (DRIFT) in near-infrared (NIR) and mid-infrared (MIR) regions in conjunction with partial least square regression analysis for sand-based turfgrass soils, soil samples were collected from greens 6 to 9 years old, composed of two rootzone mixtures and from two establishment fertilization regimes, at different depths (surface to 7.6 cm in 12 layers). Mid-infrared and NIR spectroscopy resulted in similar calibration accuracy for total organic carbon, total nitrogen, cation exchange capacity, electric conductivity, and pH with R 2 > 0.80. The modeling process for MIR spectrum was repeated on sample subsets, which were grouped from the original samples based on rootzone mixtures, putting green age, and depth to test the robustness of prediction models. Results of this study suggested that DRIFT-NIR and DRIFT-MIR could be used to predict these properties of sand-based turfgrass soils providing the soil samples are from similar depths.  相似文献   

7.
《Journal of plant nutrition》2013,36(10-11):2031-2041
Abstract

In this study we have tested the hypothesis that lime‐induced Fe deficiency chlorosis of kiwifruit may be prevented by the application of a synthetic iron(II)‐phosphate analogous to the mineral vivianite [(Fe3(PO4)2·8H2O)]. Two experiments, under greenhouse and field conditions, were performed. In the greenhouse, 1‐year old micropropagated plants (Actinidia deliciosa, cv. Hayward), grown in 3‐L pots on a calcareous soil, were treated in early autumn with soil‐applied: (1) synthetic vivianite (1.35 g plant?1) and (2) Fe‐EDDHA (24 mg Fe plant?1). The synthetic vivianite suspension, prepared by dissolving ferrous sulfate and mono‐ammonium phosphate, was injected into the soil as a sole application whereas the Fe‐EDDHA solution was applied four times at weekly intervals. The field experiment was conducted in a mature drip‐irrigated kiwifruit orchard located on a calcareous soil in the Eastern Po Valley (Italy). Treatments were performed in early autumn by injecting synthetic vivianite (1.8 kg tree?1) and Fe‐EDDHA (600 mg Fe tree?1) into four holes in the soil around each tree, at a depth of 25–30 cm. The Fe‐chelate application was repeated at the same rate in the following spring. Untreated (control) plants were used in both experiments. Autumn‐applied Fe fertilisers significantly prevented development of Fe chlorosis under greenhouse conditions whereas in the field only vivianite was effective. In conclusion, these 1‐year results show that vivianite represents an effective alternative to soil‐applied Fe chelates for preventing Fe chlorosis in kiwifruit orchards.  相似文献   

8.
With limited use of inorganic fertilizers on smallholder farms,plant residues could be viable alternatives for soil fertility improvement.This study was conducted to determine how residue quality and decomposition of nine plant species influence soil N availability,microbial biomass,andβ-glucosidase activity during soil fertility improvement.Significant differences in N concentration were found among the species,ranging from 12.2 g kg-1 in Zea mays to 39.2 g kg-1 in Baphia nitida.The C/N ratio was the highest in Z.mays(34.4),whereas lignin and polyphenol concentrations were the greatest in Acacia auriculiformis.The highest decomposition rate(0.251%per day)occurred in Tithonia diversifolia,and the lowest in A.auriculiformis,Albizia zygia,B.nitida,and Z.mays,with the half-lives of 28-56 d.Between 80%and 89%of N,P,K,Ca,and Mg were released from T.diversifolia in 7 d,compared with over 70%retention in A.auriculiformis,B.nitida,and Z.mays.The decomposition and nutrient release half-lives of Gliricidia sepium,Leucaena leucocephala,Azadirachta indica,and Senna spectabilis were less than 14 d.Soil mineral N,microbial biomass,andβ-glucosidase activity increased under all treatments,with T.diversifolia having the greatest effect.While N mineralization occurred in all of the species throughout the experiment,an initial N immobilization was recorded in the A.zy.gia,B.nitida,A.auriculiformis,and Z.mays treatments for up to 14 d.Decomposition and nutrient release rates,mineral N,soil microbial biomass,andβ-glucosidase activity were dependent on residue quality,and P and lignin levels,the lignin/N ratio,and the(lignin+polyphenol)/N ratio had the most significant effects(P≤0.05).  相似文献   

9.
The technique of separation of the spectral neighborhood of soil line (SNSL) makes it possible to perform quantitative estimates of the intensity of agricultural land use. This is achieved via calculation of the frequency of occurrence of bare soil surface (BSS). It is shown that the frequency of occurrence of BSS in 1984–1994 was linearly related to the soil type within the sequence of soddy strongly podzolic, soddy moderately podzolic, soddy slightly podzolic (Eutric Albic Glossic Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)); light gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)), gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Ochric)), and dark gray forest soils (Luvic Retic Greyzemic Phaeozems (Loamic, Aric)); podzolized chernozems (Luvic Greyzemic Chernic Phaeozems (Loamic, Aric, Pachic)) and leached chernozems (Luvic Chernic Phaeozems (Loamic, Aric, Pachic)). The intensity of exploitation of the least and most fertile soils in this sequence comprised 28 and 48%, respectively. In the next decade (1995–2004) the relationship between the type of soil and the intensity of its exploitation drastically changed; the intensity of exploitation of the leas and most fertile soils comprised 14 and 43%, respectively. Nearly a half of agricultural lands in the zones of soddy-podzolic and gray forest soils were abandoned, because the cultivation of the soils with the natural fertility below that in the podzolized chernozems became economically unfeasible under conditions of the economic crisis of the 1990s. The spatiotemporal relationships between the character of the soil cover and the intensity of exploitation of the agricultural lands manifest themselves by the decreasing frequency of occurrence of BSS from leached chernozems to soddy strongly podzolic soils and from 1985 to 2014.  相似文献   

10.
The development of rapid techniques, such as hyperspectral spectrophotometry, for investigating arsenic (As) soil contamination could be of great value with respect to conventional methods. This study was conducted to detect As concentrations in artificially polluted soils (from 25 to 1045 mg kg?1) through hyperspectral visible–near infrared spectrophotometry and to compare two multivariate statistical regression analyses: partial least squares and support vector machines. The correlation coefficient r is greater in the partial least squares in both model (0.93%) and test (0.87%) with respect to support vector machines (0.88% for the model and 0.82% for the test). The most important model variables extracted from the variable importance in projection scores resulted the absorption peaks at 580, 660, 715, and 780 nm. Bands in the visible spectra are not directly associated to As, but the metalloid can interact with the main spectrally active components of soil permitting to multivariate statistical models to screen As concentrations.  相似文献   

11.
12.
Atmospheric deposition and surface water chemistry have been monitored intensively at 5 geologically “sensitive” sites in southeastern Canada. The sites receive differing acid inputs that span the entire range found in Canada. Surface water data collected at 9 stations from 1981 to 1993 for SO 4 2? , NO 3 ? , Alkalinity, DOC, pH, Ca2+ and Mg2+ have been analyzed to detect monotonic trends. Similarities between the temporal patterns and trends for SO 4 2? in deposition and surface water suggest that they are strongly linked at our sites. Our 13-year datasets showed significant negative SO 4 2? trends at the 3 Ontario sites and a positive trend in Nova Scotia. A climatically-induced SO 4 2? increase in northwestern Ontario has been reversed. Mobilization and export of adsorbed SO 4 2? and/or reoxidized S from the basins of central Ontario sites is delaying their recovery. Two of our 9 stations (in Quebec and central Ontario) are continuing to acidify. The 2 Nova Scotia stations have the highest DOC levels and both exhibit a decreasing trend. Ionic compensation for declining SO 4 2? varies from station to station, sometimes involving an Alk increase, sometimes a base cation decrease, and sometimes more complex combinations. Additional factors (e.g. climatic variation) also influence variable trends, and data records longer than those presently available will be needed to unequivocally verify acidification recovery.  相似文献   

13.
Rainfed Inceptisol soils, despite their agricultural potential, pose serious problems, including soil erosion, low fertility, nutrient imbalance, and low soil organic matter, and ultimately lead to poor soil quality. To address these constraints, two long-term experiments were initiated to study conservation agricultural practices, comprising conventional and low tillage as well as conjunctive use of organic and inorganic sources of nutrients in Inceptisol soils of Agra center of the All-India Coordinated Research Project for Dryland Agriculture (AICRPDA). The first experiment included tillage and nutrient-management practices, whereas the second studied only conjunctive nutrient-management practices. Both used pearl millet (Pennisetum americanum (L.) Linn) as test crop. These experiments were adopted for soil quality assessment studies at 4 and 8 years after their completion, respectively, at the Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, India. Soil quality assessment was done by identifying the key indicators using principal component analysis (PCA), linear scoring technique (LST), soil quality indices (SQI), and relative soil quality indices (RSQI). Results revealed that most of the soil quality parameters were significantly influenced by the management treatments in both the experiments. In experiment 1, soil quality indices varied from 0.86 to 1.08 across the treatments. Tillage as well as the nutrient-management treatments played a significant role in influencing the SQI. Among the tillage practices, low tillage with one interculture + weedicide application resulted in a greater soil quality index (0.98) followed by conventional tillage + one interculture (0.94), which was at par with low tillage + one interculture (0.93). Among the nutrient-management treatments, application of 100% organic sources of nutrients gave the greatest SQI of 1.05, whereas the other two practices of 50% nitrogen (N) (organic) + 50% (inorganic source) (0.92) and 100% N (inorganic source) (0.88) were statistically at par with each other. The various parameters that emerged as key soil quality indicators along with their percentage contributions toward SQI were organic carbon (17%), exchangeable calcium (Ca) (10%), available zinc (Zn) (9%), available copper (Cu) (6%), dehydrogenase assay (6%), microbial biomass carbon (25%) and mean weight diameter of soil aggregates (27%). In experiment 2, SQI varied from 2.33 to 3.47, and 50% urea + 50% farmyard manure (FYM) showed the greatest SQI of 3.47, which was at par with 100% RDF + 25 kg zinc sulfate (ZnSO4) (3.20). Under this set of treatments, the key soil quality indicators and their contributions to SQI were organic carbon (19%), available N (20%), exchangeable Ca (3%), available Zn (4%) and Cu (17%), labile carbon (20%), and mean weight diameter of soil aggregates (17%). The quantitative relationship established in this study between mean pearl millet yields (Y) and RSQI irrespective of the management treatments for both the experiments together could be quite useful to predict the yield quantitatively with respect to a given change in soil quality for these rainfed Inceptisols. The methodology used in this study is not only useful to these Inceptisols but can also be used for varying soil types, climate, and associated conditions elsewhere in the world.  相似文献   

14.
The mobility and migration capacity of Zn in the soil-plant system were studied in a series of pot experiments with barley as a test plant. The parameters of Zn accumulation depending on the metal concentrations in soils and soil solutions were estimated by soil and water culture methods. Experiments with barley in water culture were performed on a nutrient (soil) solution extracted from soddy-podzolic soil (Albic Retisol (Loamic, Ochric)) to which Zn2+ was added to reach working concentrations increasing from 0.07 to 430 μM. Different responses of barley plants to changes in the concentration of Zn in the studied soil were identified. Ranges of the corresponding concentrations in the soil and aboveground barley biomass were determined. Parameters of Zn accumulation by test plants were determined depending on the metal content in soddypodzolic soil and the soil solution. A new method was proposed for evaluating the buffer capacity of soils with respect to a heavy metal (Zn) using test plants (BCS(P)Zn). The method was used to evaluate the buffering capacity of loamy sandy soddy-podzolic soil. The considered methodological approach offers opportunities for using data obtained during the agroecological monitoring of agricultural lands with heavy metals (HMs), including the contents of exchangeable HMs and macroelements (C and Mg) in soils and concentrations of HMs and (Ca + Mg) in plants, in the calculation of the buffering capacity of the surveyed soils for HMs.  相似文献   

15.
A reliable soil test is needed for estimating mercury (Hg) availability to crop plants. In this study, four extraction procedures including 0.1 M hydrochloric acid (HCl), 1 M ammonium acetate (NH4OAc) (pH 7.0), 0.005 M diethylenetriaminepentaacetic acid (DTPA), and 0.1 M calcium chloride (CaCl2) (pH5.0) were compared for their adequacy in predicting soil Hg availability to crop plants of a rice–cabbage–radish rotation system. The amounts of Hg extracted by each of the four procedures increased with increasing equilibrium time. The optimal time required for extraction of soil Hg was approximately 30 min, though it varied slightly among the four extractants. The amounts of Hg extracted decreased with increasing soil/solution ratio, and a soil/solution ratio of 1:5 appeared to be adequate for soil Hg availability tests. The amounts of Hg extracted increased in the order of NH4OAc < CaCl2 < DTPA < HCl in silty loam soil (SLS) soil, and the order was NH4OAc < CaCl2 ≈ DTPA < HCl in yellowish red soil (YRS) soil. Significant positive correlations among the four extractants were obtained in SLS soil. In contrast, the correlations were poor in YRS soil, especially for HCl. There were significant correlations between concentrations of Hg in edible tissue of three plants and the amounts of soil Hg extractable to the four extractants for soil–rice system and soil–radish system, but not for soil–Chinese cabbage system. The 0.1M HCl extraction overall provided the best estimation of soil‐available Hg and could be used to predict phytoavailability of Hg in soil–crop systems.  相似文献   

16.
ABSTRACT

Soil fertility and water use are two important aspects that influence rice productivity. This study was conducted to evaluate the performance of in-situ (sesbania and rice bean) and ex-situ (subabul) green manuring along with zinc fertilization on water productivity and soil fertility in rice under rice–wheat cropping system at Indian Agricultural Research Institute, New Delhi, India. Sesbania incorporation recorded higher total water productivity (2.20 and 3.24 kg ha?1 mm?1), available soil nutrients, organic carbon, alkaline phosphatase activity, microbial biomass carbon and increased soil dehydrogenase activity by 39.6 and 26.8% over subabul and rice bean respectively. Among interaction of green manures and zinc fertilization, subabul × foliar application of chelated zinc-ethylenediaminetetraacetic acid at 20, 40, 60 and 80 days after transplanting recorded highest total water productivity (2.56 and 3.79 kg ha?1 mm?1). Foliar application of chelated Zn-EDTA at 20, 40, 60 and 80 days after transplanting recorded significantly higher water productivity than other Zn treatments, however it was statistically similar with foliar application of zinc at active tillering + flowering + grain filling. Sesbania × 5 kg Zn ha?1 through chelated Zn-EDTA, recorded highest available nitrogen, phosphorus, potassium, zinc, manganese, copper and iron than other green manure and Zn fertilization interactions, although it was statistically similar with rice bean × 5 kg Zn ha?1 through chelated Zn-EDTA as soil application. Sesbania × foliar application of 5 kg Zn ha?1 through chelated Zn-EDTA as soil application recorded highest soil enzymatic activities and microbial biomass carbon.  相似文献   

17.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

18.
The effects of seven amendments on the distribution and accumulation of copper and cadmium in a soil–rice system were investigated using a pot experiment. Results showed that application of limestone, calcium magnesium phosphate (Ca–Mg–P fertilizer), calcium silicate (silicon fertilizer), Chinese milk vetch, pig manure, and peat significantly decreased the concentrations of Cu and Cd in rice roots by 24.8–75.3% and 9.7–49.9%, respectively. However, no significant difference was observed between zinc sulfate (zinc fertilizer) and the control treatment. The concentrations of Cu and Cd in different parts of rice followed the order: root > straw > grain, and all amendments restrained the transfer of Cu and Cd from rice root to stem. Copper and Cd concentrations in rice stems at the tillering stage were the highest, and then decreased from the tillering stage to the heading stage. However, they increased again at the ripening stage. The results also showed that application of amendments changed Cu and Cd solubility in soil and decreased their bioavailability, which resulted in the reduction of Cu and Cd uptake by rice. Significant correlations between the concentrations of Cu and Cd in soil solutions and in rice stems were found. The result demonstrated that limestone has the best efficiency among all the amendments used in reducing Cu and Cd contamination to rice production.  相似文献   

19.
Though knowledge about the distribution and properties of soils is a key issue to support sustainable land management, existing knowledge of the soils in Tigray (Northern Ethiopian Highlands) is limited to either maps with a small scale or with a small scope. The goal of this study is to establish a model that explains the spatial soil variability found in the May-Leiba catchment, and to open the scope for extrapolating this information to the surrounding basalt-dominated uplands. A semi-detailed (scale: 1/40 000) soil survey was conducted in the catchment. Profile pits were described and subjected to physico-chemical analysis, and augerings were conducted. This information was combined with information from aerial photographs and geological and geomorphologic observations. The main driving factors that define the variability in soil types found were: 1) geology, through soil parent material and the occurrence of harder layers, often acting as aquitards or aquicludes; 2) different types of mass movements that occupy large areas of the catchment; and 3) severe human-induced soil erosion and deposition. These factors lead to “red-black” Skeletic Cambisol–Pellic Vertisol catenas on basalt and Calcaric Regosol–Colluvic Calcaric Cambisols–Calcaric Vertisol catenas on limestone. The driving factors can be derived from aerial photographs. This creates the possibility to extrapolate information and predict the soil distribution in nearby regions with a comparable geology. A model was elaborated, which enables the user to predict soil types, using topography, geomorphology, geology and soil colours, all of which can be derived from aerial photographs. This derived model was later applied to other catchments and validated in the field.  相似文献   

20.
Long-term effects of continuous use of chemical fertilizers and manure on soil fertility and productivity of a maize–wheat system were investigated in the ongoing long-term fertilizer experiment, during rabi (2007–2008) and kharif (2008) seasons at the research farm of Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University–Hill Agricultural Research and Extension Centre, Dhaulakuan. After 16 cropping cycles, bulk density decreased in plots where farmyard manure (FYM) was applied, whereas pH decreased in all the treatments. The organic carbon content of the soil increased in all the treatments except 100% nitrogen (N). Cation exchange capacity (CEC) increased in all the treatments over the initial status of the soil. Available N showed buildup over the initial status in most of the treatments. Available phosphorus (P) declined from initial status in treatments where only N was applied alone or with FYM. There was reduction in available potassium (K) status in all the treatments except 100% NPK. Continuous addition of FYM with balanced application of inorganic fertilizers improved content of exchangeable calcium (Ca) and magnesium (Mg) over initial status compared to imbalanced application of fertilizers. Continuous use of imbalanced inorganic fertilizers resulted in lesser crop yields and nutrient uptake compared to that with the application of balanced dose of inorganic fertilizers with FYM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号