首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of various radionuclides have been measured in the incoming water, the outgoing water and the sludge from the sewage treatment plant serving the town of Lund in southern Sweden. The mean residence time for the water in the plant is 1 to 2 days, whereas for the sludge it is 3 to 4 weeks. Variations in the residence time, which may influence the efficiency of the plant, are related to the season of the year and the load on the plant. Measurements show that for 7Be, 51Cr, 134Cs, and 137Cs between 37 and 56% of the incoming activity leaves the plant with the sludge. For 106Ru and 131I these figures lie between 6 and 14%. The deposition of 7Be has been measured at Lund and the relation between the deposition on the ground (Bq m?2) and the activity concentration in the sludge (Bq kg?1 dry weight) has been studied and found to by relatively constant at ?(0.8 ±0.2) kg m?2. In measurements on sewage sludge, the detection limit for deposition of 7Be on the ground is around 16 Bq m?2.  相似文献   

2.

Purpose

Treated and processed sewage sludges (biosolids) generated during the treatment of wastewater usually contain substantial concentrations of nutrients, especially phosphorus, which is essential for plant growth. Sewage sludge therefore can be used as an alternative fertiliser in agriculture. But since sewage sludge could also contain pollutants, analysis and ecotoxicological tests on affected soil and stream water organisms are necessary in order to guarantee its harmless use.

Materials and methods

Three test species were chosen to cover the environmental compartments, water, sediment and soil. The following test species and parameters were applied to evaluate the acute effects of three sewage sludge samples: Lemna minor (growth inhibition, discolouration and colony breakup), Gammarus fossarum (mortality, behaviour) and Eisenia fetida (avoidance behaviour). Chemical assessment included nutrients, organic pollutants and heavy metals.

Results and discussion

The assessment of a non-dewatered sludge (S1) sample resulted in an inhibition of growth of L. minor starting from 0.6 g total solid (TS)?l?1 after 7 days (EC50 1.2 g TS l?1). G. fossarum displayed significantly decreased movement activity at 0.5 and 1.2 g TS l?1 sludge concentration during an exposure time of 2 days, leading to decreased survival after 4 days of exposure in 0.5 g TS l?1 (LC50 0.5 g TS l?1). After 2 days, E. fetida exhibited an increased avoidance behaviour of contaminated soil from 0.2 g TS kg?1 sewage sludge (EC50 0.4 g TS kg?1). The dewatered sludge samples (S2 and S3) had a lower toxic effect on the test organisms. G. fossarum was the most sensitive test species in the applied test setups. The realistic application amounts of the tested sewage sludge samples of approximately 6.0 g TS kg?1 (maximum allowed application amount of sewage sludge) and approximately 3 g TS kg?1 (maximum agronomical relevant application amount) in worst case studies are higher than the analysed EC50/LC50 values of S1 and of the LC50 (G. fossarum) of S2 and S3.

Conclusions

All three tested sewage sludge samples have to be classified as toxic at high concentration levels under laboratory conditions. Realistic output quantities of S1 will negatively influence soil invertebrates and freshwater organisms (plants and crustacean), whereas the dewatered sludge samples will most likely not have any acute toxic effect on the test organisms in the field. Test with environmental samples should be conducted in order to support this hypothesis.
  相似文献   

3.
Sewage sludge is a cost-effective media for the production of Bacillus thuringiensis (Bt) based biopesticides. To enhance the entomotoxicity of the fermentation broth, pretreatments of sewage sludge by alkali and ultrasonic were applied in this study. Effects of alkaline and ultrasonic pretreatments on the soluble COD (SCOD) and total COD (TCOD) were evaluated by altering the alkali addition dose and the ultrasonic specific energy. Suitable pretreatment conditions were optimized with 5 g l?1 sodium hydroxide (NaOH) for alkaline treatment and 1.2?×?105 kJ kg?1 of total solid for ultrasonic treatment. Fermentations of raw and pretreated sludge for biopesticides were carried out in a bench scale fermentor. Results revealed that both pretreatments were effective for Bt growth and metabolism. Higher viable cells (VC) and viable spores (VS) counts, δ-endotoxin yields and entomotoxicity were achieved in the pretreated sludge. The enhancement was attributed to more available nutrients and better oxygen transfer. Moreover, ultrasonic pretreated sludge was superior to alkaline pretreated sludge for δ-endotoxin production and entomotoxicity owing to its higher soluble C/N ratio and finer particles.  相似文献   

4.
The presence of activation products in the environment released to the air from a nuclear power station has been studied in sewage sludge and ground level air. The measured time variation of the 60,Co concentration in sludge and ground level air was found to be in good agreement with the reported variation in release rate to the air from the power station when the prevalent wind direction is taken into account. The ratio between the 7,Be normalized concentration in sludge and ground level air was studied and was found to be about 1 for radionuclides due to global fallout but less than 2 · 10?3, for 60,Co. Our conclusion is that 60,Co spreads from a local source (a nuclear power station) and to a considerable degree is dry deposited on the ground and then washed off by rain.  相似文献   

5.
The Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) has owned and operated a 6320 ha Dedicated Beneficial Sludge Utilization Site in Fulton County, Illinois since 1971. The site consists of calcareous strip mine spoil intermingled with placed land. Sewage sludge from Chicago is barged to the site, located approximately 185 miles southwest of the city, and utilized to reclaim the strip mined soils and to fertilize the corn and wheat crops grown on them. Fields have received as much as 1317 dry Mg ha?1 of sewage sludge since 1971. Sludge Hg concentrations have ranged from 1.1 to 8.5 mg Hg kg?1 with mean concentration of 3.31 mg Hg kg?1, and maximum cumulative Hg loading rates are approximately 4 kg ha?1. Sludge applications have significantly increased extractable soil Hg concentrations, and regression analysis indicates that from 80 to 100% of the Hg applied to soils in sewage sludge since 1971 still resides in the top 15 cm of soil. Since 1985 the MWRDGC has been monitoring Hg concentration in corn leaf and grain, wheat grain and soils at the Fulton County site. Monitoring data indicate that 98.8% of the corn grain samples, 93.0% of the wheat samples and 50.7% of the corn leaf samples collected from 1985 through 1992 had Hg concentrations below detectable limits (<25μg kg?1). Cumulative Hg loading rates are utilized along with crop tissue concentrations to compute crop uptake response slopes (UC) for Hg into plant tissues at the Fulton County site. The UC for corn and wheat grain was zero and for corn leaf was ?0.0014 (mg Hg/kg tissue)/(kg Hg/ha soil), which indicate that sewage sludge additions did not increase plant tissue Hg concentrations at the Fulton County site. The negative UC obtained for corn leaf may actually indicate that sewage sludge applications decreased Hg uptake from mined soils possibly due to organic carbon and sulfides in the anaerobically digested sludge binding native Hg. The United States Environmental Protection Agency (U. S. EPA) has recently promulgated their 40 CFR Part 503 regulation for sewage sludge use and disposal. The rule sets risk based limits on ten metals, including Hg, in sludges that are land applied. Exposure pathways involving plant uptake of Hg are briefly discussed and it is shown that the UC used in U. S. EPA's risk assessment models for these pathways overpredict uptake of Hg by crops when compared with the UC derived from the MWRDGC's monitoring data at Fulton County.  相似文献   

6.
A greenhouse experiment was conducted to evaluate the availability of metals from sewage sludge and inorganic salts, and the effect of pH and soil type on yield and metal (Zn, Cu, Cd and Ni) uptake by wheat (Triticum aestivum L. var. ‘holly’). Soils used in this study were Hartsells sandy loam (fine-loamy, siliceous Thermic Typic Hapludult) and Decatur silty clay loam (Clayey, kaolinitic, Thermic Rhodic Paleudult). Two treatments of sewage sludge containing metals were applied at the rate of 20 and 100 mt ha?1. Inorganic Salts of Zn, Cu, Cd, and Ni were applied (as sulfate salts) at concentrations equivalent to those found in the 20 and 100 mt ha?1 sludge. One treatment consisted of inorganic metals plus sewage at the 20 Mg ha?1 rate. Two soil pH levels, one at field pH (below 6.0) and another pH adjusted between 6.5 and 7.0 were used. Wheat plants were harvested four weeks after germination. Two more subsequent harvests were made at four week intervals. For each harvest, dry matter yield increased as the rate of sludge application increased for both soil types. The soil pH also influenced the dry matter yield. High yield was observed when the pH was adjusted between 6.5 to 7.0 for both soils. An increase in yield was also observed at each subsequent harvest for most of the treatments. Inorganic salt treatments produced lower dry matter yields when compared with the sludge. Both sludge application and metal salts increased plant tissue concentration of Zn, Cu, Cd, and Ni at field pH for both soils. However, increasing the pH of the soil for both sludge and inorganic salt treatments generally decreased the tissue concentration of the above metals.  相似文献   

7.
The usage of sewage sludge on agricultural lands is an effective and inexpensive practice that provides nutrients for crops. A successful legume crop also depends on the survival of Rhizobium in the soil environment. The number of R. japonicum (USDA 110) in treatment groups containing various soil-to-sludge ratios (control, 13:1, 9:1 and 5:1) during incubation for 1, 21 and 42 days was investigated. The control group contained soil without sludge. Mecklenburg clay and Enon sandy loam soils (both are fine, mixed, thermic, ultic Hapludalfs) were used. All treatments were adjusted to pH 6.7 and brought to 75% of field capacity with 1 ml inoculum (9 × 108 cells ml? 1) and distilled water. Samples were incubated at 25 C and monitored periodically for the number of surviving R. japonicum (USDA 110) organism by the plant infcction-MPN method. Strains were identified by gel-immunodiffusion. Recovery of rhizobia from both soils was < 1% in all treatment groups after 42 days. However, for control, 13:1, 9:1 and 5:1 groups, the percentage recovery was higher in Enon sandy loams (7.9, 2.3, 2.3 and 2.3%, respectively) at 21 days. Recovery of rhizobia in the 5:1 group from both soils was 7.9% after 1 day, whereas control values were 92%. A decline in rhizobial populations in higher sludge soils may be due to the heavy metals present and available during mineralization of sludge in soils. However, the number of R. japonicum that survived to 21 days was 1.7 × 105g?1 and 1.7 x 106g?1 for Mecklenburg clay and Enon sandy loam soils with highest sludge, respectively.  相似文献   

8.
Effluents containing phosphorous as phosphate ions are frequently discharged in freshwater resources contributing to the eutrophication and directly interfering in the biological equilibrium. Clam shell residues and sewage sludge were combined for preparing efficient adsorbents for phosphate removal from aqueous medium. The adsorbents were characterized before and after adsorption testing, and the adsorption equilibrium and kinetics were investigated. Phosphate removal of 89?±?1% was attained for samples prepared with 0.1?< X <?1.0, where X corresponds to sewage sludge/clam shell mass ratio. The analyses of the experimental errors indicated that the phosphorous removal followed the Elovich kinetic model, which describes adsorption in very heterogeneous surfaces. On the other hand, the best modelling was achieved using the Koble–Corrigan isotherm model, which incorporate different aspects of both Langmuir and Freundlich isotherms to represent the equilibrium data. The observed adsorption capacity (21.4 mgP g?1) are comparable or greater to that observed for other adsorbents described in the literature.  相似文献   

9.
The population of Nocardia in soil under pasture increased 100 × over 14 months following the application of dried sewage sludge. Nocardia were isolated using selective media and on each of five samplings numbers of Nocardia in the control plots were very similar (
5.0 × 103g?1 dry weight), indicating both the reliability of the isolation technique, and that the steady increase in numbers of Nocardia was a real effect of dried sludge application. Amendment with wet sludge, which contains less organic matter did not have the same effect of stimulating growth of the soil population of Nocardia. On the basis of diagnostic tests and lipid analysis the organisms isolated all belong to the N. asteroides taxon. The potential benefits and hazards of inducing Nocardia population growth are discussed  相似文献   

10.
Cr(III) ions sorption onto sawdust of spruce (Picea smithiana) has been studied thoroughly using radiotracer technique. Maximum sorption (94%) of Cr(III) ions (8.98×10?5 M) onto sorbent surface is achieved from deionized water in 20 min agitation time using 200 mg of sawdust. The sorption data followed the Freundlich, Dubinin-Radushkevich (D-R) and Langmuir isotherms. Freundlich constants l/n = 0.86 ± 0.07 and C e = 85.0 ± 25.8 mmole g?1 have been estimated. Sorption capacity, X m = 0.82± 0.3 mmole g?1, β = ?0.00356± 0.00017 kJ2 mole?2 and energy, E = 11.9± 0.3 kJ mole?1 have been evaluated using D-R isotherm. The Langmuir constants Q = 5.8± 0.2 μmole g?1 and b = (7.4± 0.5)×104 dm3 mole?1 have been calculated. The variation of sorption with temperature yields thermodynamic parameters Δ H = ?11.6± 0.3 kJ mole?1, Δ S = ?16.2± 0.9 J mole?1 K?1 and Δ G = ?6.8± 0.3 kJ mole?1 at 298 K. The negative value of enthalpy and free energy reflect the exothermic and spontaneous nature of sorption respectively. Among the anions studied oxalate, citrate, carbonate and borate have reduced the sorption. The cations Y(III), Ce(II) and Ca(II) suppressed sorption. The sawdust column can be used to separate Cr(III) ion from Cs(I), I(I),Tc (VII) and Se (IV).  相似文献   

11.
Heavy metal extraction and processing from ores releases elements into the environment. Soil, being an "unfortunate" sink, has its bionomics impaired and affected by metal pollution. Metals sneak into the food chain and pose risk to humans and other edaphicdependent organisms. For decontamination, the use of an ecosystem-friendly approach involving plants is known as phytoremediation.In this study, different lead(Pb) concentrations(80, 40, 20, and 10 mg kg~(-1)) were used to contaminate a well-characterized soil,(un)supplemented with organic waste empty fruit bunch(EFB) or spent mushroom compost(SMC), with non-edible plant—Lantana camara. Lead removal by L. camara ranged from 45.51% to 88.03% for supplemented soil, and from 23.7% to 57.8% for unsupplemented soil(P 0.05). The EFB-supplemented and L. camara-remediated soil showed the highest counts of heavy metal-resistant bacteria(HMRB)(79.67 × 10~6–56.0 × 10~6 colony forming units(CFU) g~(-1) soil), followed by SMC-supplemented and L. camara-remediated soil(63.33 × 10~6–39.0 × 10~6 CFU g~(-1) soil). Aerial metal uptake ranged from 32.08 ± 0.8 to 5.03 ± 0.08 mg kg~(-1) dry weight, and the bioaccumulation factor ranged from 0.401 to 0.643(P 0.05). Half-lives(t_(1/2)) of Pb were 7.24–2.26 d in supplemented soil,18.39–11.83 d in unsupplemented soil, and 123.75–38.72 d in the soil without plants and organic waste. Freundlich isotherms showed that the intensity of metal absorption(n) ranged from 2.44 to 2.51 for supplemented soil, with regression coefficients of determination(R~2) between 0.901 2 and 0.984 0. The computed free-energy change(?G) for Pb absorption ranged from -5.01 to 0.49 kJ mol~(-1) K~(-1) for EFB-supplemented soil and -3.93 to 0.49 k J mol~(-1) K~(-1) for SMC-supplemented soil.  相似文献   

12.
About 170 million tons of phosphogypsum (PG) are annually generated worldwide as a by-product of phosphoric acid factories. Agricultural uses of PG could become the main sink for this waste, which usually contains significant radionuclide (from the 238U-series) and toxic metals concentrations. To study PG effects on pollutant uptake by crops, a completely randomised greenhouse experiment was carried out growing Lycopersicum esculentum Mill L. on a reclaimed marsh soil amended with three PG rates (treatments), corresponding to zero (control without PG application), one, three and ten times the typical PG rates used in SW Spain (20 Mg ha?1). The concentrations of Cd, Pb, U (by inductively coupled plasma mass spectroscopy) and 226Ra and 210Po (by γ-spectrometry and α-counting, respectively) were determined in soil, vegetal tissue and draining water. Cadmium concentrations in fruit increased with PG rates, reaching 44?±?7 μg kg?1 formula weight with ten PG rates (being 50 μg kg?1 the maximum allowed concentration by EC 1881/2006 regulation). Cd transfer factors in non-edible parts were as high as 4.8?±?0.5 (dry weight (d.w.)), two orders of magnitude higher than values found for lead, lead, uranium and radium concentrations in fruit remained below the corresponding detection limits—0.5 and 0.25 mg kg?1 and 0.6 mBq kg?1, respectively (in a d.w. basis). 238U (up to 7 μg kg?1 d.w.) and 210Po (up to 0.74 Bq kg?1 d.w.) could be measured in some fruit samples by α-spectrometry. Overall, the concentrations of these metals and radionuclides in the draining water accounted for less than 1% of the amount applied with PG.  相似文献   

13.
Nitrogen (N) budget was estimated with dissolved inorganic N (DIN) and dissolved organic N (DON) in a forested mountainous watershed in Tsukui, Kanagawa Prefecture, about 50 km west of Tokyo in Central Japan. The forest vegetation in the watershed was dominant by Konara oak (Quercus serrata) and Korean hornbeam (Carpinus tschonoskii), and Japanese cedar (Cryptomeria japonica). Nitrate (NO3 ?) concentration in the watershed streamwater was averagely high (98.0 ±± 19 (±± SD, n = 36) μmol L?1) during 2001–2003. There was no seasonal and annual changes in the stream NO? 3 concentration even though the highest N uptake rate presumably occurred during the spring of plant growing season, a fact indicating that N availability was in excess of biotic demands. The DON deposition rates (DON input rates) in open area and forest area were estimated as one of the main N sources, accounting for about 32% of total dissolved N (TDN). It was estimated that a part of the DON input rate contributed to the excessive stream NO? 3 output rate under the condition of the rapid mineralization and nitrification rates, which annual DON deposition rates were positively correlated with the stream NO3 ? output rates. The DON retention rate in the DON budget had a potential capacity, which contributed to the excessive stream NO? 3 output rate without other N contributions (e.g. forest floor N or soil N).  相似文献   

14.
The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg?=?44?±?15 ng L?1, DOC?=?63.0?±?31.3 mg L?1, pH?=?4.05?±?0.53) than at the northern site (Hg?=?22?±?6 ng L?1, DOC?=?41.8?±?12.1 mg L?1, pH?=?4.28?±?0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34?±?0.06 μg g?1 dw and 0.76?±?0.14 μg g?1 C, respectively) than at the northern site (0.31?±?0.05 μg g?1 dw and 0.70?±?0.12 μg g?1 C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.  相似文献   

15.
Contact time, pH, fluoride concentration, and sorbent dose effects on the removal of fluoride ions by a carbonaceous material obtained from pyrolysis of sewage sludge (CM) were evaluated. Equilibrium was reached after 18?h of contact time and the maximum sorption was found at pHeq?=?7.06?±?0.08, which corresponds to the zero charge point of the CM. The highest efficiency in the sorption system for fluoride removal (2.84?±?0.03?mg?F?? $ g_{{CM}}^{{ - 1}} $ ) was found with 0.4?gCM?L?1 and with 20?gCM?L?1, 82.2?±?0.5% of fluoride was removed. The kinetic data of the process could be fitted to the pseudosecond order and the intraparticle mass transfer diffusion models, whereas isotherm to the Langmuir?CFreundlich equation. These results indicate that the mechanism is chemisorption on a heterogeneous material. Fluoride ions were best partially desorbed using a bicarbonate ions solution and the material was partially regenerated by using a solution of HCl (pH?=?1).  相似文献   

16.
The levels of 131I and six natural radionuclides (238U, 226Ra, 210Pb, 228Ra, 224Ra, and 40K) were determined in sewage sludge samples obtained from an urban wastewater treatment plant that services a medium-sized town in Spain. Secondary treatment of wastewater consisting of anaerobic, anoxic, and oxic stages is collectively called A2O processing. Radio analytical determinations were performed by gamma spectrometry using a high-purity germanium detector. This technique has proven useful in identifying local radioactive pollution. This type of pollution was consistently detected throughout the year, with several increases associated with authorized discharges from hospitals. Finally, we examined the radiation dose that workers are exposed to due to the presence of 131I in the sludge. We found inhalation risk to be negligible, with external radiation as the main source of exposure to 131I.  相似文献   

17.
Dicyandiamide (DCD, C2H4N4) is a nitrification inhibitor that has been studied for more than 80 years. However, there are few papers that have examined the use of DCD on dairy farms where cattle graze pasture and where urine is the primary form of nitrogen (N) deposited onto soils. After DCD was applied (10 kg DCD ha?1) with bovine urine (700–1200 kg N ha?1) to five soils throughout New Zealand, the reduction in direct nitrous oxide (N2O) emissions was significant and remarkably consistent (71 ± 8%, average ± standard error). The application of DCD to these soils occurred in autumn and winter; daily average soil temperature (T) was reported but these data were not further analysed. Perusal of the literature suggested no consensus on the temperature dependence of DCD degradation in soils. Based on published data from controlled-environment studies of soils sampled in four countries, we quantified the relation between T and the time for DCD concentration in soils to decline to half its application value (t½) as t½ (T) = 168e?0.084T with parameter standard errors of ±16 d and ±0.011 d?1, respectively (n = 16). For example, at 5 °C a 1 °C increase in T reduced t½ from 110 to 101 d whereas at 25 °C the reduction was 20–19 d. Analysing T data from the New Zealand trials using our t½ (T) function, over 43–89 d when direct N2O emissions from treated plots became indistinguishable from the controls, the estimated percentage of applied DCD remaining in the soil averaged 43 ± 10%. These calculations suggested the apparently remaining DCD was ineffective with respect to direct N2O emissions. In the absence of measurements, explanations for this interpretation included vertical displacement of the DCD and sorption onto organic matter in soils. The consistent DCD efficacy from these trials corresponded with T generally <10 °C, so it is suggested as an application criteria for the reduction of direct N2O emissions from pastoral soils subjected to urine excretion by grazing cattle.  相似文献   

18.
Measurements of number size distributions of submicron aerosols have been performed at the Eastern part of Mediterranean as part of an extensive measurement campaign to study photo-oxidants and aerosols (SUB-AERO Project). The measurements were made at the Finokalia station on the island of Crete (Greece) and onboard the research vessel ??Aegaeon??. Two campaigns were performed during July 2000 and January 2001 using two scanning mobility particle sizers. The particle distributions measured in the range between 7.8 < d p < 327 nm during the summer measurements and between 7.5 < d p < 316 nm during the winter measurements, where d p is the mobility particle diameter. The concentration of ultrafine particles (7.5 < d p < 30 nm) was higher during the winter period and varied mainly between 5 × 101 and 2 × 103?cm?3 with concentration peak values for this mode exceeding 1 × 104?cm?3. During the summer campaign, an average number concentration of 1 × 102?cm?3 at Finokalia and about 5 × 101?cm?3 aboard the ??Aegaeon?? vessel was measured. An average concentration of 1 × 103?cm?3 was measured for the particles in the size range between 30 and 100 nm, whereas in the size range 100?C300 nm, the measured concentration ranged between 1 × 102 and 5 × 103?cm?3. Diurnal patterns in number concentrations were observed in connection with the transport of air masses and local sources. During the winter period, three nucleation events were observed in connection with the appearance of a particle mode at 20 nm.  相似文献   

19.
In this work, the influence of solute concentration of two types of electrolyte solutions single-ion (Na) and mixed-ion (Na–Ca) systems on hydraulic and some physical properties of a clay soil was investigated. Saturated hydraulic conductivity (HC) declined noticeably using lower solute concentration in single ion system. The highest reduction in HC was observed at 250 molec m?3 solute concentration. Application of high solute concentration of single-ion system reduced meanweight diameter (MWD) to less than half of the control treatment (0.16 mm compared with 0.33 mm). Resistance to penetrometer increased with decreasing solute concentration. In mixed-ion system the MWD was increased whereas the resistance to penetrometer was decreased. HC values ranged from 6.5?×?10?4 to 9.0?×?10?4 mm s?1 in mixed ion system compared with 7.2?×?10?4 to 13.0?×?10?4 mm s?1 in single-ion system. The improvement of some physical properties in mixed-ion solution treatment is attributed to the presence of calcium ion that usually acts as amendment to sodium-affected soil. Soil HC showed lower values at low solute concentrations.  相似文献   

20.

Purpose

A total of 58 dewatered sludge samples were collected from 58 sewage treatment plants (STPs) geographically located in 31 provincial cities of China; the concentrations of heavy metals and antibiotics were determined to monitor the pollutant levels on a large scale, and the pollutant concentrations in sludge samples from different sources of sewage sludge and different geographical regions were compared.

Materials and methods

All the samples were divided into two portions, one of which was air-dried for determination of heavy metals. The other portion was placed in a brown glass bottle and frozen at ?20 °C for antibiotics analysis. Total heavy metals were digested with aqua regia and determined by atomic absorption spectrophotometry (Varian SpectrAA 220FS and Varian SpectrAA 220Z). The antibiotics were extracted with EDTA-sodium phosphate buffer with acetonitrile/Mg(NO3)2-NH3?H2O, v/v, 3:1 and analysed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and quantified by the isotope-labelled internal standard method.

Results and discussion

In all the sludge samples, zinc was the most abundant metal followed by copper, with relatively low concentrations of chromium, lead, nickel and cadmium. Only 20 % of samples exceeded the Chinese class A values of heavy metal standards for agricultural use (GJ/T309-2009). Sixteen different antibiotics were detected in all the sludge samples, and fluoroquinolones (FQs) and tetracyclines (TCs) were more abundant than sulfonamides (SAs). Concentrations of ∑FQs, ∑TCs and ∑SAs ranged from 1,569 to 23,825 μg kg?1 (mean 8,274 μg kg?1, dry weight), from 592 to 37,895 μg kg?1 (mean 8,326 μg kg?1, dry weight) and from 20.1 to 117 μg kg?1 (mean 55.4 μg kg?1, dry weight), respectively. Tetracyclines (except chlortetracycline) were significantly correlated with zinc and lead. No significant regional trends were observed in the concentrations of heavy metals and antibiotics in sludges.

Conclusions

Heavy metal concentrations are not the major factor restricting domestic and mixed flow sludge application, but the antibiotic concentrations in sludges are problematic; regulation of antibiotic use and establishment of standards to ensure safe handling of sludges are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号