首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
丛枝菌根对芘污染土壤修复及植物吸收的影响   总被引:4,自引:0,他引:4  
采用温室盆栽试验方法,研究了两种丛枝菌根真菌Glomus mosseae和 Glomus etunicatum对三叶草(Trifolium subterraneum L.)和辣椒(Capsicum annuum L.)修复芘污染土壤的影响。供试土样中芘初始浓度为0 ~ 75.18 mg/kg。结果表明,接种AMF可促进供试植物对土壤中芘的吸收,并且显著提高三叶草根的芘含量、根系富集系数、根和茎叶的芘积累量,但对辣椒根和茎叶芘含量、根系富集系数的影响不显著,这主要与植物的菌根侵染率和“菌根依赖度”不同有关。接种AMF土壤中芘的削减率高于普通植物修复,但植物吸收积累对修复的贡献率小于0.2%;因此推测,AM作用下良好的根际环境对土壤微生物数量和活性的提高、进而对土壤中芘降解的促进可能是菌根修复的主要机理。  相似文献   

2.
采用温室盆栽试验方法,研究了丛枝菌根真菌(AMF)Glomus mosseae和Glomus etunicatum对菲芘复合污染土壤中3种酶活性的影响。宿主植物为三叶草(Trifolium repens L.)和黑麦草(Lolium multiflorum Lam)。土样中菲和芘起始浓度分别为203.4mg·kg^-1和107.5mg·kg^-1。结果表明,植物增加了土壤多酚氧化酶、酸性磷酸酶和过氧化氢酶活性。接种Glomus mosseae和Glomus etunicatum使三叶草根际土壤多酚氧化酶活性20-60d分别增加19.6%-72.0%和29.7%-90.6%,过氧化氢酶活性分别增加3.3%-12.2%和7.8%-34.7%,酸性磷酸酶活性总体呈增加趋势;接种Glomus mosseae使黑麦草根际多酚氧化酶活性增加18.0%-43.1%,过氧化氢酶活性总体上呈降低趋势,酸性磷酸酶活性先升高后降低。供试的两种AMF对三叶草根际酸性磷酸酶和过氧化氢酶活性的影响30d前有显著差异。AM真菌作用的性质与宿主植物特性有关。  相似文献   

3.
采用横式三隔室盆栽试验方法,研究了丛枝菌根真菌(AMF)根内球囊霉(Glomus intraradices,G.i)对紫花苜蓿(Medicago sativaL.)吸收土壤中菲和芘的影响。结果表明:G.i可与紫花苜蓿形成良好的共生体,侵染率平均达61.20%,不同强度菲和芘污染对G.i菌根侵染率的影响差异不显著;接种G.i的植株根系干重增加59.08%。接种G.i增加了根系和茎叶中菲和芘的含量及积累量,根系和茎叶中菲积累量与其生物量(干重计)间呈显著正相关;与菲相比,接种G.i处理后植株芘含量和积累量的增幅更大。G.i限制了菲和芘从植株根系向茎叶的传输,对芘尤为明显,接种G.i植株根系向茎叶转运芘的比例比不接种对照降低了13.85%~37.47%。  相似文献   

4.
丛枝菌根与土壤修复   总被引:16,自引:2,他引:16  
王发园  林先贵  周健民 《土壤》2004,36(3):251-257
菌根是真菌与植物根系所建立的互惠共生体, 其中以丛枝菌根在自然界中分布最广。近年来,随着菌根研究的发展,丛枝菌根在土壤修复中的应用日益受到人们的关注。本文综述了丛枝菌根在土壤重金属污染、有机污染、放射污染以及土壤退化修复中的作用,并对当前研究中存在的问题和未来发展前景作了探讨。  相似文献   

5.
以菲和芘为多环芳烃(PAHs)代表物,以紫花苜蓿(Medicago sativa L.)为宿主植物,选用幼套球囊霉(Glomus etunicatum, Ge)、摩西球囊霉(Glomus mosseae,Gm)和层状球囊霉(Glomus lamellosum,Gla)3种丛枝菌根真菌(AMF),研究了接种AMF下土壤中AMF菌丝密度、球囊霉素含量与PAHs去除率的关系。35~75 d,接种Ge、Gm、Gla处理的土壤中菌丝密度、总球囊霉素含量、易提取球囊霉素含量均随时间延长而显著增大,与不接种对照相比,75 d时接种Ge、Gm、Gla处理的土壤中易提取球囊霉素含量提高了48.58%、55.99%和50.23%,总球囊霉素含量则提高了38.75%、50.95%和46.12%。接种AMF促进了土壤中菲和芘的去除,随着时间(35~75 d)延长,接种Ge、Gm、Gla处理的土壤中菲去除率分别高达83.4%~92.7%、82.1%~93.8%、86.9%~93.4%,芘去除率达42.2%~63.5%、43.7%~69.2%、44.6%~66.4%。接种Ge、Gm和Gla处理土壤中AMF菌丝密度、总球囊霉素含量均与土壤中菲和芘的去除率之间存在极显著正相关关系,表明接种AMF提高了土壤中AMF菌丝密度和总球囊霉素含量,并促进了土壤中PAHs的去除。研究结果为阐明丛枝菌根修复PAHs污染土壤的规律及机理提供了依据。  相似文献   

6.
7.
多环芳烃污染土壤的植物-微生物联合修复初探   总被引:3,自引:1,他引:3  
在温室盆栽条件下,通过种植紫花苜蓿单独或联合接种菌根真菌(Glomus caledonium L.)(AM)和多环芳烃专性降解菌(DB),研究了利用植物-微生物强化修复多环芳烃(PAHs)长期污染土壤的效果。试验结果表明,接种菌根真菌和PAHs专性降解菌能促进紫花苜蓿的生长和土壤中PAHs的降解。经过90天修复试验,种植紫花苜蓿接种AM、DB和DB+AM处理的PAHs的降解率分别为47.9%、49.6%、60.1%,均高于只种植紫花苜蓿的对照处理(CK)(21.7%)。另外,随着PAHs苯环数的增加,其平均降解率逐渐降低,但是接种PAHs专性降解菌能够提高4环和5环PAHs的降解率。同时也发现土壤中脱氢酶活性和PAHs降解菌数量越高的处理,土壤PAHs的降解率也越高,这也是种植紫花苜蓿接种微生物能够有效促进土壤PAHs降解的原因。  相似文献   

8.
土壤样品中多环芳烃分析方法研究进展   总被引:4,自引:0,他引:4  
平立凤  李振  赵华  胡秀卿  吴珉 《土壤通报》2007,38(1):179-184
概述了国内外土壤样品中多环芳烃(PAHs)测定方法的研究状况,其中提取方法包括加速溶剂萃取方法、固相微萃取方法、超临界流体萃取方法、亚临界水萃取方法和流化床提取方法等,测定方法有HPLC法、GC法和免疫分析法等。重点介绍了PAHs的提取过程,同时总结了各种方法的优缺点。  相似文献   

9.
温度对土壤中多环芳烃消失速率的影响BarbaraMaliszewska-Kordybach多环芳烃(PAHs)是一组具有很强毒性、致癌性和基因诱变性的有机化合物(Si ̄-m&Overcash,1983)。它们产生于各种工业过程,并不断地排放到大气、水...  相似文献   

10.
以宁波地区土壤中多环芳烃的含量调查结果为基础,采用美国能源部风险评估信息系统的暴露量化方法和美国环保局健康风险评估手册的风险表征方法,评估了土壤中16种多环芳烃对户外劳作者的健康风险。结果表明,宁波户外劳作者由于土壤中多环芳烃引起的平均非致癌危害指数为1.09×10-5,平均致癌风险值为3.17×10-7,可判定对人体健康的危害较小。宁波地区致癌多环芳烃含量最高暴露点致癌风险值为1.45×10-6,没有超过致癌风险水平上限(10-4),说明致癌风险尚在可接受范围内。多环芳烃中苯并(a)芘对综合致癌风险贡献最大,贡献率高达65.6%,应注意防范土壤中该污染物引起的健康危害。宁波户外劳作者受到的非致癌危害和致癌风险主要由直接摄入途径和皮肤接触途径贡献,两种途径对非致癌危害和致癌风险贡献率分别达到89%和100%,呼吸摄入引起的非致癌危害和致癌风险则相对较小。  相似文献   

11.
生物表面活性剂强化微生物修复多环芳烃污染土壤的初探   总被引:8,自引:0,他引:8  
刘魏魏  尹睿  林先贵  张晶  陈效民  曾军  汪勇 《土壤学报》2010,47(6):1118-1125
通过温室盆栽实验,单独或联合接种多环芳烃专性降解菌(DB)和添加生物表面活性剂-鼠李糖脂(RH),研究了生物表面活性剂强化微生物修复多环芳烃(PAHs)长期污染土壤的效果。结果表明,添加RH和接种DB能明显促进土壤中PAHs总量和各组分PAHs的降解。经过90 d培养后,添加RH、DB和RH+DB处理的PAHs的降解率分别为21.3%、32.6%、36.0%,较对照分别提高了333.0%、563.3%、633.0%。此外,随着苯环数的增加,土壤中15种PAHs平均降解率逐渐降低。同时也发现DB、RH+DB处理土壤中脱氢酶活性、多酚氧化酶活性和PAHs降解菌数量显著高于CK、RH处理,但是CK与RH处理没有显著差异,说明DB、RH在促进土壤中PAHs的降解方面有不同的机制。  相似文献   

12.
多环芳烃在土壤中的环境行为研究进展   总被引:15,自引:0,他引:15       下载免费PDF全文
综述了土壤环境中多环芳烃(PAHs)来源及其进入环境后的行为和归宿,并提出多环芳烃污染土壤的修复对策。  相似文献   

13.
溶解性富里酸对土壤中多环芳烃迁移的影响   总被引:6,自引:0,他引:6  
多数多环芳烃(PAHs)因其水溶性低,且易被土壤有机质固持,曾经被认为其迁移能力十分微弱。但土壤中溶解性有机质可能影响PAHs的溶解、吸附等环境过程,进而影响其迁移性。本文旨在研究富里酸提取的溶解性有机质(FDOM)对PAHs在土-水间迁移的影响及其可能机制。溶液化学稳定性研究结果显示,FDOM在溶液pH 2.0~7.0、CaCl2浓度0~1 500 mmol L-1范围内均能保持较好的分散性,未发生絮凝沉淀。室内土柱淋溶试验结果表明,FDOM在土壤中具有较强的迁移能力,在FDOM持续淋溶条件下,菲、芘以及苯并[a]芘在淋出液中的浓度明显提高,并有少量二苯并[a, h]蒽淋出。FDOM淋溶处理的土柱表层土壤中菲、芘、苯并[a]芘和二苯并[a, h]蒽的淋失率分别为92.06%、92.07%、84.52%和23.27%,显著高于对照组(p<0.05)。以上研究结果表明,FDOM可作为载体提高PAHs在土壤中的迁移性,增加PAHs向深层土壤和地下水迁移的可能性。  相似文献   

14.
Background, aim, and scope  Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. They are formed during pyrogenic and diagenetic processes and are components of petrogenic materials such as oils and coals. To identify PAH sources, several studies have employed forensic methods, which may be costly to execute. Although a large number of possible forensic methods are available (e.g., total ion chromatograms, PAH ratios, PAH alkyl homologue series, isoalkanes and isoprenoids, steranes and terpanes, stable isotope ratios, n-alkanes), one has to decide which method is the appropriate cost effective screening approach. In this study, three approaches were tested and compared by measuring (1) an extended PAH spectrum (i.e., 45 instead of the common 16 EPA-PAHs), (2) PAH ratios and (3) n-alkanes to determine if point sources are distinguishable from non-point sources, and if an individual source can be distinguished from a multiple source contaminated site in the study area. In addition, the study evaluated whether these methods are sufficient for source identification of selected samples, and if they constitute a sound strategy for source identification prior to the selection of more cost intensive methods. Materials and methods  Eighteen samples with previously characterized PAH point sources (previously characterized point sources in the Mosel and Saar region) were analyzed. Additionally, three river bank soils of Mosel and Saar rivers with known non-point PAH sources were investigated. The point sources were two gasworks, a tar impregnation facility, a creosoted timber, an acid tar, a tank farm, and a diesel contaminated site. Non-point sources were hard coal particles and atmospheric inputs in river bank soils. All samples were extracted with hexane and acetone, analyzed with a gas chromatograph coupled to a mass spectrometer for PAH distribution patterns and ratios. n-Alkanes were measured by a gas chromatograph equipped with a flame ionization detector. Results  Samples collected from point sources and non-point sources were analyzed by the use of three forensic methods, i.e., PAH patterns of an extended PAH spectrum, PAH ratios and n-alkanes. Identification by PAH patterns alone was insufficient for the non-point sources and some point sources, since the n-alkanes must be measured, as well. The use of PAH ratios with only 16 EPA-PAHs is less indicative in determining multiple sources because source assignments (or categories) change depending on the ratio used. Discussion  This study showed that by employing an extended PAH spectrum it is possible to fingerprint and distinguish sources. The use of alkylated PAHs is essential for identifying petrogenic sources. It is insufficient to rely exclusively on either the common 16 EPA-PAHs or the ratios to the parent PAHs when identifying non-point sources. Source identification using PAH ratios is only reliable if both parent and alkylated PAHs are measured. n-Alkane analyses provide more detailed information about petrogenic sources by verifying the presence of oils, diesel, gasoline, or coal in non-point sources. Conclusions  The three methods tested were deemed sufficient to distinguish between point and non-point PAH sources in the samples investigated. The use of an extended PAH spectrum provides the first step toward identifying possible sources. It simplifies the decision whether additional forensic methods should be necessary for more detailed source identification. Recommendations and perspectives  The determination of PAH alkyl homologue series, biomarkers, and isotopes is often advised (Kaplan et al., Environ Forensics 2:231–248, 2001; Oros and Simoneit, Fuel 79:515–536, 2000; Wang and Fingas, Mar Pollut Bull 47:423–452, 2003). The methods involved are complex and often expensive. We recommend a relatively uncomplicated and cost-effective method (i.e., extended PAH spectrum) before further and more expensive forensic investigations are to be conducted. Additional research with an extended sample set should be carried out to validate these findings for other sources and sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
多环芳烃在岩溶区上覆土壤中的垂直迁移及控制因素   总被引:4,自引:0,他引:4  
选取典型表层岩溶泉域内的土壤剖面为研究对象,分析土壤样品的主要理化指标,并采用气相色谱-质谱联用仪对土壤中的多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)进行定量分析,研究16种PAHs在土壤剖面中的垂直迁移规律及控制因素。结果表明,所研究的5个土壤剖面中,16种PAHs均被检测出,其多环芳烃含量范围为161~3 285 ng g-1,平均值为987 ng g-1。兰花沟泉域水稻田和水房泉泉域土壤剖面中,PAHs的组成均以低环PAHs为主,后沟泉泉域土壤剖面中以高环PAHs为主,柏树湾泉域马尾松林地和兰花沟泉域马尾松林地土壤剖面中,0~2 cm表层土壤中以高环PAHs为主,2 cm以下土层中以低环PAHs为主。从剖面PAHs含量和组成变化可以判断,低环PAHs较易迁移,但在土层较薄的后沟泉泉域土壤剖面中,由于翻耕等人为的扰动,高环PAHs也较易迁移。5个剖面中,PAHs在水房泉泉域土壤剖面的迁移能力最强。由于岩溶区较薄的土壤层,使得PAHs较易迁移并污染表层岩溶泉水。对土壤理化性质和PAHs总量进行多元回归分析,表明土壤总有机碳(TOC)是控制后沟泉、兰花沟泉和柏树湾泉泉域土壤中PAHs迁移的主要因子,而在水房泉泉域土壤中,无主要影响因子。  相似文献   

16.
Microtox技术检测多环芳烃生物毒性的研究   总被引:9,自引:0,他引:9  
利用Microtox技术检测 5种多环芳烃化合物生物毒性结果表明 ,二甲亚砜配制的测试液中萘、菲及荧蒽均对发光细菌具有一定生物毒性 ,且随浓度的增大而增强 ,相同浓度下毒性菲 >萘 ;测试液中当萘浓度小于其溶解度时即产生 10 0 %的抑光率 ,萘EC50 为 4 .32mg/L ,而菲及荧蒽浓度近其溶解度时所产生的最大抑光率分别为 <5 0 %和15 %左右 ;芘及蒽最大浓度时则对发光细菌无生物毒性显示。表明Microtox技术可有效检测低环化合物萘的生物毒性 ,但对高环化合物 (≥ 3环 )的检测因受其低水溶性的限制而灵敏度降低 ,利用二甲亚砜获取多环芳烃污染物提取液的生物毒性主要与低分子化合物萘及菲有关  相似文献   

17.
为深入了解土壤环境中多环芳烃研究的全球状况和前沿动态,客观反映相关国家、机构和个人在该领域的科学能力和影响,采用ISI Web of Knowledge的Web of Science引文数据库,对1900―2014年间该库收录的土壤环境中多环芳烃研究领域的相关文献进行了计量分析。结果表明,该领域全球发文量总体呈持续快速上升趋势,美国的发文量、总被引频次和H指数均居榜首,中国的发文量和总被引频次居次席,但篇均被引频次明显偏低;中国科学院和英国兰卡斯特大学的发文量和H指数居研究机构的前两位,篇均被引频次排名最高的研究机构是美国马萨诸塞大学;英国兰卡斯特大学的Jones K C等两位学者发文量和H指数最高,北达克科特大学Hawthorne S B的篇均被引频次最高,国内学者中北京大学的陶澍和浙江大学的朱利中最有影响力;该领域的主要期刊有Environmental Science & TechnologyChemosphereEnvironmental Pollution等;该领域的研究热点多集中于土壤环境中多环芳烃的降解及生物修复、多环芳烃在各介质中的溶解与吸附、以及多环芳烃的源解析等方向,“中国”相关研究在近5年中占重要地位。  相似文献   

18.
Soil compaction is of great importance, due to its adverse effects on plant growth and the environment. Mechanical methods to control soil compaction may not be economically and environmentally friendly. Hence, we designed experiments to test the hypothesis that use of plant symbiotic fungi, arbuscular mycorrhiza (AM) may alleviate the stressful effects of soil compaction on corn (Zea mays L.) growth through enhancing nutrient uptake. AM continuously interact with other soil microorganisms and its original diversity may also be important in determining the ability of the fungi to cope with the stresses. Hence, the objectives were: (1) to determine the effects of soil compaction on corn nutrient uptake in unsterilized (S1) and sterilized (S2) soils, and (2) to determine if inoculation of corn with different species of AM with different origins can enhance corn nutrient uptake in a compacted soil. Using 2 kg weights, soils (from the field topsoil) of 10 kg pots were compacted at three and four levels (C1, C2, C3 and C4) (C1 = non-compacted control) in the first and second experiment, respectively. Corn (cv. 704) seeds were planted in each pot and were inoculated with different AM treatments including control (M1), Iranian Glomus mosseae (M2), Iranian G. etunicatum (M3), and Canadian G. mosseae, received from GINCO (Glomales In Vitro Collection), Canada (M4). Corn leaf nutrient uptake of N, P, K, Fe, Mn, Zn and Cu were determined. Higher levels of compaction reduced corn nutrient uptake, however different species of AM and soil sterilization significantly increased it. The highest increase in nutrient uptake was related to P (60%) and Fe (58%) due to treatment M4S2C3. Although it seems that M3 and M4 may be the most effective species on corn nutrient uptake in a compacted soil, M2 increased nutrient uptake under conditions (C3 and C4 in unsterilized soil) where the other species did not. Through increasing nutrient uptake AM can alleviate the stressful effects of soil compaction on corn growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号