首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为获得适用于受控生态生命保障系统的低能耗和低排放的堆肥氧气供应参数,采用氧气和氮气混合气体模拟受控条件下的气体供应,以厨余垃圾和园林废弃物为堆肥原料,通过设置氧分压为5%(T1)、15%(T2)和30%(T3)的3个处理,探究氧分压对堆肥理化性质及NH3和H2S排放的影响。结果表明:T2处理有助于物料快速降解和堆体升温,堆体最高温度(65.95 ℃)和高温期持续时间(14 d)高于其他2个处理;T2处理NH3累积排放量分别比T1和T3处理减少了65.35%、24.01%。相关性分析表明,O2浓度、EC、C/N、NH4+-N是影响恶臭气体排放的主要因素。综合堆肥理化指标和恶臭气体排放情况,氧分压为15%可以同时缩短堆肥周期和减排臭气,研究结果可为受控生态生命保障系统中有机循环系统的构建提供参考。  相似文献   

2.
本文以新鲜鸡粪和玉米秸秆为原料,在60 L密闭式发酵罐内进行联合好氧堆肥,研究了Fe2O3作为添加剂对鸡粪堆肥含硫臭气排放和堆肥产品腐熟度的影响。研究结果表明,在为期35 d的堆肥过程中,两处理的高温期(≥ 50℃)均持续10 d以上,满足堆肥产品无害化要求;种子发芽率指数(GI)均超过70%,达到完全腐熟,添加Fe2O3不会影响堆肥温度和堆肥产品腐熟度。鸡粪堆肥添加Fe2O3可有效降低含硫臭气排放,可使鸡粪堆肥过程中硫化氢(H2S)、二甲基二硫醚(Me2SS)和甲硫醚(Me2S)分别减少38.81%、73.59%和42.59%,累计减少总硫损失63.17%。总体而言,外源添加Fe2O3不会影响堆肥进程和腐熟度,可显著降低含硫臭气排放,增加产品中硫含量。  相似文献   

3.
通风量对厨余垃圾堆肥过程中H2S和NH3排放的影响   总被引:2,自引:0,他引:2  
厨余垃圾堆肥过程中H2S和NH3的排放不但会引发臭气污染,而且会降低堆肥产品的养分含量。通风量是影响这2种恶臭气体排放的重要因素。以大类粗分后的厨余垃圾为研究对象,玉米秸秆作为调理剂,设置4个水平的通风量,分别为每立方米物料0.5、1.0、2.2、3.2 m3·h-1,研究通风量对厨余垃圾堆肥过程中H2S和NH3 排放的影响。结果表明,4个处理均满足无害化和堆肥腐熟的要求,NH3的排放量随通风量的增加而增加,H2S的排放量随通风量的增加而减少,但过大的通风量会增加H2S的吹脱,使其排放量增大。综合厨余垃圾堆肥的无害化指标、H2S和NH3的排放以及最终堆肥产品的毒性检验结果,实验条件下每立方米物料的通风量为2.2 m3·h-1的持续通风处理,既能有效控制H2S和NH3的排放,又能保证堆肥的无害化和堆肥产品的腐熟。  相似文献   

4.
以脱水污泥和玉米秸秆堆肥为对照,采用实验室规模系统,研究了外源添加微生物菌剂(VT菌剂)和含磷添加剂(过磷酸钙和磷石膏)对污泥堆肥腐熟度、污染气体排放以及产品品质的影响。结果表明:菌剂添加显著促进堆肥腐熟,最终种子发芽率指数为126%~158%。菌剂和两种含磷添加剂混合添加可更大程度降低污染气体的排放,其中菌剂和过磷酸钙联合添加可减少63.3%的NH3和42.8%的H2S排放量,菌剂和磷石膏联合添加可减少97.6%的NH3和54.4%的H2S排放量。添加剂处理均可降低CH4的排放。添加菌剂可以降低30.7%的N2O排放,但是菌剂与过磷酸钙和磷石膏联合添加会增加堆肥前期的N2O排放。含磷添加剂处理可提高18.3%~22.9%的总养分(TN+P2O5+K2O)含量。研究表明,VT菌剂和含磷添加剂联合使用是提高堆肥产品品质、减少堆肥过程污染气体排放的有效方法。  相似文献   

5.
为研究添加生物炭对放牧绒山羊羊粪堆肥腐熟过程的影响,以羊粪和玉米秸秆为堆肥原料,生物炭为添加剂,进行好氧堆肥试验,对照组(CK)不作处理,处理组1、2、3(T1、T2、T3)分别添加堆体干重的5%、10%和15%生物炭,分析生物炭对堆肥基本理化性质、腐熟度、臭气和木质纤维素组成的影响。结果表明:1)添加生物炭可以显著提高堆肥最高温(64.8 ℃)和延长高温期持续时间,并提高堆肥结束时的pH(P<0.01),降低电导率。2)堆肥结束时CK、T1、T2和T3的总氮含量分别为19.69、19.92、21.30和20.30 g/kg,种子发芽指数分别为149%、154%、189%和186%。与CK相比,T2和T3显著提高堆肥结束时总氮含量(P<0.05),降低堆肥氮素损失33.53%和23.71%,并显著提高堆肥种子发芽指数27%和 25%(P<0.05)。3)与CK相比,T1、T2和T3可分别减少NH3累积排放量25.25%、40.50%和28.89%,减少H2S 累积排放量26.33%、29.50%和30.09%。4)堆肥结束时4个组的纤维素、半纤维素和木质素降解率分别为48.76%~56.29%、37.60%~48.13%和6.65%~14.20%。处理组纤维素降解率(T1(52.90%)、T2(53.81%)和T3(56.29%))均高于CK(48.76%)(P<0.05),提高8.48%~15.44%;T2(48.13%)和T3(47.8%)的半纤维素降解率显著高于CK(38.43%)(P<0.05),分别提高24.37%和25.22%;T2的木质素降解率(14.2%)显著高于T1(11.20%)和T3(10.37%)(P<0.05),又极显著高于CK(6.65%)(P<0.01),处理组木质素降解率较CK提高56.08%~113.04%。综上,在本研究条件下,在羊粪堆肥中添加生物炭可有效减少放牧条件下羊粪堆肥中氮素损失和臭气排放,促进木质纤维素降解,提高堆肥种子发芽指数和腐熟度,提升堆肥产品品质,因此推荐生物炭添加量为干重10%。  相似文献   

6.
酸雨污染已成为威胁土壤和植物健康的全球性环境问题。为探究酸雨对我国亚热带森林土壤有机碳矿化的影响,选取南京紫金山区域酸碱性不同的森林土壤,通过室内培养试验,以仅添加纯水(CK)和纯水+凋落叶(T0)为对照,模拟凋落叶添加后,pH分别为1.65 (T1)、3.67 (T2)、5.55 (T3)的酸雨对土壤有机碳矿化的影响。结果表明,碱性土壤条件下,各处理CO2累积排放量为1.67~3.35 g·kg-1,表现为T3>T2>T1>T0>CK;而在酸性土壤中,CO2累积排放量为0.99~3.90 g·kg-1,表现为T3>T0>T2>CK>T1。与CK相比,添加凋落叶(T0)后,酸性、碱性土壤CO2累积排放量分别增加了41.20%和71.72%。轻度酸雨(T3)能促进CO2排放,加快凋落叶的分解;重度酸雨(T1)会显著抑制酸性土壤有机碳和凋落叶的矿化(P<0.05),但加速了碱性土壤有机碳和凋落叶的矿化;而中度酸雨(T2)对两类土壤的土壤呼吸、凋落叶分解的抑制或促进作用均未达显著水平。凋落叶的添加会显著增加碱性土壤的CO2排放,但对酸性土壤CO2排放的影响因模拟酸雨pH的差异而不同。总体而言,不同强度的酸雨对碱性土壤有机碳矿化有促进作用;而在酸性土壤中,除轻度酸雨外,其他强度的酸雨均抑制了土壤有机碳矿化。  相似文献   

7.
试验以农村厨余垃圾为堆肥原料,设置添加15%锯末(SD)、15%树叶(FL)和15%玉米秸秆(CS)3个处理。研究不同填充剂的添加对农村厨余垃圾堆肥过程中与腐熟度相关的各种理化指标,氮转化及其相关功能基因的影响。结果表明,添加3种填充剂的厨余垃圾堆肥产物均达到无害化处理标准,相比较SD处理,FL和CS处理提高堆体的最高温度并延长高温期的持续时间,FL处理腐熟程度最好,CS处理次之。相较于SD和CS处理,FL处理的NH3累积排放量分别减少33.81%和5.22%,N2O累积排放分别减少61.75%和29.10%,堆肥前期的反硝化基因降低明显。冗余分析结果表明,C/N、pH和全氮是造成厨余垃圾堆肥氮转化功能基因变化的主要因素。  相似文献   

8.
畜禽粪便堆肥过程中碳氮损失及温室气体排放综述   总被引:3,自引:1,他引:2  
堆肥是畜禽粪便资源化利用的重要技术,但堆肥过程中碳氮损失会降低产品的农用价值并造成温室气体排放。堆肥过程中的污染气体排放受多种因素影响,本文综述了堆肥原料类型、辅料类型、初始C/N、含水率和通风速率对畜禽粪便堆肥过程碳氮损失和温室气体(CH4、NH3、N2O)排放的影响。结果发现:48.7%的C和27.7%的N在堆肥过程中损失,其中CH4-C损失平均占初始总碳的0.5%,NH3-N和N2O-N损失分别占初始总氮的18.9%和1.1%。不同种类粪便堆肥碳氮损失差异明显,猪粪和鸡粪堆肥的温室气体排放量高于牛粪和羊粪。选择富含C的辅料与畜禽粪便联合堆肥均可促进有机物降解,其中以稻草或锯末为辅料时的温室气体排放量较低。初始C/N对堆肥过程N损失影响较大,总氮、NH3和N2O的损失均随C/N的增加而降低,其中C/N为20~25时最适宜N素保留。初始含水率显著影响CH4和N2O的排放,其排放量随含水率的增加呈显著上升趋势,以含水率为60%~65%最为适宜。通风速率(以堆肥干基计)为0.1~0.2 L·kg-1·min-1时,CH4排放和总碳损失较低;通风速率为0.1~0.3 L·kg-1·min-1时,N2O、NH3和总氮损失较低。因此,为降低畜禽粪便堆肥过程碳氮损失和温室气体排放量,建议采用的工艺参数为:通风速率0.1~0.3 L·kg-1·min-1、含水率60%~65%、C/N为20~25。  相似文献   

9.
为探究腐熟堆肥不同回流方式对猪粪堆肥含硫臭气排放的影响,本文以猪粪为研究对象进行好氧堆肥试验,设置不添加腐熟堆肥(CK)、腐熟堆肥覆盖处理(Cap)和腐熟堆肥混匀添加(Mix)3个处理。研究结果表明:腐熟堆肥覆盖和混匀回流方式相较于CK均可促进堆肥腐熟,种子发芽指数(GI)分别提高12.50%和18.09%;甲硫醚(Me2S)和二甲基二硫醚(Me2SS)为猪粪高温堆肥过程中主要的含硫臭气(>90%),主要在堆肥前期和翻堆后排放。腐熟堆肥覆盖和混匀回流处理可分别减排Me2S 75.42%和78.64%、Me2SS 35.58%和56.17%,降低39.42%和58.31%的总含硫气体排放,增加堆肥产品总硫(TS)含量13.46%和24.07%。腐熟堆肥覆盖和混匀两种回流方式均可促进堆肥腐熟,减少含硫臭气排放,且腐熟堆肥混匀处理效果最佳。  相似文献   

10.
【目的】研究4种常规施肥模式下,添加生物炭后菜地土壤(褐潮土)CO2释放量、可溶性有机碳(DOC)和微生物生物量碳(SMBC)含量的变化,阐明添加生物炭对土壤CO2释放及不同形态碳的影响。【方法】采用室内恒温好氧培养-气象色谱测定方法,在不施肥(CK)、施有机肥(M)、施化肥(F)、有机无机混施(M+F)4种模式下投入2%和4%(质量比:生物炭/土壤干重)生物炭,定期采集气样和土样,分析土壤CO2的释放量及DOC、SMBC含量的动态变化,并分析DOC、SMBC含量变化与CO2释放量变化之间的相关关系。【结果】在F和M+F基础上,添加生物炭处理的土壤CO2释放速率在培养前期(2—8 d)显著高于未添加生物炭处理,而在10—60 d,二者CO2释放速率无显著差异;在CK和M基础上,添加与未添加生物炭处理在整个培养期间CO2释放速率没有显著差异。在CK基础上,添加2%和4%生物炭后CO2累积释放量分别为2 839和3 272 mg·kg-1,与CK(3 134 mg·kg-1)相比均无显著差异;而在F和M+F基础上,添加2%和4%生物炭后CO2累积释放量均显著提高,分别提高20.6%和19.8%、29.9%和40.7%。相关分析表明,未添加生物炭处理DOC、SMBC含量与CO2释放量之间无相关关系,而添加生物炭处理DOC、SMBC含量与CO2释放量极显著相关。【结论】将生物炭单独投入未施肥土壤中,土壤CO2排放量未出现明显增加或降低;在有机肥基础上添加生物炭,土壤CO2排放量随着生物炭投入量的增加而增加;在化肥、有机无机配施基础上添加生物炭后,土壤CO2排放增加比例最高。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
反刍家畜胃肠道甲烷排放是重要的温室气体排放源,减少反刍家畜胃肠道甲烷排放有助于缓解全球温室效应和提高家畜饲养效率。本论文从中国反刍家畜胃肠道甲烷排放现状、瘤胃甲烷生成机制、甲烷生成的日粮营养影响因子和甲烷减排策略与潜力4个方面系统综述反刍家畜胃肠道甲烷排放的研究进展。目前,中国反刍家畜甲烷总排放量超过10 Tg,占全球胃肠道甲烷排放的比例超过15%。反刍家畜胃肠道甲烷排放主要来自瘤胃和后肠道,其中瘤胃甲烷占胃肠道甲烷生成总量的80%以上。二氧化碳还原路径利用瘤胃内的氢和二氧化碳合成甲烷,是瘤胃内生成甲烷的主要路径。瘤胃内的氢还可被相关微生物利用,合成挥发性脂肪酸和微生物蛋白等代谢产物,进而被机体利用。减少反刍家畜胃肠道甲烷排放的关键在于促进瘤胃内氢的利用,以及阻断瘤胃内的氢被甲烷菌利用合成甲烷。甲烷减排的日粮营养调控策略包括优化日粮组成、改善饲料品质、提高瘤胃流通速率、添加氢池和甲烷抑制剂等。大多数营养调控策略的甲烷减排效果小于40%,最新研制的3-NOP抑制剂的甲烷减排效果最高可达80%。但是,一些减排策略的产业化应用还受添加剂残留、抗生素禁用、食品安全、产品价格和消费者喜好等因素影响。牧场管理和遗传选育也是降低甲烷排放量的重要手段,过去100年来已实现每千克标准乳的甲烷排放量减排效果为57%。未来反刍家畜胃肠道甲烷研究将主要集中在低排放品种的遗传选育、不同营养调控策略间的组合效果、甲烷减排的经济效益和可持续性、家畜生长性能与健康、食品安全、消费者喜好等方面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号