首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对水下鱼类无法快速准确识别的难点,提出一种具有图像主体自动增强功能的鱼类迁移学习方法。该方法将鱼类RGB图像转换至Lab颜色空间后,利用中央周边算子计算得到整个输入图像的显著性值,进而提供鱼类目标的潜在区域,并结合GrabCut算法获取鱼类分割图像,最终将融合分割图的原始图像送入优化后的残差网络中进行训练。通过对23种鱼类进行识别试验,结果显示,固定ImageNet数据集上ResNet-50预训练模型的conv1层和conv2层参数,微调高层参数的方法能够取得最好的识别效果,且在公开的Fish4Knowledge数据集上,该模型取得了最高的识别准确率,平均识别精度达到99.63%。与其他卷积神经网络方法的对比结果显示,本方法在Fish4Knowledge和Fish30Image数据集上的识别精度和时间性能均具有较大优势,其中识别准确率至少提升4.98%。多个数据集上的试验验证了模型的有效性。  相似文献   

2.
针对传统深度学习鱼类识别方法正确率较低、模型训练过程中参数不能够自适应确定的问题,提出了一种基于迁移学习(Transfer Learning, TL)的粒子群(Particle Swarm Optimization, PSO)改进ShuffleNet鱼类识别方法。以20种鱼类为对象,采用粒子群算法将模型的损失函数作为适应度函数,对批处理大小和学习率两个超参数进行优化,并利用迁移学习方式进行训练,构建了TL-PSO-ShuffleNet模型。结果显示:该方法与AlexNet、MobileNet、ShuffleNet模型相比,识别正确率分别提高了57.89%、30.43%、23.28%。本研究提出的鱼类识别方法具有正确率较高、参数设定具备自适应性等特点,为鱼类自动化识别研究提供了参考和借鉴。  相似文献   

3.
随着机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,但现有的鱼类图像公共数据集资源较匮乏,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。  相似文献   

4.
近年来,水产养殖和渔业资源保护的智能化发展迅速,对鱼类跟踪技术的需求也随之增加。传统的鱼类跟踪方法主要依赖于目视观察和标签追踪,存在效率低、应用范围有限、准确率不高等问题,限制了其推广应用。随着深度学习技术在计算机视觉领域的快速发展,基于深度学习的鱼类跟踪技术能够提供准确、客观、可扩展和自动化的跟踪方法。首先,介绍了鱼类跟踪技术的跟踪对象和4种深度学习鱼类追踪方法,分别是语义分割、实例分割、目标检测和目标分类。其次,介绍了鱼类跟踪技术如何获取鱼类轨迹与姿态、鱼类数量以及鱼类体长等鱼类目标跟踪信息。接着,介绍了基于深度学习的鱼类跟踪技术在鱼类疾病、鱼类摄食行为以及鱼类健康状态方面的应用,并从低对比度和纹理模糊、图像颜色失真以及遮挡和变形等3个方面,探讨了目前基于深度学习的鱼类跟踪技术的主要问题和一些相应的解决方法。最后,对基于深度学习的鱼类跟踪技术的发展前景进行了总结和展望。研究认为:基于深度学习的鱼类跟踪技术具有更高的准确度和客观性,为不同场景下的实际应用提供了更多解决方案,该技术有望在水产养殖管理、鱼类科学研究以及海洋环境保护等领域发挥更重要的作用,为相关领域提供更多的数据和支持。  相似文献   

5.
中国拥有种类繁多的鱼类,外形是其分类的重要依据.但目前主要采用人工识别方法进行分类,为解决鱼类人工识别存在的问题,提出一种基于深度学习的鱼类智能识别系统的设计,以实现对中国1400种鱼类的智能识别.系统首先采用卷积神经网络的Efficient模型,将含有1400种鱼类,50万张鱼类图片的数据集进行训练,最终得到的模型识...  相似文献   

6.
基于深度学习的刺网与拖网作业类型识别研究   总被引:2,自引:0,他引:2  
渔船作业类型可分为多种,作为典型近海捕捞作业方式的刺网和拖网捕捞渔船可占总船数的72.6%,准确的渔船作业类型识别可辅助渔船管理。利用北斗渔船监控系统(vessel monitoring system,VMS)数据提出一种对刺网和拖网作业分类识别的方法,因拖网和刺网渔船作业轨迹存在一定的差别,研究先提取出每艘船的航次信息,然后根据航次信息将原始刺网和拖网每条船的VMS划分为多个航次数据,根据航次数据中的经纬度数据批量画出每个航次的航迹图,再利用深度卷积神经网络模型对航迹图进行训练学习,进而实现刺网和拖网作业类型分类识别。通过使用自定义的10层CNN模型及使用迁移学习和模型微调方法调整后的VGG-16模型进行对比实验,结果显示,自定义的CNN模型最终精度为94.3%,证明了本方法的可行性,模型可用于辅助刺网、拖网作业类型判断。  相似文献   

7.
鱼类行为与水体环境密切相关,是鱼类生活状况的直接体现,可以通过分析鱼类行为进行更为精准的养殖管理和操作。计算机视觉技术为鱼类行为识别和量化提供了一种非入侵式且稳定性较好的方法,已逐渐广泛用于鱼类行为研究。本文介绍了计算机视觉技术的技术流程,包括图像采集、预处理、运动目标检测与跟踪,并对各个流程进行分类;综述了计算机视觉技术在鱼类游泳、摄食和体色变化等行为识别、量化研究的现状;分析了计算机视觉技术在鱼类行为识别、量化方面的难点及存在的问题,以期为计算机视觉技术在水产养殖监测领域的发展提供参考依据。  相似文献   

8.
在估计鱼类目标强度时,需要选择单体的回波信号进行计算.窄带信号下回波的相位标准差是单体检测的关键指标,但对于宽带信号相邻两点的相位差是时变的,无法将回波相位标准差作为单体信号的判定依据.本研究对线性调频宽带信号下的单体识别方法和性能进行了分析和仿真,并对该方法在消声水池内进行了测试和验证.结果显示:相比窄带信号,宽带信...  相似文献   

9.
鱼类的生长激素基因在鱼类生长发育和新陈代谢过程中发挥着极其重要的生物学作用。就鱼类生长激素基因(fGHG)的分离、活性检测、结构、分子克隆及在体外表达与基因转移等方面的研究进行了综述,并对其未来的研究策略和发展方向进行了展望。  相似文献   

10.
鱼类保活运输技术研究现状及展望   总被引:1,自引:0,他引:1  
安全高效的保活运输是保持鱼类鲜度的有效方式,既能满足消费者的需求,又可以提高企业的经济效益。介绍了有水运输和无水运输两种鱼类保活运输的技术方法,并对两种方法的优劣点进行了比较;阐述了鱼体体质、温度、水质(pH、溶氧、氨氮和代谢废物浓度)以及其他因素对鱼类运输存活率的影响;最后提出了现阶段鱼类保活运输存在的一些问题和应对措施,并对其发展前景进行了展望。根据对现有文献资料进行的分析,认为利用生态冰温法辅以二氧化碳作为麻醉剂进行无水运输将是今后鱼类保活运输研究和应用的重点。此外,开发无氧保活运输方法及相应的高效运输装备也应重点关注。这些都将有助于实现我国渔业现代化的更快发展。  相似文献   

11.
为解决传统人工计数存在效率低、成本高、对虾有损伤等问题,提出一种基于YOLOv5框架的养殖虾目标检测方法。利用高清摄像机采集高分辨率虾的图像数据样本,并针对高分辨率图像训练集设计自适应图片裁切预处理算法,通过将训练集进行自适应裁切,扩增训练数据量,减少原始图像训练过程中细节特征损失,提升目标检测准确度。结果表明:研究所提方法可以实现少量高分辨率图像下养殖虾的准确识别与计数,采用该算法对图像样本进行预处理,相比于原始数据集训练所得检测模型,在相同运算硬件条件下,具有更高的检测准确率,识别准确率为92.55%,召回率为98.78%,平均精度均值为97.5%。  相似文献   

12.
鲟鱼类增殖研究的现状及展望   总被引:1,自引:0,他引:1  
<正> 鲟鱼类为冷水性鱼类,仅见于北半球,目前已发现的鲟科鱼类共25种,白鲟科2种。由于鲟鱼大部分为洄游性,个体大,性腺成熟周期长,其数量容易受到人类活动(如过度捕捞和在江河上修建水坝等)的影响。为了保护和增殖这些种类和数量都很少的鱼类,国内外都致力于进行鲟鱼类自然繁殖保护和人工增殖的研究。现将鲟鱼的主要产地苏联、北美和我国的研究情况简介如下。  相似文献   

13.
为解决渔业养殖及转运自动计数要求,提出一种基于机器视觉的鱼类识别算法设计与程序编制,以证明使用数字图像识别分类技术的尺度不变特征变换SIFT及加速稳健特征SURF算法等可有效地检测与标注鱼类图像特征点。采用快速近邻匹配FLANN匹配算法测试了基于图像特征的鱼类旋转和泛化目标检测,得出SURF特征对个体检测效果好、SIFT特征对泛化目标检测效果优的结果。考察FLANN图像匹配碎片化特性、结合图像信息区域聚集实际、借鉴模板检测方法,设计了图像分割扫描及特征匹配的模板检测算法,并使用最大稳定极值区域MSER方法对识别结果进行冗余排除,达到能正确识别多目标鱼类的算法预设目标。研究发现,该算法及软件能成功识别图片中的多个鱼类目标,测试效果好,有较强的实用意义。  相似文献   

14.
图像识别技术在鱼苗计数方面的研究与实现   总被引:2,自引:0,他引:2  
范嵩  刘娇  杨轶 《水产科学》2008,27(4):210-212
随着鱼苗生产规模的不断扩大,其饲养、运输、销售等环节均需对鱼苗进行定量计数。目前我国鱼苗计数普遍采用人工统计的方法来计数。这种方法费工费时,准确度也无法保证,还会对鱼苗造成损伤。20世纪80年代,西方一些发达国家研制出的一些现代化鱼苗计数器,技术复杂,价格昂贵,而且  相似文献   

15.
刘冬梅 《齐鲁渔业》2008,25(9):30-30
正确识别养殖鱼类的饥饱,不仅关系到养殖鱼类的生长状况、病害的发生,而且还对养殖饲料成本的高低起着至关重要的作用。笔者经过多年对池塘养鱼的试验、观察和研究,特别是对鱼类吃食情况进行了多年的细致观察、记录和总结,对如何正确识别养殖鱼类的饥饱总结出了以下几点意见,希望能给广大从事鱼类养殖的朋友一点帮助。  相似文献   

16.
基于改进深度学习模型的鱼群密度检测试验研究   总被引:1,自引:0,他引:1  
在水产养殖生产中,鱼群密度的检测是做好生产管理的关键环节.基于水下鱼类的群聚现象,采用基于拥塞场景识别卷积神经网络(Congested Scene Recognition Convolutional Neural Networks,CSRNet)技术,将剔除了全连接层的VGG-16与空洞卷积神经网络相结合,保持分辨率的...  相似文献   

17.
针对中国毛虾 (Acetes chinensis) 产量逐年锐减问题,中国开始对近海海域实施毛虾限额捕捞措施,采用视频监控技术辅助捕捞管理。提出一种基于3-2D融和模型的毛虾捕捞渔船行为识别方法,为限额捕捞管理提供新的解决方案。通过在毛虾渔船上4个固定位置安装高清摄像设备,并记录捕捞作业全过程,共获取600余个视频监控数据作为初始数据;从初始数据中筛选有效的视频数据,同时对视频数据进行5种行为的划分和标记。为了提高网络训练的效率,对视频数据进行压缩和帧数分割等预处理;最后,通过搭建3-2D融合的卷积神经网络来训练模型,实现渔船行为特征的提取和分类。结果表明,捕捞渔船行为识别方法的分类精度为95.35%,召回率为94.50%,平均精确度为96.60%,模型整体得分达93.32%,平均检测时间为35.46 ms·帧−1,可用于毛虾渔船捕捞视频的实时分析。  相似文献   

18.
针对目前河蟹追溯成本高、消费者无法细粒度地追溯单体河蟹信息等问题,提出一种基于迁移学习和金字塔卷积的河蟹背甲图像个体识别算法。该算法使用金字塔卷积层替换普通残差卷积块构建网络模型,可以从蟹背图像中提取多尺度、深层次的特征信息。结果显示:采用金字塔卷积结构的Resnet34和Resnet50的准确率分别为98.38%、98.51%,与使用普通卷积层的模型相比,准确率提升5.49%、1.3%,而当模型深度达到101层时,模型性能不再明显提升。与使用金字塔卷积结构的全新学习模型相比,迁移学习方法的训练收敛迭代轮次从20轮降低至5轮,此时模型准确率为98.88%,较全新学习的准确率提升0.37%,同时弥补了样本量较少的问题。该研究为河蟹个体识别追溯提供了理论依据和技术支持。  相似文献   

19.
20.
针对现有的鱼类游动轨迹提取方法在提取效率和准确率方面不能同时兼顾的问题,提出了一种改进的DeepLabCut方法用于鱼类背部关键点识别和定位。首先,选择了轻量级卷积神经网络模型EfficientNet-B0作为DeepLabCut的主干网络模型,用于提取鱼类背部关键点的特征,为了增强EfficientNet-B0的表征能力,在网络模型中引入了改进的CBAM(Convolutional Block Attention Module)注意力机制模块,将CBAM中的空间注意力模块和通道注意力模块从原来的串行连接方式改为并行连接,以解决两种注意力模块之间因串行连接而导致的互相干扰问题。其次,基于MSE(Mean Squared Error)损失函数提出了一种分段式损失函数H_MSE用于模型的训练,分段式损失函数H_MSE相对于传统的损失函数具有较强的鲁棒性,其在处理数据中的异常值时能表现出较低的敏感性。最后,采用了半监督学习方法对关键点进行自动标记来减少人工标记数据时产生的误差。结果显示:相比于DeepLabCut原始算法,识别误差RMSE(Root Mean Squared Error)平均...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号