首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to understand the off-axis tensile properties of the developed two dimensional multistitched multilayer E-glass/polyester woven nano composites. It was found that the specific off-axis tensile strength of unstitched structure was higher than that of the machine stitched structure due to stitching caused filament breakages. But it was slightly lower than that of the machine stitched/nano structure. In addition, the specific off-axis tensile strength of machine stitched/nano composite structure was slightly higher than that of the machine stitched structure. When the nano silica material in the unstitched E-glass/polyester composite structure increased, the off-axis specific tensile strength and the modulus of the unstitched/nano structures increased whereas, the off-axis specific tensile strain of the unstitched/nano structures decreased. The damaged areas of the unstitched/nano structures increased, when the nano silica material in the unstitched E-glass/polyester woven composite structures increased. The failures under the off-axis tensile load of the stitched or stitched/nano structures were confined at narrow area due to the multistitching. On the other hand, it was observed that the off-axis failure of unstitched/nano or stitched/nano woven E-glass/polyester composite structures showed more brittle behavior.  相似文献   

2.
In this study, multistitched woven nano composites were developed and their in-plane shear properties were characterized. The in-plane shear strength of unstitched structure was low compared to that of the unstitched/nano structures. However, the in-plane shear strength of unstitched structure was high compared to the machine stitched structures because of stitching and stitching yarn-matrix interfacial region. Additionally, the in-plane shear strength of machine stitched/nano composite structure was slightly high compared to the unstitched structure. The multistitched and multistitched/nano structures had limited delamination in their cross-sections. Their delamination regions were confined at a narrow area due to multistitching. This was considered that the developed multistitched/nano composites has better demage tolerance compared to unstitched composites.  相似文献   

3.
The aim of this study was to understand the ±45 ° directional off-axis tensile properties of the developed two dimensional (2D) multistitched multilayer E-glass/polyester woven composites. It was found that the off-axis tensile strength of the unstitched structure was slightly higher than those of the multistitched structures. The reason was that the multistitching process caused the filament breakages. It was also found that when the stitching direction and stitching density in structures increased, their off-axis tensile modulus decreased. Therefore, stitching directions, stitching density and stitching yarn on the composite structures were considered as important parameters. All structures under the off-axis tensile load had normal deformation, or angular deformation or shrinkage in width. In addition, both the normal deformation and the shrinkages in width occurred in most of the two and four directional stitched structures. On the other hand, four directional Kevlar® 129 yarn dense stitched E-glass/polyester structure showed only shrinkage in width after angular deformation. This could be considered as a new failure mode because of the multistitching. These results indicated that the stitching directions and density generally influenced the off-axis tensile properties of the multistitched E-glass/polyester woven composites.  相似文献   

4.
The aim of this study was to understand the failure mechanism of two dimensional dry fabric structure considering yarn sets and interlacements. For this purpose, data generated on air-entangled textured polyester woven fabric under the simple tensile load and analyzed by developed regression model. The regression model showed that warp and weft directional tensile strengths of satin fabric were higher than those of plain and rib fabrics in unravel sample. This might be related to the number of interlacements of the fabrics. There was not a considerable difference between warp directional tensile strength of ravel and unravel satin fabrics, whereas weft directional tensile strength of ravel satin fabric decreased rapidly with respect to its unravel form. The satin fabric showed the highest warp directional tensile strength among the others. The lowest weft directional tensile strength was received from ribs fabric. In semi-ravel sample, all fabrics showed low warp and weft directional tensile strength values except in plain fabric. Warp directional tensile elongation of plain fabric was the highest in unravel sample. Satin fabric showed the highest warp directional tensile elongation in the ravel sample. Warp directional tensile elongations of all the fabrics in the semi-ravel sample became low. Weft directional tensile elongation of satin fabric was the highest in unravel sample. In addition, satin and plain fabrics showed the highest weft directional tensile elongations in the ravel sample. Weft directional tensile elongations of all the fabrics in the semi-ravel sample became low except in ribs fabric.  相似文献   

5.
The co-woven-knitted (CWK) fabric and multi-layered biaxial weft-knitted (MBWK) fabric were produced using glass filaments as warp and weft inserted yarns and high tenacity polyester as stitched yarns. Vacuum Assisted Resin Transfer Molding process was used to produce the two composites. Tensile tests were carried out in the course, wale and slanting directions of the composites, respectively. Specific stress-strain curves and failure modes of the two composites were investigated and compared. Results reveal that tensile strengths and elastic moduli of the two composites in the course and wale directions are better than those in the bias direction. All the composite samples fracture in the brittle damage mode. Furthermore, the buckling due to different inserted ways of the warp and weft yarns has a few influences on the tensile properties of the two composites. This research may lay a foundation for the establishment of the process windows for the co-woven-knitted reinforced composites.  相似文献   

6.
3D woven composites provide efficient delamination suppression, enhanced damage tolerance, superior impact, ballistic and blast performance characteristics over 2D fabric laminates. At the same time, this type of composites, having practically straight in-plane fibers, show significantly better in-plane stiffness and strength properties than respective properties of conventional composites. But, how the in-plane elastic and strength characteristics of this type of fabrics compare with respective in-plane properties of equivalent 2D woven fabrics. This paper presents a comprehensive experimental study of the comparison of in-plane tensile, bending, crimp interchange properties of UD, 2D, 3D orthogonal, 3D angle-interlock and 3D warp interlock multi-layer structures woven from E-glass tow. The results depict that the 3D woven fabrics have considerably superior mechanical properties with much lesser crimp compared to 2D fabrics.  相似文献   

7.
Peirce’s fabric model has been widely used to predict the structural behavior of various plain woven fabrics. The structure of plain woven fabric can be defined in terms of the warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. The warp and weft yarn diameters are calculated from the warp and weft yarn numbers, and the effective coefficient of the yarn diameter is defined by using this model. We have investigated structural properties, such as the effective coefficient of the yarn diameter, yarn crimp, and fabric thickness for two different fabrics in which the constituent yarns are assumed to be either incompressible or compressible. This model is also applied to various plain fabrics woven from cotton, rayon, wool, linen, nylon, acetate, polyester, and silk yarns.  相似文献   

8.
The tensile properties of air-entangled textured polyester single and multiple yarn ends before and after weaving were analyzed. The effects of weaving process considering fabric unit cell interlacement and number of yarn ends were evaluated by regression model. For this purpose, plain, ribs and satin woven fabrics were produced. The yarns were raveled from fabrics, and the tensile tests were applied to these yarns. The developed regression model showed that the number of interlacement and crimp ratio on the warp and weft yarns influence their tensile strength. Tensile strength of raveled yarns decreased compared to that of the bobbin yarn due to the effect of weaving process. This property degradation on the ravel yarns considered process degradation. Generally, when the number of warp and weft yarn ends increases, the warp and weft yarn tensile strengths for each fabric type decrease, whereas the warp and weft yarn tensile elongations slightly increase. The results from regression model were compared with the measured values. This study confirmed that the method in the study can be a viable and reliable tool. The research finding could be useful those who work on preform fabrication.  相似文献   

9.
The aim of this study is to analyze and determine the off-axis tensile properties of air-entangled textured polyester fabrics based on unit cell interlacing frequency. For this purpose, continuous filament polyester air-entangled textured yarn was used to produce plain, ribs and satin woven fabrics. The fabrics were cut from the warp direction (0°) to weft direction (90°) at every 15° increment, and tensile tests were applied to those of the off-axis samples. The strength and elongation results were introduced to the statistical model developed, and regression analyses were carried out. Hence, the effects of off-axis loading and interlacement on the directional tensile properties of the fabric were investigated. The regression model showed that off-axis loading influences fabric tensile strength. On the other hand, interlacement frequency is the most important factor for fabric tensile elongation. The results from the regression model were compared with the measured values. This study confirmed that the method used in this study as can be a viable and reliable tool. Future research will concentrate on multiaxially directional fabric and the probability that it will result in homogeneous in-plane fabric properties.  相似文献   

10.
Tensile strength plays a vital role in determining the mechanical behavior of woven fabrics. In this study, two artificial neural networks have been designed to predict the warp and weft wise tensile strength of polyester cotton blended fabrics. Various process and material related parameters have been considered for selection of vital few input parameters that significantly affect fabric tensile strength. A total of 270 fabric samples are woven with varying constructions. Application of nonlinear modeling technique and appreciable volume of data sets for training, testing and validating both prediction models resulted in best fitting of data and minimization of prediction error. Sensitivity analysis has been carried out for both models to determine the contribution percentage of input parameters and evaluating the most impacting variable on fabric strength.  相似文献   

11.
This study was aimed at developing statistical models for the prediction of tensile strength of warp and weft yarns required for attaining a pre-defined strength of PET/Cotton blended woven fabrics. The models were developed based on the empirical data obtained from carefully developed 234 fabric samples with different constructions using 15, 20, and 25 tex yarns in warp and weft directions. The prediction ability and accuracy of the developed models were assessed by correlation analyses of the predicted and actual warp and weft yarn strength values of another set of 36 fabric samples. The analyses showed a very strong ability and accuracy of the developed statistical prediction models.  相似文献   

12.
Inside a woven fabric structure, warp and weft yarns acquire crimp as a result of yarns interlacing according to the weave pattern. Since warp and weft yarns are oriented in two perpendicular directions, applying tensile load in one direction causes extension in the load side and fabric contraction in the opposite direction. This process was investigated in this study by using an image processing procedure and it was found that fabric’s extension is in coincidence with yarn’s de-crimping process in the same direction. After the de-crimping stage, yarns in the load direction will be extended and at the same time crimp in the other direction will be increased, until jamming phenomenon happens in the fabric structure. The crimp interchange between warp and weft yarns follows a three-order polynomial function with a turning point in which the yarns in the load direction have no crimp.  相似文献   

13.
This paper focuses on the reflectance prediction of colored (unicolored) fabrics considering relationship between fractional reflectance values and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of relation between fractional reflectance and cover factor was proposed and usage of the equation was assessed by reflectance measurements. 48 dyed polyester fabrics having different constructional parameters were used and fabrics differed from each other by their cover factors. Warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in experimental sub-groups. The reflectance measurements were conducted on the dyed fabric samples as well as on the individual yarn systems (warp and weft) of the same fabrics. The proposed equation was tested according to different fabric constructional parameters and reasonable results with the experimental data were obtained. The possibilities of general use of derived mathematical relations between theoretical and measured reflectance values were researched. The relation obtained was used to explain the effects of different constructional parameters on reflectance behavior of fabric surfaces.  相似文献   

14.
The effects of fabric balance and fabric cover on surface roughness values of textured polyester woven fabrics with different constructional parameters were investigated. The warp yarn properties (type, count and warp density) were kept constant while the effect of variation in weft yarn density and weave pattern were studied. Measurements were conducted on pre-treated white fabric samples and the results assessed in relation to their constructional properties. A general overview of the results showed that surface roughness values of polyester fabrics affected by fabric balance and fabric cover and the effects were related to fabric thickness, yarn densities, yarn crimp, positioning of yarns in fabric structure. A change in weave pattern from sateen to plain increased the fabric balance and fabric cover, but decreased the surface roughness. Similarly, an increase in weft density increased the fabric balance and fabric cover, but decreased surface roughness. In order to produce fabrics with smooth surface properties yarn density should be increased, yarn float lengths decreased, cover of fabrics increased and fabric balance improved.  相似文献   

15.
The fabric defects complained by garment manufacturers are stop marks, streaky phenomena on the warp direction, thickness variation and color differences between edges on the right and left sides of the fabrics, which are partly due to the tension variation of warp and weft directions. It is well known that these defects are related to the difference of fabric mechanical property according to the loom characteristics and fabric position such as center and both edges parts of the fabric, which affect garment formability and wearing performance of garment. This research is focusing about which factor is dominant for the difference of fabric mechanical properties which affects garment formability and wearing performance between loom characteristic factor and fabric position factor such as center and both edges of the fabric, which is affected by warp and weft tensions. For this purpose, two kinds of looms were selected, and warp and weft tensions during weaving were measured and the mechanical properties of the fabrics woven by two kinds of looms such as tensile, bending, shear, compression and surface properties were also measured according to the positions such as center and both edge parts of the fabric. These fabric mechanical properties were examined with warp and weft tensions according to the looms and were also analyzed according to the positions of the fabric woven by two kinds of looms. The warp tension on the vicinity of center parts of the looms was much higher than those on the vicinity of both edges of looms. It revealed that the warp tension difference makes differences of fabric mechanical properties such as tensile, bending, shear and surface properties except compressional property. And the differences of these mechanical properties according to the fabric positions and looms seem to make homogeneity of the fabric hand and tailorability of garment deteriorating.  相似文献   

16.
Set marks are fabric defects in weft direction which are caused by an interruption of the weaving process. In this study, based on one-quarter fractional factorial design, among eight parameters of weaving machine, i.e. horizontal and vertical position of back rest roller, horizontal position of warp stop motion, shed crossing degree, shed crossing point position, warp tension, stoppage position of machine, and stoppage time, four most effective parameters was determined. These parameters were stoppage position of machine, vertical position of back rest roller, shed crossing point, and horizontal position of warp stop motion. Then using full factorial design effectiveness of these parameters was evaluated statistically at 99 % confidence level and effect of them on set mark studied in detail. Statistical evaluations showed that the stoppage position of machine was the most effective parameters on intensity of set mark of multifilament polyester fabric. A specific image capturing device for using on weaving machine based on CCD camera was designed. Image processing technique was used to measure the pickspacing in stop zone objectively. Five picks before and five picks after stoppage was considered as stop zone and the standard deviation of pickspacing was used as a criterion which interpret this defect. Dynamic loading of warp yarns were execute to evaluate the relaxation behavior of polyester multifilament warp yarns.  相似文献   

17.
This study examined the mechanical properties of worsted fabrics woven using various rapier weaving looms. For this purpose, the warp and weft yarn tensions during weaving were measured on the three types of rapier looms, and the fabric mechanical property changes due to the warp and weft tension differences were measured and analyzed according to the fabric position and particular rapier loom using the KES-FB system. The warp tension variation along the loom width direction in P-GTX loom showed the lowest value compared to FAST and THEMA looms. The warp tensions on the central part of the three types of looms were much higher than those on the left and right sides of the looms. The extensibility and bending rigidity of the fabric woven by P-GTX rapier loom showed lower values than those of FAST and THEMA looms, which appears to have originated from the low warp and weft weaving tensions of P-GTX rapier loom. On the other hand, the compressional property and shear modulus showed compromised results due to lateral deformation by compression and constraint deformation of the warp and weft by shear. The friction coefficient of the fabric surface woven by FAST loom showed the lowest value due to the flatter surface by the high warp tension. The mechanical properties of the fabric loaded by a high warp tension on the central part of the loom were also affected by the high weft yarn crimp due to the wider spacing between warp yarns by the higher warp tension during weaving, which makes the surface of the central part of the fabric flatter and smoother than the edge part of the fabric.  相似文献   

18.
This paper focuses on the assessment of the relation among constructional properties, fractional reflectances and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of the relation between fractional reflectance and fabric cover factor was proposed and the usage of the equation was assessed by reflectance measurements. 48 polyester fabrics having different constructional parameters were used and the fabrics differed from each other by their cover factors. The warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in the experimental sub-groups. The reflectance measurements were conducted on the pretreated but undyed fabric samples as well as on the individual yarn systems of the same fabrics. Fabrics with the same cover factors exhibited different fractional reflectances. Reflectances were found to be dependent on the cover factor as well as on yarn fiber fineness, yarn count, yarn density and fabric weave. The changes in crimp of the yarns according to different construction parameters also governed the changes in fractional reflectances of fabric surfaces. The proposed equation was tested according to different fabric construction parameters and it was concluded that fiber fineness and weave pattern were among the most important parameters which govern the total light reflectances from the fabric surfaces, although they are not incorporated in the calculation of the fabric cover factors. The proposed equation was used to explain the effects of these components on the reflectance behavior of the fabric surfaces and on fabric cover.  相似文献   

19.
The woven fabric graphics designed with available computer aided design (CAD) systems using different colored warp and weft yarns look quite different from the appearance of their actual fabrics. To enhance the visual effects of designed woven fabric graphics, this paper reports a modified CAD woven fabric system, which allows users to design a fabric using parameters including fabric weaves, yarn number, yarn material, fabric count, crimp shape of interwoven yarns, and illumination. This enhanced system can design both yarns and fabrics, and consider the transitional color effect around interweaving points of warp and weft yarns. Its simulation image quality of woven fabrics has been greatly improved, and several textile mills and universities are currently using this woven fabric design system.  相似文献   

20.
A new production method for figured fabric has been developed. The figured fabric generated in this study is a plain weave piled fabric and it shows the same figure on both sides unlike those fabrics woven on dobby or jacquard looms. It is woven by a specialty yarn called the chenille yarn which is obtained by separating each warp of a base fabric woven in leno structure. The base fabric is woven by inserting different colored weft each time in a certain sequence arranged according to the target figure image. A CAD software and a computerized controller have been developed to control all the motions of a conventional rapier loom and to handle the numerous weft insertion schedule efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号