首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

? Context

Powdery mildew is one of the most common diseases of oaks in Europe. After alarming reports in the beginning of the twentieth century following the presumed introduction of the invasive fungus, the disease has become familiar to foresters. However, its impact may vary greatly according to intrinsic and extrinsic factors.

? Aims

We aimed at providing updated and synthesised information on the impact of powdery mildew on oak and on the effects of environment on disease.

? Methods

A comprehensive literature review was performed, including old reports of the early epidemics to more recent data.

? Results

Tree growth patterns are of critical importance to explain the severity of the disease and the differences between juvenile and mature trees. A critical element, especially for infection of mature trees, is the availability of spores during the production of the first leaf flush. High disease impact is often related to modified growth patterns, either by environmental factors (insects or frost) or silvicultural practices (e.g., coppicing).

? Conclusion

Powdery mildew can have important impacts in natural oak regenerations and a significant role in decline of mature trees. Climate change might influence the disease severity mainly by altering the host pathogen phenological synchrony. Process-based models are required for reliable predictions.  相似文献   

2.
  • ? Oak powdery mildew severity (Erysiphe alphitoides) is usually mild in Europe because epidemics start late in spring, at the end of the first oak growth unit maturation. However, the disease can occasionally be very severe when strong infection occurs early during the development of the first growth unit, suggesting that host-pathogen synchrony in spring could be a critical factor in disease severity.
  • ? We studied the timing of ascospore production in a given environment for four E. alphitoides populations sampled from SW France to the Czech Republic to determine whether this trait shows variation within Europe.
  • ? Timing of ascospore production was clearly influenced by environmental factors as chasmothecia from a single origin showed very different dates of optimal ascospore production when transferred for overwintering in locations with different climate. In common garden experiments, no differences were observed between populations for the date of optimal ascospore production.
  • ? Results suggest little genetic differentiation for timing of ascospore production for E. alphitoides populations across Europe and therefore a lack of local adaptation to their host phenology. Availability in ascospore inoculum is limited during host budburst, explaining the low infection usually observed on the first oak growth unit.
  •   相似文献   

    3.

    Context

    Loss of woodlands and degradation of vegetation and soil have been described for all Mediterranean-type ecosystems worldwide. In the Western Iberian Peninsula, overexploitation of evergreen cork oak land use systems has led to soil erosion, failures in oak recruitment, and loss of forests. Degraded and dry sites are quickly colonised by pioneer heathland rockrose (Cistus spp.) shrubs forming highly persistent patches.

    Aims

    Although traditionally shrublands have been considered as a transient successional state, we present evidence that they can represent persistent alternative states to former cork oak forests.

    Review trends and conclusions

    We first describe how Mediterranean vegetation evolved in the Iberian Peninsula and the role of fire and long-term human management as main disturbances. We then discuss alternative pathways through state-and-transition models indicating the ecological and land use variables that halt cork oak regeneration and recruitment and drive vegetation transitions towards persistent shrublands. Unless concerted management actions and restoration programmes are undertaken, the cork oak land use systems will not be sustainable.  相似文献   

    4.

    Context

    Mediterranean open woodlands (dehesa) have faced a dual process of intensification and abandonment of grazing which has resulted in alteration of the understory vegetation.

    Aims

    We analysed the effects of land use changes on the physiological status of holm oak in different open woodlands (dehesa) in southern Iberian Peninsula.

    Methods

    In an area of extensive grazing, we selected six paired plots (one grazed, one abandoned) and grouped them by habitat types according to understory composition (nearly all monospecific Cistus ladanifer L. shrub or mixed shrub). Six plots of moderate and heavy grazing intensity were chosen within a settled area of livestock use. Shoot growth, macronutrient concentrations and water content were assessed in samples of holm oak leaves.

    Results

    Abandonment of grazing affected some nutrient concentrations and water content of holm oak leaves, but the effects were different according to habitat type. C. ladanifer shrub reduced N and P concentrations and water content while mixed shrub increased P concentration and water content. High grazing intensity improved shoot growth and leaf N and Mg concentrations.

    Conclusion

    Extensive grazing could be a useful management tool to enhance growth, nutritional and water status of holm oak in a habitat with limited resources such as Mediterranean open woodlands (dehesa).  相似文献   

    5.

    Context

    In response to waterlogging, pedunculate oak is known to develop adventitious roots and hypertrophied lenticels. However, to date, a link between these adaptations and the ability to maintain net CO2 assimilation rates and growth has not been demonstrated.

    Aims

    The aim of this study was to explore the cause–effect relationship between the ability to form morphological adaptations (hypertrophied lenticels and adventitious roots) and the capacity to maintain high assimilation rate and growth.

    Methods

    The occurrence of morphological adaptations and the parameters of photosynthesis were monitored over 20 days of waterlogging in 5-week-old pedunculate oak seedlings presenting similar morphological development.

    Results

    Based on the development or not of morphological adaptations, the following three categories of responses were identified: development of hypertrophied lenticels and adventitious roots, development of hypertrophied lenticels alone, and the lack of development of adaptive structures. These categories, ranked in the order given, corresponded to decreasing levels of initial net CO2 assimilation rate growth and photosynthesis parameters observed during waterlogging.

    Conclusion

    We observed a two-way cause–effect relationship between the capacity to form adaptive structures and the assimilation rate. Indeed, the initial assimilation rate determined the occurrence of hypertrophied lenticels and growth during stress, and then the development of morphological adaptations enhanced the ability to maintain assimilation levels during the stress.  相似文献   

    6.

    Context

    Avoidance or control of epicormic shoots is among the major silvicultural challenges for the production of high-quality oak timber. In northern Europe, contemporary oak silviculture aims to produce valuable timber on a relatively short rotation, applying early, heavy thinning combined with artificial pruning.

    Aims

    The aim of this study was to analyse the effects of pruning and stand density on the production of new epicormic shoots on young trees of pedunculate oak (Quercus robur L.).

    Methods

    The study was based on two field experiments in even-aged stands of pedunculate oak subjected to different thinning practices and early selection of potential future crop trees. From ages 13 to 15 years, stem density was reduced to 300 trees ha?1, 1,000 ha?1 or stands remained unthinned. Pruning was conducted on selected trees at ages 22–24 years. At that age, the stem density in unthinned control plots ranged from 2,500 to 3,100 ha?1. All treatments were replicated twice within each experiment.

    Results

    Pruning led to an overall increase in the total production of new epicormic shoots. More epicormic shoots were produced in the lower part of the stem (0–3 m in height) than in the upper part (3–6 m). The number of new epicormic shoots increased with increasing stand density.

    Conclusion

    Early, heavy thinning combined with high pruning at regular intervals may help shorten the rotation length for pedunculate oak without further reduction in wood quality than that which is caused by wider annual growth rings.  相似文献   

    7.

    ?Context

    Understanding tree interactions requires an insight into their spatial distribution.

    ?Aims

    We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated).

    ?Methods

    We established twelve 0.64-ha plots in natural bottomland hardwood stands in the southeastern USA.

    ?Results

    Spatial point pattern analyses (Ripley’s K, L, and L 12) indicated that, when species were combined, trees were frequently aggregated and less commonly overdispersed. Plots with larger trees were more likely to exhibit overdispersion, confirming a shift to this pattern as trees grow. The intraspecific pattern of cherrybark oak and water oak was either aggregated or random. Sweetgum was aggregated on all plots and always at smaller distances (less than 5 m) than the two oak species. Intraspecific overdispersion was very rare. Interspecific segregation among the two oak species was more commonly observed (six plots) than aggregation (one plot). Cherrybark oak and sweetgum were segregated at some scale on seven of the 12 plots and aggregated on only two plots.

    ?Conclusion

    The results from the analyses suggest that strong interspecific competition may result in segregation of trees from different species, while weaker intraspecific competition may lead to aggregations of conspecifics.  相似文献   

    8.

    ? Context

    The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

    ? Aims

    The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

    ? Material and methods

    Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

    ? Results

    The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

    ? Conclusion

    Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

    9.

    Context

    Pulsed food resources may strongly affect the population dynamics of several consumer species, with consequences on the ecosystem. One of the most common pulsed resources is forest mast seeding.

    Aims

    We analysed mast seeding in deciduous forests in a mountainous area of northern Apennines and its effect on population dynamics of wild boar (Sus scrofa L.).

    Methods

    We performed a quantitative, 20-year analysis on annual seed production in Turkey oak (Quercus cerris L.), beech (Fagus sylvatica L.) and chestnut (Castanea sativa Mill.) forest stands using litter traps. The wild boar population density was estimated by means of drive censuses and hunting bag records. The role of other biotic (density of predators) and abiotic (climate) factors potentially affecting wild boar mortality was also investigated.

    Results

    Turkey oak and chestnut showed high levels of seed production, whereas lower levels were found in beech. The pulsed resources of chestnut and Turkey oak positively affected piglet density. Analyses also highlighted the influence of snow cover and wolves on wild boar population dynamics.

    Conclusion

    Wild boar can be considered a pulse rate species, the management of which can be improved by annual monitoring of seed production.  相似文献   

    10.

    Context

    Although drought is generally considered the main environmental constraint in Mediterranean environments, the ability to acclimate to and tolerate frost in early developmental stages can be a determinant for seedling survival of many Mediterranean tree species like stone pine (Pinus pinea L.).

    Aims

    The aim of this study was to assess the impact of the developmental stage of naturally regenerated stone pine individuals on tolerance to low temperature (LT) from summer to late autumn and in spring, at a highly continental site in central Spain. Specifically, we tested to what extent the differences in tolerance are related to shoot heteroblasty.

    Methods

    We assessed LT tolerance of needles from individuals at three age classes (class C1: seedlings, class C2: 4- to 8-year-old saplings and class C3: >9-year-old saplings) over nine dates from summer to spring.

    Results

    LT tolerance displayed severe seasonal trends and differed between age classes. It usually increased with sapling age. Such differences were tightly related to heteroblasty of the shoots. Our results point to a higher LT tolerance associated with larger leaf dry mass per unit area (LMA) values. No impact of late frosts on shoot growth rates was detected during this study.

    Conclusions

    Developmental changes during early plant growth seem to play a role in frost tolerance of stone pine seedlings, a finding which furthers our understanding of regeneration dynamics in this species in areas with continental influence.  相似文献   

    11.

    ? Context

    The rising demand of energy wood for heating purposes in Germany leads to concerns regarding the overexploitation of forests. A major aspect is the impact of whole-tree harvesting on long-term productivity of forest soils.

    ? Aims

    This study aimed to analyze the effects of nutrient removal on productivity using the historically prevalent practice of litter raking. Since there is a lack of controlled whole-tree harvesting experiments in Germany, we used litter raking as a surrogate management practice entailing the removal of nutrients from forest stands.

    ? Methods

    We used three sites with documented litter raking to analyze the effects of nutrient removal on productivity using dendroecological methods: two recent litter removal experiments in two Scots pine stands (Siegenburg and Burglengenfeld) and one oak stand (Eichhall) with documented historic litter raking. Basal area increment (BAI) and tree-ring characteristics were compared between periods with litter raking and the preceding periods for both treatment and control plots.

    ? Results

    For the two Scots pine sites with a relatively short litter raking period, no effects of litter raking on BAI could be ascribed to nutrient removal. On the oak site with a longer history of litter utilization, the loss in BAI due to litter raking amounts to 22 % during the period with active raking and to still 17 % in the recovery period.

    ? Conclusions

    These results contribute to the still very limited understanding about the impact of whole-tree harvesting on forest productivity in Germany by laying down an upper limit of possible effects due to nutrient removal, as nutrient loss by litter raking tends to be higher than nutrient loss by whole-tree harvesting.  相似文献   

    12.

    Context

    Harvesting of Mediterranean oak coppice forests has been progressively suspended on a share of cover over the last decades. Positive growth trend in outgrown coppices no longer harvested on short rotations now drives natural forest restoration on wide areas, and it represents a potential carbon sink in view of global warming.

    Aims

    Our goals were to estimate carbon (C) and nitrogen (N) content per compartment in two deciduous oak outgrown coppice forests, aged differently and growing under unequal site quality, to verify whether C concentration across compartments is in agreement with the conventional conversion rate of 0.5.

    Methods

    Ecosystem C and N pools were assessed by multiplying the whole coppice mass (combining specific allometric functions, root-to-shoot ratio, and soil sampling) by respective C and N concentrations.

    Results

    The results point out that the largest percentage of N was stored in 15-cm topsoil (84.06 and 73.34 % at the younger and older site, respectively), whereas the proportion of organic ecosystem C pool was more variable, as a consequence of the amount and allocation of phytomass. We found that, in most cases, C concentration was less than the conventional conversion rate of 0.5, especially in deadwood, O layer, and root compartments.

    Conclusion

    The findings provide further knowledge of C and N storage into these new built-up forest types and the evidence that a detailed analysis may get higher accuracy in the pools estimate, producing a more reliable outlook on dynamics and climate change mitigation ability of these systems.  相似文献   

    13.

    ? Context

    It has been estimated that about half of a plant??s total hydraulic resistance is located belowground, but it is not well known how temperate tree species differ in root hydraulic properties and how these traits vary with the species?? drought tolerance.

    ? Aims

    We examined root anatomical and hydraulic traits in five broad-leaved tree species with different drought tolerance, analyzed the relation between root anatomy and hydraulic conductivity and root embolism, and investigated the relation of these traits to the species?? drought tolerance.

    ? Methods

    In small-diameter roots (2?C6?mm), we measured vessel diameters and vessel density, specific hydraulic conductivity, and the percental loss of conductivity (??native?? embolism) during summer in a mixed forest.

    ? Results

    Specific conductivity was positively related to vessel diameter but not to vessel density. Drought-tolerant Fraxinus showed the smallest mean vessel diameters and drought-sensitive Fagus the largest. Specific conductivity was highly variable among different similar-sized roots of the same species with a few roots apparently functioning as ??high-conductivity roots??.

    ? Conclusion

    The results show that coexisting tree species can differ largely in root hydraulic traits with more drought-sensitive trees apparently having larger mean vessel diameters in their roots than tolerant species. However, this difference was not related to the observed root conductivity losses due to embolism.  相似文献   

    14.

    Context

    Cluster planting has become a conventional establishment method for oaks in Central Europe, where the spacing of seedlings within clusters varies between ‘nests’ (0.2?×?0.2 m) and ‘groups’ (1?×?1 m). Although the space between clusters is expected to fill with voluntary regeneration, its competitive effect on oak growth and quality had not been studied yet.

    Aims

    The aim of the study was to analyse the effects of inter- and intraspecific interactions on growth and quality of oaks grown in cluster plantings by quantifying the influence of neighbouring trees. In addition, we analysed whether the spatial position of oaks within groups (inner section or periphery) influenced their quality development.

    Methods

    Using Hegyi’s competition index, the influence of competition from intra- and interspecific trees from early, mid- and late-successional species, on diameter, height, slenderness and quality (length of branch-free bole) of 10- to 26-year-old oaks grown in cluster planting stands was quantified at seven sites in Baden-Württemberg and Hessen, Germany.

    Results

    In general, mid- and late-successional trees exerted a stronger competitive influence on growth of target oaks in clusters than the conspecific oaks and pioneer tree species. Oak quality development benefited from intraspecific competition, but self-pruning was not further promoted through additional interspecific competition. Within groups, inner oaks had a higher probability of developing into potential future crop trees than outer oaks.

    Conclusion

    Our study showed that intra- and interspecific competition had different effects on target oak trees and that these effect differed between nest and group plantings. The development of naturally regenerated and planted trainer trees in group plantings should be monitored carefully and if necessary be controlled through thinning or pollarding.  相似文献   

    15.

    Context

    Waterlogging is predicted to become more common in boreal forests during winter and early spring with climate change. So far, little is known about the waterlogging tolerance of boreal tree species during their winter dormancy.

    Aim

    The aim was to quantify the degree of waterlogging tolerance of 1-year-old dormant Norway spruce (Picea abies (L.) Karst.) seedlings.

    Methods

    The seedlings were exposed to waterlogging in a growth chamber at temperature of 2 °C for 4 weeks and then allowed to recover for 6 weeks during the growth stage. Shoot and root responses were monitored by physiological and growth measurements.

    Results

    No effect was found in the seedling biomass, but root mortality increased slightly during the early growth stage following waterlogging. The water potential of the needles became less negative at the end of the waterlogging and the early growth stage. The ratio of apoplastic to symplastic electrical resistance (R e/R i) of the needles was lower after waterlogging, indicating changes in the proportions of symplastic and apoplastic space. No differences were found between the treatments in the dark-acclimated chlorophyll fluorescence (F v/F m) of the needles. Slightly greater accumulation of starch and temporary reductions of some mineral nutrients in needles were found after waterlogging.

    Conclusions

    We conclude that in late winter and early spring, Norway spruce seedlings potentially tolerate short periods of waterlogging.  相似文献   

    16.

    Context

    Genetic diversity of sessile oak (Quercus petraea) populations in Hungary was assessed close to the retracting, low-elevation, low-latitude (xeric) distribution limits.

    Objective

    We aimed at tracing an assumed effect of climatic factors on genetic diversity, particularly at the southern, low elevation limits of distribution.

    Methods

    Genetic diversity at isozyme-coding loci was analysed in populations, and related to the climate of the sites where the populations grow. A locus-wise analysis proved to be essential to follow responses.

    Results

    A climate-related cline was found at seven isoenzyme-coding gene loci. Declining allelic numbers and heterozygosity indicated lower diversity at warmer and drier sites. The majority of loci were responsive to precipitation factors, others to temperature. Genetic clustering was neither related to geographic distance nor to random or historic effects.

    Conclusions

    The results suggest that climatic stress may elicit a genetic diversity loss in populations, which may reduce their plasticity and adaptive potential. The selective pressure may override historic effects and gene flow. With respect to expected climate change, the correlation of diversity with some climatic factors gains specific importance. If supported by further investigations, the results might be utilised for reconsidering conservation strategies and rules for use of forest reproductive material.  相似文献   

    17.

    Key message

    In Appalachian hardwood forests, density, stem size, and productivity affected growth during drought for red oak, but not white oak species. Minor effects of density suggest that a single low thinning does little to promote drought resilience for oaks in the region.

    Context

    Management is increasingly focused on promoting resilience to disturbance. Because stand density can modulate climate-growth relationships, thinning may be an adaptation strategy that promotes resistance/resilience to drought.

    Aims

    We examined how density, manipulated via thinning, stem size, and site productivity, influences the drought response of northern red, black, chestnut, and white oak.

    Methods

    We modeled the role of density, stem size, and site productivity on resistance, recovery, and resilience during two drought events.

    Results

    Chestnut and white oak displayed greater resistance, recovery, and/or resilience than did northern red and black oak. For black oak, density and stem size negatively affected resistance during the first and second drought, respectively. Density, stem size, and site productivity had no effect on chestnut and white oak.

    Conclusion

    The lack of sensitivity of chestnut and white oak to the ranges of density, stem size, and site productivity observed in this study and generally better resistance, recovery, and resilience suggests that management focused on the maintenance of these species, as opposed to a single silvicultural low thinning, may be a possible strategy for sustaining the growth and productivity of oak species in Appalachian hardwood stands. Drought response as affected by alternative thinning interventions should be evaluated.
      相似文献   

    18.

    Context

    ??Dehesas?? are savanna-like ecosystems of human origin that extend broadly in the Mediterranean area of the Iberian Peninsula. They consist of scattered oaks (mainly Quercus ilex subsp. ballota L. holm-oak), an annual grassland layer and interspersed shrubs. These ecosystems, used for grazing and wild game, support high plant and animal biodiversity and provide important environmental services. At present, Mediterranean ??dehesas?? are endangered by the lack of oak regeneration.

    Aims

    This paper analyses the efficiency of: (1) using shrubs as nurse plants; (2) drip irrigation of seedlings during summer; and (3) a combination of the two methods for the restoration of a ??dehesa?? in a mid-mountain Mediterranean area of southern Spain.

    Methods

    Different techniques were tested to improve the recruitment of holm-oak seedling during a 3-year field experiment: (1) acorn plantation in open spaces, irrigating seedlings during the first dry season; (2) acorn plantation beneath the canopy of Myrtus communis L. and (3) both methods combined.

    Results

    There was a large facilitative effect of myrtle for the recruitment of holm-oak seedlings, regardless of the supply of irrigation. This effect was associated with a large decrease in air temperature and photosynthetically active radiation beneath myrtle canopies. By contrast, summer irrigation of seedlings planted in open spaces did not improve seedling survival after 3 years despite a small and transient positive effect on seedling survival during the 1st year.

    Conclusion

    The use of evergreen shrubs, such as myrtle, as nurse plants may be considered to restore ??dehesas?? instead of expensive seedling irrigation techniques. Several studies have promoted abandoning grazing to increase holm oak self-regeneration in ??dehesas??. However, creating closed patches of naturally occurring evergreen shrubs could provide suitable sites for oak planting when necessary, thus enhancing seedling recruitment without damaging the environmental and economic value of these ecosystems.  相似文献   

    19.

    ? Context

    Projecting changes in forest productivity in Europe is crucial for adapting forest management to changing environmental conditions.

    ? Aims

    The objective of this paper is to project forest productivity changes under different climate change scenarios at a large number of sites in Europe with a stand-scale process-based model.

    ? Methods

    We applied the process-based forest growth model 4C at 132 typical forest sites of important European tree species in ten environmental zones using climate change scenarios from three different climate models and two different assumptions about CO2 effects on productivity.

    ? Results

    This paper shows that future forest productivity will be affected by climate change and that these effects depend strongly on the climate scenario used and the persistence of CO2 effects. We find that productivity increases in Northern Europe, increases or decreases in Central Europe, and decreases in Southern Europe. This geographical pattern is mirrored by the responses of the individual tree species. The productivity of Scots pine and Norway spruce, mostly located in central and northern Europe, increases while the productivity of Common beech and oak in southern regions decreases. It is important to note that we consider the physiological response to climate change excluding disturbances or management.

    ? Conclusions

    Different climate change scenarios and assumptions about the persistence of CO2 effects lead to uncertain projections of future forest productivity. These uncertainties need to be integrated into forest management planning and adaptation of forest management to climate change using adaptive management frameworks.  相似文献   

    20.

    Context

    After wildfire, surviving trees are of major ecological importance as they can help in the post-fire regeneration process. Although these trees may be damaged, they may also benefit from reduced fuel hazard and competition. However, little is known about the long-term growth response of surviving trees.

    Aims

    This study aims to explain short- to long-term variations in the postfire growth of surviving black pines in an area burnt in 1994, focusing on levels of fire severity and tree sizes.

    Methods

    Relative basal area increments were used to detect time-course variations in postfire radial tree growth depending on fire severity. Linear mixed-effects models were used to describe the factors affecting postfire ring growth.

    Results

    In the short term, fire caused stronger reduction in growth in small trees with increasing bole char height. However, as time since fire increased, a positive effect of fire on growth due to reduced competition counteracted the short-term fire impacts. Indeed, small surviving trees demonstrated a surge in growth 15 years after the fire.

    Conclusion

    It was concluded that reduced competition might offset the short-term negative effects of fire in surviving black pines.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号