首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to study the effect of fibre content on mechanical and morphological properties and thermal stability of roselle fibres (RFs) reinforced polyurethane (TPU) composites. The RF/TPU composites were prepared at difference fibre contents; 10, 20, 30, 40 and 50 wt% by melt mixed mixer and hot press at 170 °C. Mechanical (tensile, flexural and impact strength) and Thermogravimetric analysis (TGA) properties of RF/TPU composites were measured according to ASTM standard. Obtained results indicated that effect of fibre contents display improved tensile and flexural and impact strength properties. RF/TPU composites show the best mechanical and thermal properties at 40 wt% roselle fibre content. Scanning electron microscopy (SEM) micrograph of fractured tensile sample of the roselle composite revealed good fibre/matrix bonding. TGA showed that RF/TPU with difference fibre contents had improved thermal stability.  相似文献   

2.
Unsaturated polyester (UP) resin has been blended with phenolic resin (PF) resole type at various ratios to obtain a homogeneous blend with improved flame resistance compared to its parent polymers. The polymer blend was reinforced with 20 wt% kenaf using hand lay out technique. Fourier transform infrared spectroscopy (FT-IR) was used to characterize changes in the chemical structure of the synthesized composites. The thermal properties of the composites were investigated using thermogravimetric analysis (TGA). The thermal stability of UP/PF kenaf composites co-varies with the PF content, as shown by the degradation temperature at 50 % weight loss. The char yield of the composites increases linearly with PF content as shown by the TGA results. The flammability properties of the composites were determined using the limiting oxygen index (LOI) and UL-94 fire tests. The LOI increased with the PF content while the composites exhibit improved flame retardancy as demonstrated by UL-94 test. The mechanical and morphological properties of the composites were determined by tensile test and scanning electron microscopy (SEM), respectively. The tensile strength and the Young’s modulus of the blend/composites slightly decreased with increasing PF content albeit higher than PF/kenaf fiber composites.  相似文献   

3.
Blends of poly(butylene terephthalate) (PBT)/thermoplastic polyurethane (TPU) were prepared by melt compounding. The miscibility, crystallization behaviors and toughening mechanism of the PBT/TPU blends were studied. Dynamic mechanical analysis results demonstrated that PBT was immiscible with TPU. Differential scanning calorimetry and wide angle X-ray diffraction results showed that the crystallinity of PBT decreased with increasing TPU content. Furthermore, blending with TPU did not modify the crystal structure of PBT. The small angle X-ray scattering results indicated that the crystal layer thickness decreased and the amorphous layer thickness increased with increasing TPU content, indicating that TPU mainly resided in the interlamellar region of PBT spherulites in the blends. An obvious improvement in toughness of PBT was achieved with addition of TPU. Neat PBT had elongation at break and impact strength of about 15 % and 2.9 kJ/m2, respectively. However, the elongation at break and impact strength of the 70/30 PBT/TPU blend reached 410 % and 62.9 kJ/m2, respectively. The morphology of the PBT/TPU blends after tensile and impact tests was investigated, and the corresponding toughening mechanism is discussed. It was found that the PBT showed obvious shear yielding in the blend during the tensile and impact tests, which induced dissipation of energy and, therefore, led to the improvement in toughness of the PBT/TPU blends.  相似文献   

4.
The present study investigated Thermoplastic Polyurethane (TPU), Natural rubber (NR) and their composites in terms of their mechanical and electrical properties for developing wearable stretch sensors. Both TPU and NR were added 2 %wt Multi-wall Carbon Nanotube (MWCNT), then in order to test their influences on TPU/CNT and NR/CNT composites. The result showed that Young’s modulus and Yield point of this experiment were higher than bare TPU and NR, whereas their stress-strain hysteresis loops were bigger than bare TPU and NR. Moreover, the Gauge factor (GF) value of TPU/CNT was much higher than NR/CNT composites at 100 % strain with 7.08. TPU/CNT composites promise to have many applications in the field of stretch sensors with good stability and durability while NR and NR/CNT were easy deformed when the stretch was applied.  相似文献   

5.
This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries.  相似文献   

6.
A series of the long glass fiber reinforced thermoplastic polyurethane elastomers and poly (styrene-acrylonitrile) (LGF/TPU/SAN) composites with different contents of long glass fiber were prepared by using self-designed impregnation device. Dynamic mechanical properties of TPU/SAN matrix reinforced with 10, 20 and 30 % by weight long glass fibers have been investigated by using dynamic mechanical thermal analysis (DMA). The results indicated that the content of long glass fiber and scanning frequency had some influence on dynamic mechanical properties and glass transition of LGF/TPU/SAN composites. In addition, the Arrhenius relationship has been used to calculate the activation energy of a-transition of the LGF/TPU/SAN composites. SEM demonstrates the relatively good dispersion of the long glass fiber in the TPU/SAN matrix. In addition, Effects of the content of long glass fiber on mechanical properties of the LGF/TPU/SAN composites are investigated.  相似文献   

7.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures.  相似文献   

8.
This study presents the mechanical and thermal properties of environment-friendly composites made from recycled newspaper fibers reinforced recycled poly(ethylene terephthalate) (rPET) resin with the addition of styrene-ethylene-butylene-styrene grafted maleic anhydride (SEBS-g-MA) as compatibilizer. The effect of SEBS-g-MA addition (i.e., 10 phr) by using a twin-screw extruder to the rPET resin, followed by different fiber content (5, 10 and 15 wt.%) on the tensile, flexural and impact properties of the composites were determined. Stiffness of composites increased significantly compared to those of rPET/SEBS-g-MA blend. Fiber addition resulted in moderate increases in both tensile and flexural strength of the composites. Scanning electron microscope (SEM) photomicrographs of the impact fracture surfaces demonstrate good adhesion at 5 and 10 % fiber content. Differential scanning calorimetry (DSC) showed that the presence of newspaper fibers enhanced the nonisothermal crystallization kinetics and crystallinity. Thermal stability of the composites was improved as indicated by thermogravimetric analysis (TGA).  相似文献   

9.
The objective of this investigation was to evaluate the mechanical, thermal stability and viscoelastic behaviors of experimental PP composites made from wheat straw and PP-g-MA coupling agent. Four levels of wheat straw, 10, 20, 25 and 30 wt % and two levels of coupling agent, 0 and 3 % wt were mixed with PP in rotary type mixer and injection molding process, respectively. Tensile characteristics and impact strength, thermal gravity and dynamic mechanical and thermal analysis of the samples were evaluated. Based on the results, it was observed that the tensile properties increased and impact strength decreased with the increase in the fiber loading from 10 % to 30 %. Further, the composites treated with PP-g-MA exhibited improved mechanical properties which confirmed efficient fiber-matrix adhesion. DMT analysis showed that the PP composites made of 30 % wheat straw containing 3 % PP-g-MA showed the highest E’ and lowest tan δ than the untreated ones. Also, the thermal stability of wheat straw was lower than PP and as filler content in the composites increased, the thermal stability decreased and the ash content increased.  相似文献   

10.
This study aims to investigate the effects of two types of wood flour; oil palm mesocarp flour (OMF) and rubberwood flour (RWF), and their particle sizes on mechanical, physical, and thermal properties of wood flour reinforced recycled polypropylene (rPP) composites. The composite materials were manufactured into panels by using a twin-screw extruder. The rPP composites based on RWF significantly showed higher flexural, tensile, and compressive properties (both strength and modulus) as well as hardness and thermal stability than those composites based on OMF for the same particle sizes. However, distribution of RWF in the rPP matrix was less homogeneous than that of the rPP/OMF composites. Furthermore, a decrease of the particle sizes of filler for the rPP/OMF or RWF composites increased the flexural, tensile, compressive, and hardness properties. Likewise, the thermal stability of both OMF and RWF composites were insignificantly affected by the particle sizes.  相似文献   

11.
Optimized palm press fiber composites of poly(?-caprolactone)/poly(lactic acid) were produced and their mechanical and thermal properties were studied. The composites were melt blended using twin screw extruder and test specimens were produced by injection molding. The composites mechanical and thermal performances were tested using standard methods. The incorporation of dicumyl peroxide as compatibilizer significantly increased the tensile strength, flexural modulus and impact strength of the composites as compared to the uncompatibilized composites. Crystallization temperature of the composites initially increased after which it dropped as fiber load increased. The composites melting point and percentage crystallinity slightly decreased as fiber load increased.  相似文献   

12.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

13.
The mechanical and thermal behavior of compression molded jute/polypropylene (PP) composites were studied by evaluating tensile strength (TS), bending strength (BS), tensile modulus (TM), bending modulus (BM), impact strength (IS), thermogravimetric (TG/DTG) and differential thermal analysis (DTA). A chemical modification was made to jute fabrics using N,N-Dimethylaniline (DMA) in order to improve the interfacial adhesion between the fabrics and matrix. It was found that jute fabrics on treatment with N,N-Dimethylaniline (DMA) significantly improved the mechanical properties of the composites. Thermal analytical data of PP, both treated and untreated jute fabrics as well as composites revealed that DMA treatment increased the thermal stability of the fabrics and composite. DMA treatment also reduced the hydrophilic nature of the composite. DMA treated jute composite was found less degradable than control composite under water, soil and simulated weathering conditions.  相似文献   

14.
We prepared long carbon fiber (LCF)-reinforced thermoplastic composites using a compatibilizer of itaconic acid grafted polypropylene (PP-g-IA). We confirmed the structure of PP-g-IA and investigated the compatibilizing effects of PPg- IA on LCF/polypropylene composites. The tensile strength, tensile moduli, flexural strength, and flexural moduli of the composites increased with increasing PP-g-IA content in the thermoplastic composites. Using single pull-out analyzing system, we found PP-g-IA improved interfacial strength between the carbon fiber and PP matrix. The thermal properties of the composites were measured by thermogravimetric analysis (TGA). We could observe that LCF enhanced the mechanical properties and thermal decomposition temperature of the polypropylene (PP) composites, compared with neat PP. The fractured surfaces of PP/PP-g-IA/LCF composites showed that PP-g-IA was effective for improving the interfacial adhesion between LCF and PP matrix.  相似文献   

15.
In this study, flax shive (FS) and extracted flax shive (EFS) were fully characterized. The results showed that EFS presented lower noncellulose content, smaller porous tunnels and better thermal stability than FS. The 5 % weight loss temperature of EFS was over 200 °C, which can meet the requirements of the processing conditions for the natural fiber reinforced polymer composites. Consequently, the flax shive and extracted flax shive reinforced PP composites were prepared and characterized. It was found that the thermal stability of EFS/PP composites was better than that of FS/PP composites, and both FS and EFS behaved as nucleation agents, which could accelerate the crystallization process of PP in the composites. Mechanical test showed that EFS could be used as a reinforcing material for PP composite when compatibilizer was applied. The flexural strength and modulus of the composites containing 30 % EFS were about 8 % and 100 % higher than that of pure polypropylene, respectively.  相似文献   

16.
Electrically conducting textile fibers were produced by wet-spinning under various volume fractions using thermoplastic polyurethane (TPU) as a polymer and carbon black (CB), Ag-powder, multi-walled carbon nanotubes (MWCNTs), which are widely used as electrically conducting nanofillers. After applying the fiber to the heat drawing process at different draw ratios, the filler volume fraction, linear density, breaking to strength, and electrical conductivity according to each draw ratio and volume fraction. In addition, scanning electron microscopy (SEM) images were taken. The breaking to strength of the TPU fiber containing the nanofillers increased with increasing draw ratio. At a draw ratio of 2.5, the breaking to strength of the TPU fiber increased by 105 % for neat-TPU, 88 % for CB, 86 % for Ag-powder, and 127 % for MWCNT compared to the undrawn fiber. The breaking to strength of the TPU fiber containing CB decreased gradually with increasing volume fraction, and in case of Ag-powder, it decreased sharply owing to its specific gravity. The electrical conductivity of the TPU fiber containing CB and Ag-powder decreased with increasing draw ratio, but the electrical conductivity of the TPU fiber containing MWCNT increased rapidly after the addition of 1.34 vol. % or over. The moment when the aggregation of MWCNT occurred and its breaking to strength started to decrease was determined to be the percolation threshold of the electrical conductivity. The heat drawing process of the fiber-form material containing the anisotropic electrical conductivity nanofillers make the percolation threshold of the electrical conductivity and the maximum breaking to strength appear at a lower volume fraction. This is effective in the development of a breaking to strength and electrical conductivity.  相似文献   

17.
A series of blend nanofiber mats comprising poly(vinyl alcohol) (PVA) and polyurethane (PU) were prepared by dual-jet electrospinning in various parameters. Orthogonal experimental design was used to investigate how those parameters affected on fiber diameters and fiber diameter distribution. Altogether three parameters having three levels each were chosen for this study. The chosen parameters were tip-to-collector distance (TCD), voltage and tip-to-tip distance (TTD). Fiber diameters, thermal properties, mechanical properties and hydrophilicity of the blend nanofiber mats were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile test, contact angle and water absorption test, respectively. The results showed that the optimum conditions for PVA/PU blend nanofiber mats fabricated by dual-jet electrospinning were TCD of 20 cm, voltage of 18 kV and TTD of 4 cm. Besides, the thermal stability of PVA/PU blend nanofiber mats had been improved compared with pure nanofibers. Furthermore, the elongation and tensile strength of the blend nanofiber mats were significantly increased compared with pure PVA and pure PU, respectively. And the blend nanofiber mats exhibited well hydrophilicity.  相似文献   

18.
Composites consisting of polyurethane (PU)/carbon nanotubes (CNTs) have been successfully prepared by solution mixing method. CNTs were modified through mechano-chemical reaction to increase the compatibility with PU via hydrogen bondings. SEM microphotographs proved that modified CNTs (M-CNTs) became shorter and FTIR spectra showed that hydroxyl groups had been introduced to the surface of M-CNTs. SEM images of PU/M-CNTs composites also proved that M-CNTs were effectively dispersed in PU matrix. Mechanical property tests showed that addition of M-CNTs could significantly improve the tensile properties of PU/M-CNTs composite (breaking strength enhancement ratio for composite with 5.0 wt% M-CNTs was 103.81 %). The thermal stability of composites with M-CNTs was also improved. The initial degradation temperature enhancement was 19.9 oC for the composite with 0.5 wt% M-CNTs. Electrical property tests showed that the electrical properties were improved by adding M-CNTs. The volume conductivities increased 3 and 5 orders of magnitude for the composites with 5.0 wt% and 10 wt% M-CNTs, respectively. The addition of M-CNTs had little effect on the elastic properties of the composites.  相似文献   

19.
The present investigation focuses on the effect of fiber surface treatment on the mechanical, thermal and morphological properties of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites. The surface of sisal fiber was modified using different chemicals such as silane, glycidyl methacrylate (GMA) and O-hydroxybenzene diazonium chloride (OBDC) to improve the compatibility between fiber surface and polymer matrix. The experimental results revealed an improvement in the tensile strength to 11 %, 20 % and 31.36 % and impact strength to 78.72 %, 77 % and 81 % for silane, GMA and OBDC treated sisal fiber reinforced recycled polypropylene (RPP/SF) composites respectively as compared to RPP. The thermo gravimetric analysis (TGA), Differential scanning calorimeter (DSC) and heat deflection temperature (HDT) results revealed improved thermal stability as compared with RPP. The morphological analysis through scanning electron micrograph (SEM) supports improves surface interaction between fiber surface and polymer matrix.  相似文献   

20.
Biodegradable materials are considered as alternative to synthetic materials to alleviate the environmental burdens caused by petroleum based synthetic materials. Biopolymer blends have been extensively researched to improve the material properties of biopolymer-based materials for potential replacement of non-biodegradable materials. Compatible blends of pre-gelatinized maize starch (uncomplexed or complexed with stearic acid) and commercial zein in 0.1 M NaOH were used to produce the films. The effect of the ratio of uncomplexed starch, zein and starch complexed with stearic acid on the tensile, water vapour and oxygen barrier and thermal properties of the composite films were investigated. Blending zein with starch increased the tensile strength and reduced the tensile strain compared to starch films. Addition of starch complexed with stearic acid to the blend further increased the tensile strength and decreased the elongation at break. Both blending zein with starch and addition of starch complexed with stearic acid to the blend decreased the water vapour permeability, however, the oxygen permeability was increased compared to starch films. The starch-zein blend films had an endothermic temperature and thermal transition in between the uncomplexed maize starch and zein films suggesting possible compatibility at molecular level. The microstructure of the blend films also showed good miscibility of pre-gelatinized starch and commercial zein. In conclusion alkaline solvent (0.1 M NaOH) could produce compatible starch-zein blends that can produce films with improved tensile strength and water vapour permeability compared to starch films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号