首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The purpose of our study was to identify major hillslope sediment sources in a partially urbanized coastal watershed supporting salmonid habitat and to evaluate the use of physical and maximum entropy models in predicting sites of greatest concern. Questions include when and where increased runoff from trail and unpaved road surfaces has influenced patterns of landslides and gullies to a greater degree than what would be expected from background processes and controls, such as precipitation intensity, vegetation, soils, and slope characteristics.

Materials and methods

San Pedro Creek Watershed, USA, provides habitat for Oncorhynchus mykiss despite 33% of the watershed being urbanized. The watershed drains steep hillslopes with a median slope of 21°, with the steepest slopes on the 578-m North Peak of Montara Mountain. We inventoried hillslope sediment sources based on field surveys and aerial photographic interpretation in 1941, 1955, 1975, 1983, and 1997. We interpreted causative factors using precipitation records, geologic and soil mapping, digital elevation derivatives, land cover, and road/trail network changes and applied a physical landslide susceptibility model (Stability Index Approach to Terrain Stability Hazard Mapping (SINMAP)) for hillslope stability and a maximum entropy model for assessing gully and landslide centroids.

Results and discussion

Maps of landslide and gullies reveal an association with land use changes over time. Agricultural land uses led to the development of extensive gullies in parts of the watershed, and some of these continue to contribute significant sediment to the stream system; others were built-over in residential developments. The most significant remaining gullies result from impervious runoff from roads built into steep hillslopes. Although the best single predictor of landslide susceptibility is physically modelled hillslope stability (SINMAP), slope equally contributed to multivariate MAXENT models (area under the receiver operator characteristic curve (AUC)?=?0.74 in 1941, 0.65 in 1975, and 0.79 in 1983). Other covariates in the maximum entropy models include plan curvature, trail distance in 1975, geology in 1983 (favoring colluvium), and vegetation.

Conclusions

Combining physical hillslope stability with a maximum entropy model appears promising, although overall slope angle also contributed equally. Landslides are episodic and linked to major precipitation/runoff events, such as ENSO events in 1962, 1972, and 1982, but road and trail development from 1955 to 1975 also contributed equally. As by count most gullies relate to earlier agricultural practices, they represent ongoing sediment sources.  相似文献   

2.
Combining landslide and contaminant risk: a preliminary assessment   总被引:1,自引:1,他引:0  

Background, aim, and scope

The aim of this paper is to highlight a not yet recognized hazard for mass failure (landslides) of contaminated soils into rivers and to provide an understanding of important interactions of such events. A first effort to investigate the problem is made focusing on the south eastern part of the Göta Älv river valley, in Sweden, by combining geographical information on potentially contaminated sites with slope stability levels on maps. The objectives of this study were to: (1) Review current Swedish risk assessment methodologies for contaminated areas and landslides, and analyze their capability to quantify the risk of contaminated areas being subject to landslides. (2) Investigate the presence of contaminated areas at landslide risk along the Göta Älv river valley. (3) Provide an overview of the national methods for landslide risk analysis and for environmental risk classification, followed by a comparison between the methods and the results from the superposition of the two methods for the study site. (4) Make a first attempt to conceptualize the release and transport mechanisms.

Materials and methods

Environmental risk assessment data of the study site was combined with data on slope stability levels. Conceptual issues of the release and transport scenario were identified and a first conceptual model was created.

Results

Of 31 potentially contaminated sites, eight had moderate to high probability for landslide, and of these eight sites, five were classified as having a high or very high environmental risk. These findings had not been revealed when the data had only been considered separately. The ‘actual’ risk could hence be even higher than the highest environmental risk class actually suggests. By visualizing results from the landslide risk analysis with the results from the environmental risk classification of contaminated sites, a better understanding of the potential hazard involved is obtained.

Discussion

The release mechanisms as a result of a landslide into surface water were conceptualized using two time scales: the instantaneous and the long-term release. It is clear that the Swedish method for landslide risk assessment and for environmental risk assessment of contaminated soil considers hazard events that are characterized by different time scales. The method for landslide risk assessment addresses events that are rapid (occurring over minutes) with instantaneous impact and consequences. Measurements are made within a short time after the event (days to months). The environmental risk assessment is done with respect to events that are slowly evolving (over years or decades) and any possible consequence materializes after a long period of time.

Conclusions

The combined data provided a more solid basis for decisions; however, inherent difficulties when combining data based on different methods were revealed. Separate assessment methodologies executed by different authorities may lead to incorrect assessments and inappropriate protective measures.

Recommendations and perspectives

The effects and the consequences of landslides in areas with contaminated soil need to be further investigated. The climate change expected to occur over the next hundred years will increase the probability of slope failures, such as landslides, in many parts of the world where the precipitation is predicted to increase (e.g., in Scandinavia). This will accentuate the need for methods and models to assess the impact of such events. In order to achieve established environmental quality objectives there is an urgent need for models and assessment principles (criteria) for contaminated areas that are at risk of experiencing slope failure. Knowledge of the governing processes that control the release and transport of substances under a variety of conditions, taking into account characteristic spatial and temporal scales, is required.  相似文献   

3.

Purpose

Payment for environmental services (PES) has assumed increasing importance in discussions about sustainable development strategies. Many of the PES programs are based on water erosion control and the corresponding environmental and economic benefits generated in the basins where they are implemented. The main objective of this study was to show how erosion susceptibility models can support PES programs.

Materials and methods

The application of the Universal Soil Loss Equation (USLE) in the Sarandi Experimental River Basin (32.7 km2), located in the Federal District, Brazil, was used as a study case. Then a scheme for organizing knowledge about ecosystem services related to erosion control and water resources was performed. Considering the generated scheme, the USLE results, the land use map, and the water use in the region, we evaluated how erosion modeling could support PES programs.

Results and discussion

The results show that a large part of the study basin (90%) presents “low” susceptibility to erosion, which is significant in terms of the use and conservation of ecosystem services, as well as being a limitation regarding the need for the implantation of PES programs for erosion control. Incentives for maintaining the natural vegetation in areas with higher erosion susceptibility have the greatest potential to justify PES programs in the study basin, and the sanitation company is the potential payer for erosion control in the Sarandi River Basin.

Conclusions

The application of the USLE in a spatially distributed form proved to be an important support tool for land management and the implementation of PES policies.  相似文献   

4.

Purpose

The aim of the study was to present variability of content and quality of soil organic matter on the landslide surface. Attempts were made to demonstrate the progress of the process of soil cover restoration 7 years after the landslides and biochemical activity of soil associated with the restoration of soil cover.

Materials and methods

The landslide area was located in southern Poland, in the Sucha Forest District. The soil properties were studied on a regular grid of points, which covered the entire area of the landslide. In soil samples, particle size, soil aggregates content, pH, total carbon and nitrogen content, microbial biomass carbon and nitrogen and the activity of dehydrogenases were determined. Additionally, the fractions of soil organic matter were used in the study as an indicator of soil quality due to the many important interactions of these components in the soil system.

Results and discussion

This study identified the landslide area as characterised by a stronger diversification of physical, chemical, and biological properties. The upper part of the landslide (in the area referred to as the landslide niche) is strongly eroded and characterised by the least advanced soil cover recovery. Additionally, low soil organic matter content was observed in the upper part of the landslide, which restricted biological activity of the studied soils. Soil microbial biomass carbon increased with restoration of landslide soils.

Conclusions

The soil organic matter plays a key role for the initial stage of soil formation on a landslide. The amount of soil organic matter on the studied landslide had a positive effect on the microbial biomasses C and N, dehydrogenases activity. Estimating the soil organic matter fraction can be utilised as an indicator of changes in soil.
  相似文献   

5.

Purpose

In-channel sediment storage is a fundamental component of a river basin’s sediment budget. Sediment remains stored until a competent flow re-suspends and transfers it downstream. The objectives of this paper are: (1) to quantify in-channel sediment storage and its spatial and temporal dynamics in the River Isábena, a mesoscale mountainous catchment draining highly erodible areas (badlands) in the south central Pyrenees (Ebro basin) and (2) to analyse changes in storage in the mainstem channel in relation to sediment yield from the main tributaries.

Materials and methods

In-channel sediment storage was measured seasonally (from winter 2011 to winter 2012) at 14 mainstem cross-sections using a re-suspension cylinder. A minimum of three locations were sampled at each section, and two levels of agitation were applied. Samples allowed determination of the amount of sediment accumulated per unit surface area at a given point in the river; estimates of the total storage in the bed of the mainstem Isábena were derived from these data. In addition, main five tributaries were monitored for discharge and suspended sediment transport.

Results and discussion

Results show an annual sedimentary cycle, with the sediment being produced in badlands during winter, transferred to the main channel during spring, stored in the river during summer and, finally, exported out of the basin by the autumn floods. Marked spatial variability was observed; sections located immediately downstream from the main tributaries (i.e. mainly Villacarli) generally held larger amounts of sediment in the bed. Runoff and sediment inputs from the tributaries were the most important factors determining sediment storage and its spatial and temporal dynamics. The overall sediment yield of the Isábena was much higher than the in-channel sediment storage, despite the large amounts stored in the channel.

Conclusions

This finding corroborates a previous published hypothesis that fine sediment in the drainage network has a mean residence time of the order of 1 year and that the basin’s delivery ratio exceeds 90 %; both of these characteristics can be related to the high connectivity between production areas (badlands) and the river network, and to the role of baseflows allowing continuous export of sediment from the catchment.  相似文献   

6.

Purpose

Visible and near-infrared (Vis-NIR) reflectance measurements may be an alternative technique to identify suspended sediment sources in streams of headwater catchments. In this study, we examined if Vis-NIR reflectance measurements are capable of estimating sediment source contributions to sediment yield and compared this technique with a more conventional (i.e. geochemical) technique.

Materials and methods

Two headwater catchments in Ethiopia, Unta (2,052 ha) and Desera (1,657 ha), were analysed with the same techniques in order to find similarities and differences in the results obtained. The first technique used Vis-NIR spectral analysis as a fingerprint, using a partial least squares regression model. The second technique was a quantitative composite fingerprinting technique using geochemical analysis of source materials and suspended sediment samples. As a comparison, the partial least squares model was also used on the geochemical data. In August and September 2009, 30 soil samples of three different land uses (landslides, croplands, and grazing lands) and 21 suspended sediment samples at the catchment outlet were collected. Source samples were sieved to <63 μm. Geochemical analyses consisted of total element concentrations, percentage carbon, percentage nitrogen, and atom percentage 15N and δ13C. Reflectance measurements were taken on dried source samples with a spectrometer.

Results and discussion

Neither technique was able to predict the contributions of the three land use types; they could only distinguish between landslide and topsoil material. The agreement between the results of both techniques was significant for the Unta catchment (R 2?=?0.80) but not for the Desera catchment (R 2?=?0.39). The uncertainty of the technique using Vis-NIR reflectance measurements was slightly higher than with the geochemical approach. Both techniques revealed that topsoil erosion played an important role during storm runoff discharges. Using the partial least squares model for the geochemical data revealed that uncertainty can differ greatly when using other statistical techniques.

Conclusions

The quantitative composite fingerprinting technique using spectral signatures from both source and suspended sediment samples was able to quantify the contribution of two source materials (landslides and topsoil). It provided a faster and more cost effective alternative to the conventional geochemical procedure.  相似文献   

7.

Purpose

Quantifying suspended sediment fluxes and dynamics across mountains, and identifying the origin of sediment in severely eroded areas, are of primary importance for the management of water resources. This contribution aims to generalise previous results from suspended sediment fingerprinting obtained during 2007?C2009 in a mesoscale Alpine catchment (the Bléone River; 905?km2) in France, and to assess variability in sediment sources throughout the second half of the twentieth century.

Materials and methods

Sediment fingerprinting, based on elemental geochemistry and radionuclide measurements, was conducted on a sediment core collected in an alluvial floodplain at the basin outlet. This technique was combined with hydro-sedimentary time-series to reconstruct the origin of suspended sediment deposited at this location over the last 50?years.

Results and discussion

Interpretation of sedimentation based on historical hydrological databases corroborates core dating obtained with 137Cs and 210Pbxs activity measurements. Black marls and (marly) limestone sources provided the main fraction of sediment throughout the sequence (40 and 22?%, respectively). However, we also found evidence for the occurrence of major floods carrying large quantities of sediment originating from Quaternary deposits and conglomerates (25 and 16?%, respectively). The variability of sediment sources throughout the sequence may reflect the spatial variability of rainfall within the catchment, which in turn reflects its origin. However, the relatively homogeneous sediment composition throughout the sequence confirms that core-derived information is representative of widespread flood events.

Conclusions

These results are consistent with those obtained in previous studies. They also outline the need to take into account the entire grain size range of fine sediment in order to provide an overall picture of sediment sources and transfers within highly erosive catchments. This study also emphasizes the importance of using archival data to validate the results of sediment fingerprinting studies conducted during short contemporary monitoring programmes, and to extend fingerprinting of sediment sources over longer time-scales which include large and widespread floods.  相似文献   

8.

Purpose

The Turvo/Grande drainage basin (TGDB), located in the northwestern region of S?o Paulo state, covers an area of 15,983?km2. The region is typically regarded as agricultural by the S?o Paulo State Environmental Agency, but the industrial area is expanding, and some studies have shown that metal concentrations in water can be higher than the values regulated by Brazilian law. Therefore, the aim of this study was to assess the role of sediments as a source or a sink of metals for drainage basin management.

Materials and methods

Interstitial water from different sediment depths (0?C42?cm) and the sediment?Cwater interface and sediment core samples were collected in February and July 2010 from the Preto, Turvo, and Grande rivers. Quantification of Cr, Cu, Fe, Mn, Ni, and Pb in these samples was performed by graphite furnace or flame atomic absorption spectrometry. Metal diffusive flux estimation from sediment into the overlying water was calculated by Fick??s First Law of Diffusion.

Results and discussion

The fluxes of all metals for the three rivers were positive, indicating diffusion into the overlying water. Ni and Pb showed the lowest diffusive fluxes, which ranged from 2.4 to 3,978???g?m?2?day?1 for Ni and from ?0.1 to 1,597???g?m?2?day?1 for Pb. In turn, Cu and Cr were subject to the largest transfer to water, especially in the dry season (Cr, 4.5?C7,673???g?m?2?day?1; Cu, 1.3?C14,145???g?m?2?day?1). The Preto River (urban area) showed smaller fluxes than the Grande River (agricultural area), and the values of the latter were higher than those found in other impacted areas of the world.

Conclusions

The diffusive fluxes indicate that sediments from the TGDB act as a source of metals for the water column, with increased export of metals, particularly Cr and Ni, from the sediment into the overlying water during the dry season.  相似文献   

9.

Purpose

Brazil is the largest producer of sugarcane in the world. This extensive production of sugarcane has changed the use and form of Brazilian soil, causing changes in the structural characteristics of humic substances (HS). In this context, the main objective of this study was to evaluate the effect of seasonality on a conditional stability constant (Kc) of the complexes HS-Cu (II) and HS-Cr (III) from the HS of urban and agricultural regions, with an emphasis on sugarcane culture.

Materials and methods

The study was conducted in the northwestern region of the state of São Paulo, which is the leading producer of sugar and ethanol in the country and is the region with the lowest percentage of riparian vegetation (3 %). Sediments were sampled during the rainy and dry seasons at four locations: (1) a typical agricultural area, (2) an urban area, (3) a sugarcane cultivation area, (4) and an area that receives the entire pollutant load from the hydrographic basin. The HS were extracted and characterized using conventional techniques. The Kc of the HS with copper (Cu) and chromium (Cr) ions was determined by fluorescence suppression employing the Stern–Volmer model.

Results and discussion

Kc values were higher in the rainy seasons for HS-Cu (II) and HS-Cr (III). The highest value of Kc for the HS with Cu (1.23) and Cr (5.2?×?10?1) ions was found during the rainy season in the area receiving the pollutant load from the basin and in the typical area of sugarcane cultivation, respectively. All of the FTIR spectra showed characteristic bands of HS, and the values of the E4/E6 ratio confirmed the presence of more aromatic groups. An elemental analysis and molecular fluorescence spectra in the emission mode confirmed that the HS from the agricultural area and sugarcane culture area mostly exhibited characteristics of humic acids and that the HS from the urban area and the area receiving the pollutant load from the basin had a mixture of humic and fulvic acids.

Conclusions

We can conclude that HS–metal complexes from the area that received the entire load of pollutants from the watershed and the typical area of sugarcane culture showed the highest stability among the study areas. The Kc values found in the basin were lower than those previously obtained by several studies that were performed in other locations. The HS obtained in rainy season had more aromatic groups in the HS structure, and the HS from the sugarcane area presented more characteristics of humic acids.  相似文献   

10.

Purpose

The aim of this work was to improve the understanding of the spatial and temporal dynamics of suspended sediment transport during flushing flows in a large regulated river, the lower River Ebro (NE Spain).

Materials and methods

Relationships between sediment and discharge (i.e. discharge (Q)–suspended sediment concentrations (SSC)) were examined during six flushing flows using continuous discharge and turbidity records obtained at six monitoring sections distributed along the lower Ebro River for the 2008–2011 period.

Results and discussion

Analyses revealed marked spatial and temporal patterns. At the spatial scale, the Q–SSC relationships were mostly influenced by the different routing velocity of discharge and sediment waves. At the upstream sections, the sediment peak usually preceded peak discharge (i.e. clockwise loop); however, flow routing through the 85-km channel length tends to increase the lag between them, modifying the hysteresis towards counter-clockwise patterns in the downstream direction. At the temporal scale, the season when the artificial releases were performed strongly influenced the sediment availability, with similar-magnitude flushing flows generating higher sediment peaks in autumn than in spring.

Conclusions

These results are of great interest in order to reinforce the flushing flows programme in the lower Ebro River, so as to help achieve the sustainability of the riverine and deltaic ecosystems.  相似文献   

11.

Background, aim, and scope

The rapid growth of the world’s population over the past few decades has led to a concentration of people, buildings, and infrastructure in urban areas. The tendency of urban areas to develop in sedimentary valleys has increased their vulnerability to earthquakes due to the presence of soft soil and sediment. Several earthquakes have clearly demonstrated that local soil and sediment conditions can have a significant influence on earthquake-induced ground motion and damage pattern, respectively. Many studies confirm the relationship between site effect and ground motion (Borcherdt in Bull Seismol Soc Am 60:29–61, 1970; Bouckovalas et al. in Geotech Geolog Eng (Historical Archive) 14(2):111–128, 1996; Fäh et al. in Seismology 1:87–10, 1997; Atakan et al. in Nat Hazards 15(2–3):139–164, 1997; Christaras et al. in Geodynamics 26(2–4):393–411, 1998; Raptakis et al. in Bull Earthquake Eng 2(3):285–301, 2004a; Raptakis et al. in Soil Dyn Earthq Eng 25:871–887, 2005; Marka et al. in Pure Appl Geophys 158:2349–2367, 2001; Marka et al. in Soil Dyn Earthq Eng 25(4):303–315, 2005; Importa et al. in Seismology 9(2):191–210, 2005; Tyagunov et al. in Nat Hazards 38:199–214, 2006; Lombardo et al. in Nat Hazards 38:339–354, 2006; Rayhani et al. in Geotech Geol Eng 21(1):91–100, 2008). In order to classify the suitability of the soil and subsurface sediment units for urban planning and compare their mechanical behavior with the non-uniform damage observed in the 2003 earthquake, we performed some geotechnical and geophysical analyses of soil and sediment samples collected from different locations in Bam City.

Methodology

Geophysical and geotechnical properties, such as grain size distribution, sorting, plasticity, Poison’s ratio, shear strength, compression index, permeability, and P and S wave velocities in soil and subsurface sediments, were measured. Maps (in GIS environment) and cross-sections were prepared for the study area.

Results

According to our observations, a great number of buildings were damaged in areas of the city where silty and clayey soils dominate, presenting very low permeability, low wave velocity together with high plasticity, and compressibility. In the study area, we recognized eight sediment types. Shear wave propagation velocities allowed for the identification of four seismic layers referred to as the surface layer, second layer, and third layer and seismic bedrock. We found that the damages observed in the Bam area were related to the physical and mechanical properties of the soil and subsurface sediment units. We also found that the soil thickness that was estimated by geophysical surveying shows a direct relationship with damage rate observations. Furthermore, we observed that landslide and qanat collapses have occurred in some areas where sand and silty sand soils and subsurface sediments dominate.

Discussion

The distribution of the damage shows a microzonation that is very serious in some points in the city along the main fault, especially where it is located on thick, fine, medium, and loose soil and sediments. In general, there is a discernable west to east increase in the damage across the city. The average level of destruction for the entire city was ~75%, while the eastern part of the city locally reached 100% destruction level. The major factors that influenced the damage and destruction in the Bam region were the distance of a given site from the seismic source, the quality of foundation soil and subsurface sediment, and the type of building. The Bam earthquake occurred on a single fault network comprising the Bam and Arg-e-Bam faults (Funning et al. in J Geophys Res 100(B09406):1–23, 2005). The sediments and soil of the area (unconsolidated silty sand and sandy gravel) belong to braided fluvial and alluvial facies. Most of the buildings near the epicenter area were old and constructed of mud bricks using mud cement.

Recommendations and perspectives

A combined sedimentological, geological, neotectonic, geotechnical, paleoseismological, and geophysical investigation in urban areas (especially in alluvial valleys) will give the detailed knowledge of the subsurface structure required for the accurate and precise seismic hazard assessments needed for effective earthquake protection planning. This paper shows that for the Bam situation, sedimentological data are required to provide an interpretive context for the geophysical data.  相似文献   

12.

Purpose

Dominant discharges and associated sediment dynamics of the River Isábena, a 445-km2 catchment in the central Pyrenees of Spain that is punctuated by badlands, are analysed.

Materials and methods

Calculations of suspended sediment loads are based on continuous records of discharge and turbidity obtained at the basin outlet for the period 2005–2010.

Results and discussion

Dominant discharges for sediment load (i.e. effective discharge) present a bimodal distribution, with one peak falling in the range of low flows and the other associated to less frequent but higher magnitude floods (i.e. bankfull). The highly suspended sediment availability in the badlands, together with the high connectivity between the badlands and the stream network and the important in-channel fine sediment storage, causes both large and small events to remobilize fines. Baseflows, despite their low competence, generate resuspension and massive sediment loads. Thus, effective discharge (i.e. the discharge which transports most of the sediment) is not solely associated with bankfull (i.e. the discharge that dominates channel form), but to a wider range of discharges. Consequently, this river channel is not specifically adjusted to convey most of the sediment load during high floods, as in many other rivers, but instead large volumes of sediment are transferred downstream at an almost constant rate.

Conclusions

Results suggest that dominant discharge may play a lesser role in terms of (suspended) sediment load in non-supply-limited fluvial systems and/or in rivers that permanently work close to, or at, full transport capacity, as is the case of the Isábena.  相似文献   

13.

Purpose

This study investigated the behavior of cadmium (Cd), lead (Pb), nickel (Ni), and zinc (Zn) in urban sediments collected in commercial, residential, and industrial areas of the city of Porto Alegre, Brazil, and evaluated different degrees of pollution in this urban subdrainage basin through the use of the geoaccumulation index (Igeo).

Materials and methods

Concentrations of Cd, Ni, Pb, and Zn were analyzed using acid digestion (EPA method 3050) in fractions <63 μm in 20 composite samples of urban sediment collected using a portable vacuum in 20 different sampling points on roads from three areas with diverse use: commercial, industrial, and residential.

Results and discussion

The values of Igeo were commercial area (3.35, Zn; 3.76, Cd; 3.60, Ni; 2.63, Pb) > residential area (3.34, Zn; 3.36, Cd; 2.94, Ni; 1.46, Pb) > industrial area (2.74, Zn; 1.78, Cd; 3.01, Ni; 1.45, Pb), indicating that the sediment was “highly contaminated” in the case of Zn and Ni, while for Cd, it was “moderately to highly contaminated,” and for Pb, it was “moderately contaminated.” The pollution is associated with traffic flow in all areas.

Conclusions

Research should be increased to make urban systems more sustainable, reducing their pollution potential and minimizing the delivery of potentially polluting particles into freshwater bodies. The Igeo allows for the determination of a simple index of diffuse pollution state associated with urban sediments.  相似文献   

14.
Specific stability of organic matter in a stormwater infiltration basin   总被引:1,自引:0,他引:1  

Purpose

In stormwater infiltration basins, sediments accumulate at the soil surface and cause a gradual filling up of soil pores. These sediments are composed of a mixture of natural and anthropogenic (as oil products) organic matters (OMs). The degradation kinetics of these sediment OMs and their biological stability has been neglected. This study aimed to characterize sediments OMs to assess their evolution and their capacity to degrade.

Materials and methods

To characterize OMs from the sediment layer, we measured at several places in the infiltration basin, total OM and carbon (C) contents, C distribution and biochemical fractions of the OM in the different size fractions, the sediment’s C mineralization potential, soil microbial biomass, and organic pollutants (polycyclic aromatic hydrocarbons (PAHs)) in the sediment layer.

Results and discussion

OM contents were high and varied from 66 to 193 g?kg?1 from the inlet to the outlet of basin. Depending on rainfall intensity and volume, organic particles were deposited at varying distances in the basin by decantation; this was confirmed by analysis of sediment C distribution in the different size fractions. Despite high amounts of OM, organic C had a low biodegradability. Mineralization potentials were low compared to natural soil (i.e., from 0.3 to 1.1 g CO2–C kg?1 total organic carbon). Biochemical fractionation of the organic fractions indicated that they were mainly composed of a soluble fraction, which contributed to reducing OM biodegradability. The activity of the sediment microbial biomass was low. PAH contents seemed to be partly responsible for the high biostability of OMs.

Conclusions

There was limited capacity for biodegradation of sediment OMs probably due to inhibitory effects of soluble PAHs and consequently low microbial activity.  相似文献   

15.

Purpose

Investigations of geochemical characteristics of sediments of the Zrmanja River estuary were done in order to determine the natural and anthropogenic factors influencing sediment composition in this area. For that purpose, spatial and temporal distribution of major and trace elements in the sediments and surrounding soils was studied.

Materials and methods

Sediment and soil samples, including one marl sample, were collected at 28 locations. All samples were subjected to total digestion and subsequently analysed by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for total concentration of 20 elements (Ag, Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Rb, Sb, Sn, Sr, Ti and Y). Obtained concentrations and their normalized counterparts were used for assessment of factors influencing sedimentation in the study area.

Results and discussion

The results of the analysis showed that the composition of sediments of the Zrmanja River estuary is primarily determined by the composition of bedrock, existing hydrodynamic conditions and the relative isolation of the studied basin. Nevertheless, anthropogenic influences were observed as well. The composition of the Zrmanja River sediments reflects the impact of the ex-alumina factory “Jadral” and transfer by wind of the material from its immediate surroundings to the water system of the Zrmanja River. In addition, sedimentation in the Zrmanja River was found to be influenced by the construction of reservoirs and the HE “Velebit”, hydroelectric power plant located in the Zrmanja watershed.

Conclusions

The geochemical composition of recent sediments of the Zrmanja River estuary is controlled primarily by natural factors, although the influence of anthropogenic activities is also evident.
  相似文献   

16.

Purpose

The geochemical compositions of sediments from three sectors in Trincomalee Bay (Koddiyar Bay, Thambalagam Bay and the Inner Harbour) in Sri Lanka were examined to determine fluvial and marine contributions and the effects of sorting and heavy mineral concentration. The present environmental status of the bay was also assessed.

Materials and methods

Forty-nine sediment samples were collected from Trincomalee Bay and analysed by X-ray fluorescence, yielding data for the major elements and 17 trace elements. Mean grain size and sorting were also measured. Data were compared with the compositions of sediments from the lower Mahaweli River, which supplies most of the clastic detritus to Trincomalee Bay.

Results and discussion

Sediments in the three sectors differ significantly in chemical composition, according to position relative to the Mahaweli River delta source, depositional environment, heavy mineral concentration and marine influences. According to accepted sediment quality guidelines, some As contamination may have occurred in the Inner Harbour and Thambalagam Bay and Cr contamination in all three sectors.

Conclusions

Proximal Koddiyar Bay sediments compare closely with Mahaweli River bedload. Although the clastic component in the more distal Thambalagam Bay and the Inner Harbour is also derived from the Mahaweli River, compositions are modified significantly by marine contributions. High concentrations of elements including Ti, Zr, Ce, Nb and Y in NW Koddiyar Bay are consistent with heavy mineral concentration by winnowing in high-energy zones. Some decoupling of Fe–Ti- and Zr-bearing heavy mineral assemblages may occur within the bay. Al-normalized metal enrichment factors and contour maps show that apparent contamination by As and Cr is spurious and is caused by locally high background levels from Mahaweli River detritus. This illustrates the importance of establishing local background levels of elements during environmental studies.  相似文献   

17.

Purpose

Soil contamination by pollutants is increasing, urging for remediation strategies but little is known about the functional sustainability of these strategies.

Materials and methods

We assessed the resistance and resistance of a microbial respiratory process, denitrification, to two different levels of heat-drought disturbances among (1) thermally treated industrial soil, (2) constructed Technosol made of thermally treated soil, compost, and paper by products, and (3) an arable soil.

Results and discussion

We showed that thermal remediation lead to low resistance and resilience after disturbances. However, addition of compost and paper mill sludge improved the stability.

Conclusions

This work underlines the relevance of resistance and resilience ecological concepts for assessing remediation strategies.  相似文献   

18.

Purpose

Few studies have described the bacterial community structures of turbid rivers. In this paper, the characteristics of the bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world, were studied.

Materials and methods

Water and sediment samples were collected from six sites along the river. Bacterial community composition was determined using the 16S ribosomal RNA (rRNA) gene clone library technique. The relationship between environmental parameters and bacterial diversity was analyzed.

Results and discussion

A total of 1,131 gene sequences were obtained and clustered into 639 operational taxonomic units (at the 97 % identity level), with Proteobacteria as the predominant phylum. The Shannon index for water samples ranged from 3.39 to 4.40 and was generally higher than that in other rivers; this was probably due to the high suspended particulate sediment (SPS) concentration in the Yellow River, which can provide more habitats for both aerobic and anaerobic bacteria. Also, the bacterial diversity of the water samples was slightly higher than that of the surface sediment samples. The bacterial diversity of water increased along the river in the downstream direction, while there was no trend for the sediment. Redundancy analysis indicated that pH, dissolved organic carbon (DOC), and SPS were the main factors controlling the water bacterial community in the Yellow River, and pH, nitrate–nitrogen, and water content were the main factors for the surface sediment bacterial community.

Conclusions

This study indicated that the bacterial diversity of the Yellow River is generally higher than that in other rivers, suggesting that SPS plays an important role in regulating bacterial diversity and community structure in aquatic environments.  相似文献   

19.

Purpose

The main goal of the study was to evaluate biogeochemical effects of particular factors changing the structure of landscapes due to enhanced mass migration and erosion of the outcropping rocks by studying transformation of chemical composition of the draining waters and flood plain soils; chemical composition of the solid and liquid phases of the Ardon River waters; and by assessing ecological consequences and risk of contamination of the area by heavy metals.

Materials and methods

Water, soil, and biota species (plants, algae, and amphibian) were sampled at the plots located up- and downstream the mining and industrial areas of North Ossetia (the Ardon River basin) before and after the mudflow that took place in 2002. The air-dried samples were decomposed in a mixture of mineral acids. Heavy metals were determined by means of AAS with the help of AAS-80 (Hitachi) or AAS-2A (KORTEC) using standard reference materials of hair (CRM 397), plant mixture (SBMT-02), and soil (SRM 2709). Hydrochemical and biochemical analyses were performed with the help of the known methods (Kraynov and Shvets 1992; Burtis et al. 2006).

Results and discussion

The study showed that activity of the Misur Mining Combine and its Ardon-Khost tailings caused a significant local increase of Pb, Cd, Cu, and Zn content in soils, water, and biotic components as compared to the background values. The mudflow of 2002 changed the structure of landscapes and was followed by a considerable transformation of chemical composition of the downstream river waters and floodplain soils, and by invasion of particular hydrophyte species. Algae and amphibian adapted to the changed conditions and indicated both natural and anthropogenic transformation of the environment. A distinct relation between the particle size of the suspended matter in the Ardon River waters and water salinity was discovered.

Conclusions

Therefore, the Unal basin presents a vivid example of modern natural and anthropogenic evolution of Pb-Zn biogeochemical province under conditions of the extreme and dynamic geochemical environment leading to enhanced risks of ecological damage. Algae species demonstrated high adaptive and indicative capacity in case of both the fast natural and man-made impact.
  相似文献   

20.

Purpose

Urban soils’ variability in the vertical direction presumably affects hydrological parameters at the timescale. Moreover, horizontal soil alterations at small spatial scales are common in urban areas. This spatio-temporal variability and heterogeneity of soil moisture and the possible influencing factors were to be described and quantified, using data of a soil monitoring network in the city of Hamburg, Germany.

Materials and methods

Soil moisture data from ten observation sites within the project HUSCO was evaluated for two different years. The sites were located within districts with different mean groundwater table depths and characteristic urban soil properties. Soil hydrological simulations with SWAP were calculated for a selected site.

Results and discussion

The temporal evolution of soil water content and tension for the sites was very distinct, related to soil substrate, organic matter content, and groundwater table depth. Impacts of different vegetation rooting depths, the soil substrates’ type, and to some extent the degree of disturbance on soil water dynamics could be identified. An impact of groundwater table depth on the water content of the topsoil during low-precipitation periods could be assumed. The comparison of the results of soil hydrological simulations with empirical data indicated an overestimation of infiltration and percolation for the given soil substrates.

Conclusions

While soil properties are mainly determinant for the long-term progression of soil hydrology, local site factors affect the short-term regime. A shallow groundwater table contributes to more constant water dynamics while the relative decrease of water during a dry phase is diminished.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号