首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural fiber composite replaces the conventional and synthetic materials in many fields especially in light weight applications. The randomly oriented short snake grass fiber reinforced isophthallic polyester composites are prepared by hand lay-up technique and finally compression molded. The various length and weight fraction of fiber are used in composite fabrication. The mechanical properties and water absorption under various climatic conditions are examined according to the prescribed standard. SEM image revealing the fiber pullout and breakage of the tensile and impact fractured composite specimens has been analysed and compared with control through scanning electron microscope. The result shows that the mechanical properties increase with increase in fiber length and weight fraction of the composites. The rate of water absorption increases with increase in temperature and time. Obtained experimental tensile strength of the composite is compared with various theoretical models such as Series, Hirsch’s, Halpin-Tsai, Modified Halpin-Tsai and Modified Bowyer & Brader’s and the obtained inferences are discussed.  相似文献   

2.
Fragrant screwpine fiber reinforced unsaturated polyester composites (FSFRUPC) were subjected to water immersion tests in order to examine the effect of water absorption on the mechanical properties. FSFRUP composite specimen containing 30 % fiber volume fraction with fiber length of 3 mm and 9 mm was considered in this study. Water absorption test was performed by immersing specimen in sea, distilled and well water at room temperature under different time durations (24, 48, 72, 96, 120, 144, 168, 192, 216, 240 hours). The tensile, flexural and impact properties of the water absorption specimen were appraised and compared with those of the dry composite specimen as per the ASTM standard. The tensile, flexural and impact properties of FSFRUPC specimen were found to decrease with the increase in the percentage of moisture uptake. The percentage of moisture uptake of composite was reduced after alkali treatment with 3 % NaoH for 3 hours. In moisture absorption test, the lowest diffusion coefficient, D (6.62513×10-13 m2/s) and swelling rate parameter, K sr (6.341×10-3 h-1) were obtained through the specimen immersed in sea water. The chemical composition, elemental composition of fiber and surface morphology of the FSFRUPC were analysed by using Fourier transform infrared spectroscopy (FTIR), Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) respectively.  相似文献   

3.
In the present paper, ramie fiber reinforced polymer (RFRP) plates prepared by hot compression process were subjected to water immersion at 20 oC and 40 oC for four weeks, and the variation of water uptake and mechanical properties with immersion time were investigated. It was found that the saturated water content and the coefficient of diffusion in RFRP were much higher than those in synthetic fiber based composites, due to the strong hydrophilic characteristic of the ramie fiber. After fully drying of the immersed samples, mass loss from 1.6 % to 3.6 % was found, indicating occurrence of a serious hydrolysis of the resin and the ramie fibers. After a short term of immersion (i.e., 1 day), RFRP showed a remarkable deterioration in the flexural and short beam shear properties. Further increase of the immersion time, the degradation rate of the mechanical properties was much reduced. After fully drying, the mechanical properties of the samples can be recovered to some extent, but still much less than the original values. The variation of mechanical property as a function of the water uptake content exhibits three stages (i.e., dramatic reduction, leveling off and quick decrease again). This may be due to the sequent occurrence of the degradation of natural fibers, fiber debonding and hydrolysis of the fiber and resin during immersion.  相似文献   

4.
Lightweight reinforced thermoplastic (LWRT) is a newly developed porous material. The low density, high rigidity, design flexibility and sound absorption of LWRT facilitate its application in the automotive industry. Fibers are bonded with a matrix and air is imported by deconsolidation, which is not only economical but also environmentally friendly. In this work, film stacking and non-woven methods were employed as the impregnation techniques to manufacture LWRT. The molded thickness and surface density of LWRT were varied to study their influences on the structures and mechanical properties. Different lengths of fibers in LWRT were selected and 7 % PP-g-MAH was added to the matrix and compared with unmodified matrix. The mechanical properties decreased with the increase in molded thickness and the decrease in surface density. With higher fiber length, the strength and stiffness increased, while the toughness exhibited a maximum value at 80 mm fiber length. The strength and stiffness of LWRT were also enhanced when 7 % PP-g-MAH was added.  相似文献   

5.
In this study, the maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) is used as the compatilizer for polylactic acid (PLA)/carbon fiber (CF) composites. The effects of SEBS-g-MA on the mechanical properties, thermal behavior, interfacial compatibility, and electrical characteristics of composites are then evaluated. The mechanical property tests indicate that when the amount of compatilizer increases, the tensile properties and flexural property of the composites decrease while their impact strength increases. The SEM results show that the compatilizer can decrease the interstices between PLA and CF, and thereby augments their interfacial compatibility. The differential scanning calorimetry (DSC) results confirm that the compatilizer results in a greater crystallization temperature and a greater crystallinity of the composites. The electrical characteristic results indicate that neither PLA nor SEBS-g-MA is not interfered with the conductive network that is constructed by CF, which is exemplified by an average electromagnetic shielding effect of above ?30 dB. This study confirms that SEBS-g-MA can improve interfacial compatibility and toughness, as well as attain good electrical characteristics of PLA/CF composites.  相似文献   

6.
The fiber-reinforced syntactic foam is a type of lightweight materials. In this paper, hollow glass microspheres/epoxy syntactic foams reinforced by carbon fibers are prepared. Carbon fibers of five mass fractions are used to obtain five types of reinforced syntactic foams. The effect of the fiber content and soaking corrosion on the flexural properties of syntactic foams are investigated. The results of soaking test show that the moisture rate in distilled water is greater than that in seawater. The flexural test results show that the flexural strength of syntactic foams increases obviously by adding fibers. The maximum value increases 25.5 % than that of composites without adding fibers when fiber-mass fraction is 5 %. Soaking corrosion reduces the flexural properties of the syntactic foams. The flexural strengths of syntactic foams immersed in water and seawater with 5 % fiber-mass fraction decrease 34.4 % and 37.5 % respectively. The main reasons of the flexural strength reduction of syntactic foams with soaking corrosion are discussed.  相似文献   

7.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

8.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures.  相似文献   

9.
This study reports the effects of the volume fraction of natural jute fiber and the content of the alkali activator on the physical and mechanical properties, sulfate ion resistance, and water purification characteristics of non-cement porous vegetation blocks. The volume fractions of the natural jute fiber were 0.0, 0.1, and 0.2 %, and the alkali activator was applied by replacing 5, 6, 7, 8, 9, and 10 % by weight of the blast-furnace slag. Void ratio, compressive strength, sulfate resistance, and water purification characteristics were characterized. The results indicate that increasing natural jute fiber and the alkali activator content increased the void ratio and improved compressive strength and sulfate resistance. pH was not affected by natural jute fiber content but increased with alkali activator content. At alkali activator contents of 9–10 %, the observed compressive strength was similar to that of cement blocks, whereas mixes with alkali activator contents of 8–10 % showed similar or greater void ratios than those of cement blocks. The compressive strength of the cement blocks decreased following immersion in sulfate solutions; however, the compressive strength of the mixes with the alkali activator and blast-furnace slag increased following exposure to sulfates. Water purification characteristics were examined by allowing water to filter through the blocks; the non-cement porous vegetation blocks reduced the suspended solids, 5-day biological oxygen demand, chemical oxygen demand, total nitrogen, and total phosphorous in the water by >40 %.  相似文献   

10.
Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.  相似文献   

11.
This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites’ flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.  相似文献   

12.
This paper presents the results of a current research of the tensile properties: ultimate strength and stiffness modulus in composites using natural reinforcements. Hemp short fibres and pine sawdust were randomly distributed in polypropylene matrices to produce composite plates with 5 mm thickness by injection moulding technique. The specimens were cut from these plates with bone dog shape or plane bars, and tested in tensile and four points bending, respectively. Stiffness modulus and ultimate stresses were obtained for different weight fraction content of reinforcement and discussed taking in account the failure modes. Four series of pine sawdust reinforced specimens were immersed in water in periods up to 20 days. Periodically, the specimens were removed from the water recipient and immediately tested. The damage effect of water immersion time was discussed based in the tensile results and in the water absorption curves.  相似文献   

13.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

14.
Present research investigates the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite with fiber loading variation and observes the effect of chemical treatment of fiber on property enhancement of the composites. Composites were manufactured using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt%). Fiber ratio’s were varied (jute:coir=1:1, 3:1 and 1:3) for 20 % fiber loaded composites. Both jute and coir fiber was treated using 5 % and 10 % NaOH solutions. Composites were also prepared using treated fiber with jute-coir fiber ratio of 3:1. Tensile, flexural, impact and hardness tests and Fourier transform infrared spectroscopic analysis were conducted for characterization of the composites. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young’s modulus with increase in fiber loading. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness values were found to be increased with increase in fiber loading. All these properties enhanced with the enhancement of jute content except impact strength. 5 % NaOH treatment provided an improving trend of properties whereas, 10 % NaOH treatment showed the reverse one. The FTIR analysis of the composites indicated decrease of hemicelluloses and lignin content with alkali treatment.  相似文献   

15.
Although the pineapple leaf fibers (PALF) are long known as domestic threading material in Malaysia, they are currently of little use despite being mechanically and environmentally sound. This study evaluated some selected properties of Josapine PALF and PALF-vinyl ester composites as well as the effects of simple abrasive combing and pretreatments on fiber and composite properties. Using PALF vascular bundles extracted from different parts of the leaves did not significantly affect PALF-vinyl ester composite mechanical properties. At low weight fraction and consolidating pressure, PALF fibers regardless of diameters and locations performed equally well in enhancing composite flexural properties under static loading. Finer bundles enhanced PALF-vinyl ester composite toughness indicated by tests at higher speeds. Abrasive combing produces cleaner and finer bundles suitable for reinforcing composites for applications not requiring high toughness.  相似文献   

16.
The mechanical properties of the nanocomposites are dependent, not only of the clays content but, also, of the resin type and manufacturing process. In this context, the present study intends to develop a systematic study involving a low glass transition temperature (Tg) and low permeability epoxy resin (SR 1500 and the hardener SD 2503) with a commercially Nanomer I30 E nanoclays. Two dispersion processes were compared (direct (DM) and indirect method (IDM)) in terms of mechanical properties, as well as the influence of nanoclay content and hydro aging effect. It was possible to observe that the composites obtained by the indirect method present lower mechanical properties than the neat resin because there is residual acetone. For DM composites the tensile strength, fracture toughness and the specific energy absorbed by impact decreases with the reinforcement content, caused by particle agglomerates. Elastic modulus, at 25 °C, increases significantly and Tg increases slightly with the addition of nanoclays. Hydro aging promotes a progressive decreasing of the tensile strength and fracture toughness, with the clay content, reaching about 15 % and 7 %, respectively, for 6 wt% of nanoclays. On the other hand, a small increasing on specific energy absorbed was observed.  相似文献   

17.
The present paper is concerned with the effect of cork and rice husk ash micro particles fillers on the mechanical properties (flexural resistance, fracture toughness, impact absorbed energy, elastic and viscous moduli) of polyester based composite. Composite sheets were hand molded using weight filler fractions of 1, 2.5, and 5 %. Flexural strength of filled materials was much lower than the polyester matrix, with more pronounced effect for cork powder, decreasing significantly with filler content increases. Fracture toughness decreases also on the filled composites. Using cork powder fracture toughness decreases significantly when filler content increases, while for rice husk ash filler a slight increase was observed. Both fillers improve absorbed impact energy, peaking at about 2.5 % of filler content. Best improvements were obtained using rice husk ash powder, reaching about 30 %. Both fillers increase glass transition temperature and the maximum use temperature and also the elastic modulus compared with polyester. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties.  相似文献   

18.
In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the internal bond strength of the composites were negatively influenced by increasing coir fiber content. However, the flexural strength, the tensile strength, and the hardness of the composites improved with increasing the coir fiber content up to 60 wt %. The flame retardancy of the composites improved with increasing coir fiber content. The results suggest that an optimal composite panel formulation for automotive interior applications is a mixture of 60 wt % coir fiber, 37 wt % PP powder, and 3 wt % MAPP.  相似文献   

19.
Twenty first century has witnessed remarkable achievements in green technology in material science through the development of biocomposites. Oil palm fiber (OPF) extracted from the empty fruit bunches is proven as a good raw material for biocomposites. The cellulose content of OPF is in the range of 43%–65% and lignin content is in the range of 13%–25%. A compilation of the morphology, chemical constituents and properties of OPF as reported by various researchers are collected and presented in this paper. The suitability of OPF in various polymeric matrices such as natural rubber, polypropylene, polyvinyl chloride, phenol formaldehyde, polyurethane, epoxy, polyester, etc. to form biocomposites as reported by various researchers in the recent past is compiled. The properties of these composites viz., physical, mechanical, water sorption, thermal, degradation, electrical properties, etc. are summerised. Oil palm fiber loading in some polymeric matrices improved the strength of the resulting composites whereas less strength was observed in some cases. The composites became more hydrophilic upon addition of OPF. However treatments on fiber surface improved the composite properties. Alkali treatment on OPF is preferred for improving the fiber–matrix adhesion compared to other treatments. The effect of various treatments on the properties of OPF and that of resulting composites reported by various researchers is compiled in this paper. The thermal stability, dielectric constant, electrical conductivity, etc. of the composites improved upon incorporation of OPF. The strength properties reduced upon weathering/degradation. Sisal fiber was reported as a good combination with OPF in hybrid composites.  相似文献   

20.
The effects of chemical treatment on the flexural and impact properties of sugar palm fiber reinforced high impact polystyrene (HIPS) composites were studied. Two types of concentration of alkali solution (4 % and 6 %) and also two types of percentage of compatibilizing agent (2 % and 3 %) have been used in this study. The alkaline treatment is carried out by immersing the fibers in 4 % and 6 % of alkali solution for 1 hour. A 40 wt. % of alkali treated sugar palm fiber (SPF) was blended with HIPS using Brabender machine at temperature of 165 °C. The second treatment was employed by compounding mixture of sugar palm fibers and HIPS with 2 and 3 % of compatibilizing agent using the same procedure. The composites plate with dimensions of 150×150×3 mm was produced by using the hot press machine. The flexural strength, flexural modulus and impact strength of composites were measured and the values were compared to the untreated composites. Improvement of the mechanical properties of the composites has been shown successfully. Alkali treatment using 6 % NaOH solution improve the flexural strength, flexural modulus and impact strength of the composites as amount 12 %, 19 % and 34 % respectively, whereas compatibilizing agent treatment only showed the improvement on the impact strength, i.e. 6 % and 16 % improvement for 2 % and 3 % MAH respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号