首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal stability of anthocyanin extract isolated from the dry calyces of Hibiscus sabdariffa L. was studied over the temperature range 60-90 degrees C in aqueous solutions in the presence or absence of beta-cyclodextrin (beta-CD). The results indicated that the thermal degradation of anthocyanins followed first-order reaction kinetics. The temperature-dependent degradation was adequately modeled by the Arrhenius equation, and the activation energy for the degradation of H. sabdariffa L. anthocyanins during heating was found to be approximately 54 kJ/mol. In the presence of beta-CD, anthocyanins degraded at a decreased rate, evidently due to their complexation with beta-CD, having the same activation energy. The formation of complexes in solution was confirmed by nuclear magnetic resonance studies of beta-CD solutions in the presence of the extract. Moreover, differential scanning calorimetry revealed that the inclusion complex of H. sabdariffa L. extract with beta-CD in the solid state was more stable against oxidation as compared to the free extract, as the complex remained intact at temperatures 100-250 degrees C where the free extract was oxidized. The results obtained clearly indicated that the presence of beta-CD improved the thermal stability of nutraceutical antioxidants present in H. sabdariffa L. extract, both in solution and in solid state.  相似文献   

2.
Aqueous solutions of natamycin and its beta-cyclodextrin (beta-CD), hydroxypropyl beta-cyclodextrin, and gamma-cyclodextrin (gamma-CD) inclusion complexes were completely degraded after 24 h of exposure to 1000 lx fluorescent lighting at 4 degrees C. After 14 days of storage in darkness at 4 degrees C, 92.2% of natamycin remained in active form. The natamycin:beta-CD complex and natamycin:gamma-CD complex were significantly more stable (p < 0.05) than natamycin in its free state in aqueous solutions stored in darkness at 4 degrees C. Clear poly(ethylene terephthalate) packaging with a UV light absorber allowed 85.0% of natamycin to remain after 14 days of storage under 1000 lx fluorescent lighting at 4 degrees C. Natamycin:cyclodextrin complexes can be dissociated for analysis in methanol/water/acetic acid, 60:40:5, v/v/v. Natamycin and its complexes in dissociated form were quantified by reverse phase HPLC with detection by photodiode array at 304 nm.  相似文献   

3.
The formulation of inclusion complexes of the herbicide norflurazon as guest and beta-cyclodextrin (beta-CD) as host has been studied as a first step in the use of cyclodextrins to obtain improved formulations of this herbicide. The interaction of norflurazon with beta-CD produced the formation of an inclusion complex in solution and in solid state. The inclusion of norflurazon in beta-CD in solution was studied by phase solubility, and an apparent stability constant of 360 M(-)(1), a 1:1 stoichiometric ratio for the complex, and up to 5-fold increase in norflurazon solubility were determined. Three processing methods (kneading, spray drying and vacuum evaporation) were used to prepare norflurazon-beta-CD solid inclusion complexes. X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy techniques were used to study the solid complexes. From the different solid systems, an increase of norflurazon aqueous dissolution rate was obtained in comparison to the uncomplexed herbicide. This finding is a first step to obtain controlled release and/or protective formulations of norflurazon, which allow a more rational application of norflurazon, diminishing the use of organic solvents and increasing its efficacy.  相似文献   

4.
Cyclodextrins are common compounds capable of forming inclusion complexes with a variety of pesticides to improve their solubility, bioavailability, and stability. In this study, chloramidophos (CP) was inclusion-complexed with beta-cyclodextrin (beta-CD) by a kneading method in an attempt to gain a more stable but equally effecacious formulation compared with CP alone. A 1:1 CP-beta-CD complex with an inclusion constant of 203.0 M(-1) was determined to exist by UV spectrophotometry. The structural identification, thermal stability, and biological assays of the CP-beta-CD complex were then carried out with a product with the maximum guest loading efficiency. The data measured by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD), where the endothermic peaks of beta-CD, the FT-IR bands, and the XRD peaks were generally changed, deduced the formation of complex. Results of the thermal stability assay showed that the degradation rate of CP in 14-day incubation was slowed by a factor of 3.6 when it was complexed with beta-CD. Then, activity and toxicity of CP influenced by the encapsulated process of beta-CD were evaluated by an in vitro acetylcholinesterase (AChE) inhibition assay and an acute aquatic toxicity assay, respectively. No significant differences were found in both the two biological assays by a t-test. This indicated that the encapsulation process greatly improved the thermal stability of the pesticide with no adverse effects on bioefficacy compared to that of CP. There is a promising outlook for CP-beta-CD to be produced as the active ingredient of various formulation additives of CP for its continued application.  相似文献   

5.
The effect of beta-cyclodextrin (beta-CD) on the improvement of the fungicidal activity of iprodione has been investigated. The inclusion complexation of beta-CD with iprodione has been prepared and characterized by integrating some analytical techniques (such as electrospray ionization-mass spectrometry, differential scanning calorimetry, thermogravimetry, x-ray diffraction, and scanning electron microscopy) and molecular simulation methods. The beta-CD/iprodione inclusion complex has exhibited different spectroscopic features and properties from iprodione. The stoichiometric ratio and stability constant describing the extent of formation of inclusion complexes have been determined by phase solubility studies. The calculated apparent stability constant of the iprodione/beta-CD complex was 407.5 M-1. The obtained inclusion complexes were found to significantly improve the water solubility of iprodione, and there is a 4.7-fold increase in the presence of 13 mM beta-CD as compared with the solubility of iprodione in deionized water in the absence of beta-CD. The bioassay demonstrated that the complex displayed over two-fold increase of the fungicidal activity. In addition, the possible structure of the beta-CD/iprodione complex was proposed according to the results of the molecular dynamic simulation. The present study provided useful information for a more rational application of iprodione, diminishing the use of organic solvents and increasing its efficacy.  相似文献   

6.
Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were used to evaluate the effects of synthesis parameters, including reaction time (4 to 8 h), temperature (110 to 130 degrees C), and substrate molar ratio of fatty acid methyl esters (FAME) from soybean oil to methyl glucoside (4:1 to 6:1) on the percent molar conversion to methyl glucoside polyester (MGPE), utilizing 15 g of methyl glucoside as the reactant in a solvent-free system. All synthesis variables (reaction time, temperature, and substrate molar ratio) exhibited significant effects on percent molar conversion to MPGE in the experimental range. Optimization of the synthesis reaction was suggested by ridge max analysis to compute the estimated ridge of optimum response for increasing radii from the center of the original design. Based on the ridge max analysis, optimum conditions were: reaction time 6.3 h, synthesis temperature 123.8 degrees C, and substrate molar ratio 5.9:1. The predicted molar conversion was 55.68% (i.e., 15 g methyl glucoside yielded 56.5 g MGPE) at the optimum point.  相似文献   

7.
Structured lipids (SLs) containing palmitic and oleic acids were synthesized by transesterification of tripalmitin with either oleic acid or methyl oleate as acyl donor. This SL with palmitic acid at the sn-2 position and oleic acid at sn-1,3 positions is similar in structure to human milk fat triacylglycerol. LIP1, an isoform of Candida rugosa lipase (CRL), was used as biocatalyst. The effects of reaction temperature, substrate molar ratio, and time on incorporation of oleic acid were investigated. Reaction time and temperature were set at 6, 12, and 24 h, and 35, 45, and 55 degrees C, respectively. Substrate molar ratio was varied from 1:1 to 1:4. The highest incorporation of oleic acid (37.7%) was at 45 degrees C with methyl oleate as acyl donor. Oleic acid resulted in slightly lesser (26.3%) incorporation. Generally, higher percentage incorporation of oleic acid was observed with methyl oleate (transesterification) than with oleic acid (acidolysis). In both cases percentage incorporation increased with reaction time. Incorporation decreased with increase in temperature above 45 degrees C. Initially, oleic acid incorporation increased with increase in substrate molar ratio up to 1:3. LIP1 was also compared with Lipozyme RM IM as biocatalysts. The tested reaction parameters were selected on the basis of maximum incorporation of C18:1 obtained during optimization of LIP1 reaction conditions. Reaction temperature was maintained at 45, 55, and 65 degrees C. Lipozyme RM IM gave highest oleic acid incorporation (49.4%) at 65 degrees C with methyl oleate as acyl donor. Statistically significant (P < 0.05) differences were observed for both enzymes. SL prepared using Lipozyme RM IM may be more suitable for possible use in human milk fat substitutes.  相似文献   

8.
Olive leaf extract, rich in oleuropein, formed an inclusion complex with beta-cyclodextrin (beta-CD) upon mixing of the components in aqueous media and subsequent freeze-drying. Inclusion complex formation was confirmed by differential scanning calorimetry (DSC). DSC thermograms indicated that the endothermic peaks of both the olive leaf extract and the physical mixture of olive leaf extract with beta-CD, attributed to the melting of crystals of the extract, were absent in DSC thermogram of inclusion complex. Moreover, DSC studies under oxidative conditions indicated that the complex of olive leaf extract with beta-CD was protected against oxidation, since it remained intact at temperatures where the free olive leaf extract was oxidized. Phase solubility studies afforded A L type diagrams, 1:1 complex stoichiometry, a moderate binding constant ( approximately 300 M (-1)), and an increase of the aqueous solubility by approximately 50%. The formation of the inclusion complex was also confirmed by nuclear magnetic resonance (NMR) studies of beta-CD solutions in the presence of both pure oleuropein and olive leaf extract. The NMR data have established the formation of a 1:1 complex with beta-CD that involves deep insertion of the dihydroxyphenethyl moiety inside the cavity from its secondary side.  相似文献   

9.
Hexyl acetate, a short-chain ester with fruity odor, is a significant green note flavor compound and widely used in the food industry. The ability for immobilized lipase from Mucor miehei (Lipozyme IM-77) to catalyze the transesterification of hexanol with triacetin was investigated in this study. Response surface methodology and five-level-five-factor central composite rotatable design were adopted to evaluate the effects of synthesis variables, such as reaction time (2-10 h), temperature (25-65 degrees C), enzyme amount (10-50%; 0.024-0.118 BAUN), substrate molar ratio of triacetin to hexanol (1:1 to 3:1), and added water content (0-20%) on percentage molar conversion of hexyl acetate. The results showed that reaction temperature and substrate molar ratio were the most important parameters and that added water content had less of an effect on percent molar conversion. On the basis of canonical analysis, optimum synthesis conditions were as follows: reaction time, 7.7 h; temperature, 52.6 degrees C; enzyme amount, 37.1% (0.089 BAUN); substrate molar ratio, 2.7:1; and added water, 12.5%. The predicted value was 88.9% molar conversion, and the actual experimental value was 86.6% molar conversion.  相似文献   

10.
Structured lipids (SLs) containing palmitic, oleic, stearic, and linoleic acids, resembling human milk fat (HMF), were synthesized by enzymatic acidolysis reactions between tripalmitin, hazelnut oil fatty acids, and stearic acid. Commercially immobilized sn-1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as the biocatalyst for the enzymatic acidolysis reactions. The effects of substrate molar ratio, reaction temperature, and reaction time on the incorporation of stearic and oleic acids were investigated. The acidolysis reactions were performed by incubating 1:1.5:0.5, 1:3:0.75, 1:6:1, 1:9:1.25, and 1:12:1.5 substrate molar ratios of tripalmitin/hazelnut oil fatty acids/stearic acid in 3 mL of n-hexane at 55, 60, and 65 degrees C using 10% (total weight of substrates) of Lipozyme RM IM for 3, 6, 12, and 24 h. The fatty acid composition of reaction products was analyzed by gas-liquid chromatography (GLC). The fatty acids at the sn-2 position were identified after pancreatic lipase hydrolysis and GLC analysis. The results showed that the highest C18:1 incorporation (47.1%) and highest C18:1/C16:0 ratio were obtained at 65 degrees C and 24 h of incubation with the highest substrate molar ratio of 1:12:1.5. The highest incorporation of stearic acid was achieved at a 1:3:0.75 substrate molar ratio at 60 degrees C and 24 h. For both oleic and stearic acids, the incorporation level increased with reaction time. The SLs produced in this study have potential use in infant formulas.  相似文献   

11.
The beta-cyclodextrin-thiabendazole (beta-CD-TBZ) inclusion complex was synthesized and its structure characterized by (1)H NMR and IR. The mechanism of the supramolecular interaction of TBZ and beta-CD has been studied and discussed by spectrophotometry. The results showed that the phenyl ring of TBZ was included in the beta-CD cavity to form a 1:1 host-guest complex with an apparent formation constant of 1.60 x 10(3) mol(-1).L. On the basis of the enhancement of the absorbance of TBZ produced through complex formation, a spectrophotometric method for the determination of TBZ in bulk aqueous solution in the presence of beta-CD was developed. The linear relationship between the absorbance and TBZ concentration was obtained in the range of 8.86 x 10(-7)-1.45 x 10(-5) mol/L. The detection limit was 2.71 x 10(-7)mol/L, and the relative standard deviation was 0.86%. The interference of 48 coexisting substances was slight. The proposed method has been successfully applied to the determination of TBZ in fruits with recoveries of 96-103%.  相似文献   

12.
The supramolecular interaction of curcumin and beta-cyclodextrin (beta-CD) has been studied by spectrophotometry. The mechanism of the inclusion was studied and discussed based on the variations of pK(a), absorption intensity, and infrared spectrograms. The results show that beta-CD reacts with curcumin to form a 2:1 host-guest complex with an apparent formation constant of 5.53 x 10(5) mol(-2) x L2. Based on the enhancement of the absorbance of curcumin produced through complex formation, a spectrophotometric method for the determination of curcumin in bulk aqueous solution in the presence of beta-CD was developed. The linear relationship between the absorbance and curcumin concentration was obtained in the range of 0-15 microg/mL, with a correlation coefficient (r) of 0.9991. The detection limit was 0.076 microg/mL. The proposed method was used to determine the curcumin in curry and mustard with satisfactory results.  相似文献   

13.
Lauroylation of wheat straw hemicelluloses in the N, N-dimethylformamide/lithium chloride system under microwave irradiation was studied. The parameters optimized included lauroyl chloride concentration as the molar ratio of xylose unit in hemicelluloses/lauroyl chloride (1:1-1:4), 4-dimethylaminopyridine concentration (2-10%), reaction time (1-8 min), molar ratio of xylose unit in hemicelluloses/triethylamine (1:2), and reaction temperature (78 degrees C). The reaction efficiency was measured by the yield and degree of substitution (DS). Under an optimum reaction condition (molar ratio of xylose unit in hemicelluloses/lauroyl chloride 1:3, molar ratio of xylose unit in hemicelluloses/triethylamine 1:2, 5% 4-dimethylaminopyridine, 78 degrees C, 5 min), a DS of 1.63 was obtained. Changes in the structure of hemicelluloses were verified by FT-IR and 1H and 13C NMR spectroscopy. The results showed that the lauroylation occurred preferentially at the C-3 position of the xylose unit in hemicelluloses. The behavior of the lauroylated hemicelluloses was monitored by means of thermogravimetric (TG) and differential thermogravimetric (DTG) analysis. It was found that the product with low DS had a lower thermal stability than the native hemicelluloses, whereas the lauroylated polymers with high DS showed a higher thermal stability than the unmodified hemicelluloses.  相似文献   

14.
Ethylene dibromide (EDB) levels in food samples were determined by gas chromatography with a high-resolution capillary column and electron capture detector. The capillary column used was 3 mm id X 25 m cross-linked 5% phenylmethyl silicone. Column temperature was set at 40 degrees C by a coolant containing carbon dioxide gas. Optimum temperatures of the injection port and detector were 200 and 350 degrees C, respectively. The detection limit was 0.5 ppb and linear from 1 to 20 pg on the dynamic range. EDB residues in food samples were extracted with n-hexane by steam distillation. A few impurity peaks appeared near EDB on the chromatogram; however, the EDB peak was resolved. Recoveries of EDB from wheat and brown rice ranged from 66.1 to 99.6%. EDB was detected in 3 samples of imported wheat at a range of 0.74-1.70 ppb, and was not detected at all in 37 samples. The EDB remaining in EDB-fortified cookies after baking was examined. The amounts of EDB were reduced to 30 to 50% of the original amounts by kneading the dough, and to below 1.5% by baking.  相似文献   

15.
Natamycin is a broad spectrum antimycotic with very low water solubility, which is used to extend the shelf life of shredded cheese products. beta-Cyclodextrin (beta-CD), hydroxypropyl beta-cyclodextrin (HP beta-CD), and gamma-cyclodextrin (gamma-CD) were found to form inclusion complexes with natamycin in aqueous solution. The increase in solubility of natamycin with added beta-CD was observed to be linear (type A(L) phase solubility diagram). The 1:1 stability constant of natamycin:beta-CD complex was estimated from its phase solubility diagram to be 1010 M(-1). The phase solubility diagrams of both gamma-CD and HP beta-CD exhibited negative deviation from linearity (type A(N) diagram) and, therefore, did not allow the estimation of binding constants. The water solubility of natamycin was increased 16-fold, 73-fold, and 152-fold with beta-CD, gamma-CD, and HP beta-CD, respectively. The natamycin:CD inclusion complexes resulted in in vitro antifungal activity nearly equivalent to that of natamycin in its free state.  相似文献   

16.
Inclusion complex of conjugated linoleic acid (CLA) with cyclodextrins   总被引:8,自引:0,他引:8  
Conjugated linoleic acid (CLA) inclusion complexes with alpha-cyclodextrin (alpha-CD), beta-cyclodextrin (beta-CD), and gamma-cyclodextrin (gamma-CD) (designated CLA/CDs inclusion complexes) were prepared to determine the mole ratio of CLA complexed with CDs and the oxidative stability of CLA in the CLA/CDs inclusion complexes. When measured by GC, (1)H NMR, and T(1) value analyses, 1 mole of CLA was complexed with 5 mol of alpha-CD, 4 mol of beta-CD, and 2 mol of gamma-CD. The oxidation of CLA induced at 35 degrees C for 80 h was completely prevented by the formation of CLA/CDs inclusion complexes.  相似文献   

17.
Tomato polygalacturonase (PG) was extracted from ripe tomatoes and purified by cation exchange and gel filtration chromatography. Cation exchange chromatography yielded two peaks with PG activity: the first peak was identified as PG2 (the heat labile form) and the second one as PG1 (the heat stable form). Both PG2 and PG1 presented a molar mass of 42 kDa when analyzed by SDS-PAGE and an isoelectric point >9.3. Thermal inactivation of purified tomato PG2, at pH 4.4, in the temperature range from 53 to 63 degrees C, followed first-order kinetics. Combined pressure-temperature inactivation of tomato PG2 was studied at 5-55 degrees C/100-600MPa. Under all pressure-temperature conditions, PG2 inactivation followed first-order kinetics. Purified tomato PG1, although more thermostable than PG2, showed a pressure stability very similar to that of PG2. These results indicate that high-pressure processing is an efficient alternative to inactivate tomato PG without the need for applying high temperatures.  相似文献   

18.
Structured triacylglycerols (ST) from canola oil were produced by enzymatic acidolysis in a packed bed bioreactor. A commercially immobilized 1,3-specific lipase, Lipozyme IM, from Rhizomucormiehei, was the biocatalyst and caprylic acid the acyl donor. Parameters such as substrate flow rate, substrate molar ratio, reaction temperature, and substrate water content were examined. High-performance liquid chromatography was used to monitor the reaction and product yields. The study showed that all of the parameters had effects on the yields of the expected di-incorporated (dicaprylic) ST products. Flow rates below 1 mL/min led to reaction equilibrium, and lower flow rates did not raise the incorporation of caprylic acid and the product yield. Incorporation of caprylic acid and the targeted di-incorporated ST was increased by approximately 20% with temperature increase from 40 to 70 degrees C. Increasing the substrate molar ratio from 1:1 to 7:1 increased the incorporation of caprylic acid and the product yield slightly. Water content in the substrate also had a mild influence on the reaction. Water content at 0.08% added to the substrate gave the lowest incorporation and product yield. The use of solvent in the medium was also studied, and results demonstrated that it did not increase the reaction rate at 55 degrees C when 33% hexane (v/v) was added. The main fatty acids at the sn-2 position of the ST were C(18:1), 54. 7 mol %; C(18:2), 30.7 mol %; and C(18:3), 11.0 mol %.  相似文献   

19.
The inactivation kinetics of polyphenol oxidase (PPO) in freshly prepared grape must under high hydrostatic pressure (100-800 MPa) combined with moderate temperature (20-70 degrees C) was investigated. Atmospheric pressure conditions in a temperature range of 55-70 degrees C were also tested. Isothermal inactivation of PPO in grape must could be described by a biphasic model. The values of activation energy and activation volume of stable fraction were estimated as 53.34 kJ mol(-1) and -18.15 cm3 mol(-1) at a reference pressure of 600 MPa and reference temperature of 50 degrees C, respectively. Pressure and temperature were found to act synergistically, except in the high-temperature-low-pressure region where an antagonistic effect was found. A third-degree polynomial model was successfully applied to describe the temperature/pressure dependence of the inactivation rate constants of the stable PPO fraction in grape must.  相似文献   

20.
This study investigated the effects of temperature and sodium chloride concentration on the proteolytic and amylolytic activities of soy sauce koji. The optimal temperatures for both protease and amylase were found in the range of 50-55 degrees C. The protease was not stable at 55 degrees C and retained only approximately 20% residual activity after incubation at 55 degrees C for 4 h. The protease was labile in sodium chloride solution, whereas the amylase was quite stable. The residual protease activity in an 18% NaCl solution was only approximately 3%. The harvested koji was mixed with 1.5 volumes of water (v/w) and incubated at 45 degrees C for 48 h; the total nitrogen and amino nitrogen contents were 1.3 and 0.56%, respectively. The results indicated that the hydrolysis of koji at the critical temperature of 45 degrees C could be employed as a rapid fermentation method to reduce the time for soy sauce manufacturing. According to this study, the combination of 5% sodium chloride and fermentation at 45 degrees C was considered as the best condition for the prohydrolysis of koji for making soy sauce. In addition, the critical temperature of 45 degrees C was very important when used in the preparation of protein hydrolysates for the flavoring industry and for the preparation of biologically active peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号