首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The amount of monounsaturated fatty acid (MUFA) is intimately related to adipose softness, melting point (MP) and flavor in beef. Stearoyl‐CoA desaturase (SCD) is a main gene involved in MUFA synthesis. Mature adipose tends to be highly saturated, whereas immature or maturing adipose is highly unsaturated when chronologically based, so the degree of non‐saturation can be an index of adipose maturity. In this study, three different adipose tissues (coelomic (CL), perirenal (PR), and subcutaneous (SC)) from three beef breeds with differing slaughter ages (Japanese Black (29.5 months), Holstein (20.1 month), and F1 crossbreed (25.6 months)) were examined to: (i) determine adipose maturity level as indexed by MUFA %; and (ii) determine SCD and other lipogenic gene messenger RNA (mRNA) expression levels in relation to unsaturated fatty acid content. Fatty acid composition was significantly different between adipose tissues (P < 0.05). MUFA amount was high in the following order: SC > CL > PR. This pattern corresponded to SCD mRNA expression profile showing higher expression in SC than CL and PR. However, Japanese black cattle are an exception with CL adipose containing similar UFA % as SC adipose, yet having the lowest SCD mRNA expression level among all adipose tissues tested. Therefore, SCD mRNA expression and MUFA % appear to be directly related; however, differences in SCD mRNA expression among three adipose tissues may reflect differences in the fat development characteristics affected by chronological age of the cattle breeds.  相似文献   

2.
Feeding sheep concentrate-based diets increases the oleic acid content of their tissues, whereas the cis-9, trans-11 conjugated linoleic acid (CLA) content is increased by feeding forage diets. Both these metabolic transformations could be attributable to increased activity of stearoyl-CoA desaturase (SCD). Therefore, the effect of forage or concentrate feeding regimens on the fatty acid composition of sheep tissues were investigated to determine whether any changes are related to an alteration of SCD mRNA levels. Twenty-four ewe lambs were randomly allotted to one of three dietary treatment groups: 1) dehydrated grass pellets, 2) concentrate diet fed to achieve a growth rate similar to that of the dehydrated grass pellets, and 3) the same concentrate diet approaching ad libitum intake. As expected, animals fed ad libitum concentrates grew at a greater (P = 0.001) rate (280 g/d) than those fed either of the other two diets (180 g/d), which were similar. In samples of liver and the three adipose tissue depots studied, the concentration of oleic acid from sheep fed either level of the concentrate diet was greater (P < 0.001) than from animals fed forage. This was associated with an increase (P < 0.05) in the ratio of SCD to acetyl-CoA carboxylase mRNA in adipose tissue and liver. Compared with concentrate-fed, the forage-fed lambs had increased (P < 0.05) levels of the cis-9, trans-11 isomer of CLA and C18:1, trans-11 in all their tissues, although the levels of SCD mRNA were lower. It therefore seems that the increased oleic acid content of sheep tissues in response to concentrate-rich diets is associated with an increase in SCD gene expression. By contrast, the increased concentration of CLA in animals fed forage-based diets is associated with an increase in substrate (C18:1 trans-11) availability.  相似文献   

3.
Chronic endocrine control of fatty acid synthesis in perirenal and subcutaneous adipose tissues of foetal lambs has been investigated. Maintenance of explants of subcutaneous adipose tissue in culture for 48 hr with insulin and dexamethasone (a glucocorticoid analogue), either singly or in combination showed that the two acted synergistically to increase the rate of fatty acid synthesis. Growth hormone inhibited the ability of insulin plus dexamethasone to increase the rate of fatty acid synthesis in explants of subcutaneous adipose tissue. In contrast neither insulin nor dexamethasone either singly or together increased the rate of fatty acid synthesis in perirenal adipose tissue; growth hormone also had no effect on the rate of fatty acid synthesis in this depot. These studies show that fatty acid synthesis is under distinct endocrine control in subcutaneous and perirenal adipose tissues in foetal lambs.  相似文献   

4.
We have demonstrated that among carcass adipose tissue depots, brisket subcutaneous adipose tissue contains the greatest concentration of MUFA and lowest concentration of SFA. Therefore, we hypothesized that brisket subcutaneous adipose tissue depots would exhibit greater adipogenic gene expression over time than other major subcutaneous adipose tissue depots. Four Angus steers, each at 9, 12, 14, and 16 mo of age, were harvested and fresh subcutaneous adipose tissue samples were collected from over the brisket, chuck, rib, loin, sirloin, round, flank, and plate. Relative gene expression for C/EBPβ, PPARγ, carnitine palmitoyltransferase-1 beta (CPT-1β), stearoyl-coenzyme A desaturase (SCD), AMP-activated protein kinase alpha (AMPKα), and G-coupled protein receptor 43 (GPR43) was analyzed by quantitative real-time PCR. Expression of C/EBPβ, PPARγ, and CPT-1β was greatest at 12 to 14 mo of age (all P < 0.0001) and declined to very low abundance by 16 mo of age in all depots. Expression of PPARγ and CPT-1β was greater (P < 0.03) in flank, rib, and sirloin subcutaneous adipose tissues than in brisket and round adipose tissues. The expression of the SCD gene did not differ among the 4 age groups (P = 0.95). The palmitoleic:stearic acid ratio (an estimate of SCD activity) was greater (P < 0.001) in the subcutaneous adipose tissues from brisket, plate, and round than in the loin, rib, and sirloin. Conversely, subcutaneous adipose tissue from the loin, rib, and sirloin had greater (P < 0.001) SCD gene expression than the brisket, plate, and round. In general, subcutaneous adipose tissues with the highest concentration of MUFA and least SFA consistently exhibited the least SCD gene expression and adipogenic gene expression. We conclude that MUFA in the brisket and other depots with large SCD indices were deposited before 9 mo of age, during a time when the subcutaneous adipocytes were highly differentiated.  相似文献   

5.
The present study investigated (i) the effect of breed on the expression of stearoyl-CoA desaturase (SCD) protein and fatty acid composition in Semimembranosus muscle and subcutaneous adipose tissue of beef cattle and (ii) the relationship between SCD expression, cis-9, trans-11 conjugated linoleic acid (CLA) content, and monounsaturated fatty acid (MUFA) level. The study was conducted on the following breeds: Longhorn (L), Charolais cross with Holstein–Friesian (CX), Hereford (H), Belted Galloway (BG) and Beef Shorthorn (BS). Significant breed differences in the total fatty acid content, saturated fatty acid (SFA) level, MUFA and n−3 PUFA content were observed in subcutaneous adipose tissue but not in muscle. In the case of CLA, the breed differences were observed in both muscle and subcutaneous adipose tissue, with the highest level in L and the lowest level in H. In the case of subcutaneous adipose tissue, the breed with the highest CLA content (L) also had the highest SCD protein expression. The breed-specific pattern of SCD expression in subcutaneous adipose tissue was similar to the breed-specific pattern of one of the products of an SCD-catalysed reaction, C16:1 (BS < BG < H < CX < L). It has been concluded that (i) the mechanisms regulating SCD protein expression and CLA level in beef cattle are tissue-specific; (ii) breed-specific variations in SCD expression might contribute to breed variations in MUFA and CLA content in subcutaneous adipose tissue but not in Semimembranosus muscle.  相似文献   

6.
The effects of dietary vitamin E (VE, alpha-tocopherol acetate) and fat supplementation on growth and carcass quality characteristics, oxidative stability of fresh and cooked pork patty in storage, fatty acid profiles of muscle and adipose tissue, and VE concentrations of plasma, muscle, and adipose tissue were studied. Six hundred pigs were allocated to 1 of 6 diets and fed for 63 d in a 3 x 2 factorial design. The dietary treatments included 3 fat levels (normal corn, high oil corn, high oil corn plus added beef tallow) and 2 levels of VE supplementation (40 IU/kg, normal VE supplementation; and 200 IU/kg, high VE supplementation). At 113 kg of BW, 54 pigs were slaughtered as a subsample to evaluate dietary effects on pork quality. Growth performance and meat quality characteristics did not differ (P > 0.05) among treatment groups. The high level of VE supplementation had a beneficial effect on the oxidative stability of pork as indicated by thiobarbituric acid reactive substance (TBARS) values. Lean tissue had lower (P < 0.05) TBARS in the group fed the high VE than in those fed the normal VE level. The TBARS values differed among storage periods (0 to 6 d) and also between fresh and cooked ground ham. Fat type did not significantly affect total saturated and unsaturated fatty acids proportions in the neutral and polar fraction of muscle. Adding VE acetate led to greater (P < 0.05) monounsaturated and total unsaturated fatty acid proportions in neutral lipids of muscle and adipose tissues. Increasing dietary levels of VE acetate increased the concentration of VE in plasma and muscle. These results indicate that dietary VE acetate supplementation increased (P < 0.05) lipid stability and the VE concentration of muscle.  相似文献   

7.
To gain insights into the regulation of fat synthesis, we have investigated the effect of cold environmental exposure and feed restriction of sheep on activity and immunodetectable protein content of acetyl-CoA carboxylase (ACC) and fatty acid synthase in adipose tissue. Subcutaneous and mesenteric adipose tissues were collected at slaughter from sheep exposed to either cold (0+/-2 degrees C) or warm (23+/-2 degrees C) environment, and given either ad libitum or restricted access to feed for three 5-wk periods. Acetyl-CoA carboxylase was isolated from frozen adipose tissue samples and activity determined as the rate of incorporation of H14CO3- into acid stable malonyl-CoA. Cold exposure and feed restriction reduced (P < .05) ACC activity in the two adipose tissue depots. Western blot analysis with peroxidase-conjugated streptavidin showed that both adipose tissue depots express a single isoform of ACC. In s.c. adipose tissue, cold exposure increased (P < .05) ACC protein abundance, which is opposite to the change in activity. However, feed restriction reduced immunodetectable ACC protein. There was no significant effect of environment or feeding level on ACC protein abundance in mesenteric tissue. Fatty acid synthase activity determined in ammonium sulfate extract by measuring the malonyl-CoA- and acetyl-CoA-dependent oxidation of NADPH was decreased (P < .05) by feed restriction in both s.c. and mesenteric tissues. Cold exposure reduced fatty acid synthase activity in s.c. but not in mesenteric tissue. There was no effect of environment on fatty acid synthase protein abundance in either adipose tissue depot. However, feed restriction significantly reduced fatty acid synthase protein abundance in the two depots. The data suggest that feed restriction and exposure of ruminants to cold environmental conditions may significantly down-regulate the activity of key lipogenic enzymes.  相似文献   

8.
Conjugated linoleic acid (CLA) has been shown to have an effect on subcutaneous fatty acid composition and has been reported to decrease stearoyl coenzyme A desaturase (SCD) activity by decreasing mRNA expression and(or) catalytic activity in rodents and rodent cell lines. This investigation was designed to study the effects of CLA, corn oil, or beef tallow supplementation on s.c. adipose tissue fatty acid composition, adiposity, SCD enzyme activity, and the delta9 desaturase index in piglets. Eighteen crossbred barrows 16 to 18 d of age were adapted to diet for 1 wk and then assigned randomly to one of three treatments: 1.5% added CLA, 1.5% added corn oil, or 1.5% added beef tallow. Barrows were penned individually and fed the supplemental oils for 35 d (to 25.6 +/- 0.6 kg BW). Subcutaneous adipose tissue samples were obtained after slaughter. Fatty acid composition of the s.c. adipose tissue differed for each fatty acid measured due to diet with the exception of 18:3. The concentrations of CLA trans-10, cis-12 and cis-9, trans-11 were elevated from nondetectable to 1.62 and 2.52 g/100 g lipid, respectively (P < 0.001 for both isomers). Conjugated linoleic acid decreased the delta9 desaturase index (P < 0.01) and SCD enzyme activity, expressed as nanomoles of palmitate converted to palmitoleate/(7 min x g of tissue) (P = 0.075) and nanomoles of palmitate converted to palmitoleate/(7 min 105 cells) (P= 0.056). Tallow-fed pigs had a greater proportion of large adipocytes (> 700 pL) and the greatest SCD activity. These data provide the first direct evidence that dietary CLA depresses SCD enzyme activity in porcine adipose tissue, which may in part be responsible for the depression of adiposity by CLA observed by others in market weight pigs.  相似文献   

9.
Maternal nutrient restriction leads to alteration in fetal adipose tissue, and offspring from obese mothers have an increased risk of developing obesity. We hypothesized that maternal obesity increases fetal adipogenesis. Multiparous ewes (Columbia/Rambouillet cross 3 to 5 yr of age) carrying twins were assigned to a diet of 100% (Control; CON; n = 4) or 150% (Obese; OB, n = 7) of NRC maintenance requirements from 60 d before conception until necropsy on d 135 of gestation. Maternal and fetal plasma were collected and stored at -80°C for glucose and hormone analyses. Fetal measurements were made at necropsy, and perirenal, pericardial, and subcutaneous adipose tissues were collected from 7 male twin fetuses per group and snap frozen at -80°C. Protein and mRNA expression of fatty acid translocase [cluster of differentiation (CD) 36], fatty acid transport proteins (FATP) 1 and 4, insulin-sensitive glucose transporter (GLUT-4), fatty acid synthase (FASN), and acetyl-coA carboxylase (ACC) was evaluated. Fetal weight was similar, but fetal carcass weight (FCW) was reduced (P < 0.05) in OB versus CON fetuses. Pericardial and perirenal adipose tissue weights were increased (P < 0.05) as a percentage of FCW in OB versus CON fetuses, as was subcutaneous fat thickness (P < 0.001). Average adipocyte diameter was greater (P < 0.01) in the perirenal fat and the pericardial fat (P = 0.06) in OB fetuses compared with CON fetuses. Maternal plasma showed no difference (P > 0.05) in glucose or other hormones, fetal plasma glucose was similar (P = 0.42), and cortisol, IGF-1, and thyroxine were reduced (P ≤ 0.05) in OB fetuses compared with CON fetuses. Protein and mRNA expression of CD 36, FATP 1 and 4, and GLUT-4 were increased (P ≤ 0.05) in all fetal adipose depots in OB versus CON fetuses. The mRNA expression of FASN and ACC was increased (P < 0.05) in OB vs. CON fetuses in all 3 fetal adipose tissue depots. Fatty acid concentrations were increased (P = 0.01) in the perirenal depot of OB versus CON fetuses, and specific fatty acid concentrations were altered (P < 0.05) in subcutaneous and pericardial adipose tissue because of maternal obesity. In conclusion, maternal obesity was associated with increased fetal adiposity, increased fatty acid and glucose transporters, and increased expression of enzymes mediating fatty acid biosynthesis in adipose depots. These alterations, if maintained into the postnatal period, could predispose the offspring to later obesity and metabolic disease.  相似文献   

10.
We proposed that stearoyl-CoA desaturase (SCD) activity dictates fatty acid composition of adipose tissue and muscle in beef cattle, regardless of ruminal or hepatic fatty acid hydrogenation or desaturation. Twelve Angus steers were assigned to a calf-fed (CF) group and slaughtered at weaning (8 mo of age; n=4), 12 mo of age (n=4), or 16 mo of age (n=4). Twelve steers were assigned to a yearling-fed (YF) group and slaughtered at 12 mo of age (n=4), 16 mo of age (n=4), and 17.5 mo of age (n=4; 525 kg, market weight). Data were analyzed based on time on the corn-based finishing diet, with terminal age as a covariate, and orthogonal polynomial contrasts were tested on the main effects of treatment group and time on the finishing diet. Fatty acids from duodenal digesta, plasma, liver, LM, and subcutaneous and intramuscular adipose tissue were measured, and SCD gene expression was measured in intramuscular and subcutaneous adipose tissues. In duodenal digesta, palmitic and linoleic acids increased by 100% over the sampling period, α-linolenic acid decreased over the sampling period, and trans-vaccenic acid was greater in YF than in CF steers (all P < 0.01). The proportion of α-linolenic acid decreased over time in all tissues, including liver. The SCD index (ratio of SCD fatty acid products to SCD fatty acid substrates) increased over time in LM and in intramuscular and subcutaneous adipose tissues. The SCD:glyceraldehyde 3-phosphate dehydrogenase mRNA ratio was virtually undetectable at the initial sampling periods in subcutaneous adipose tissue of YF and CF steers, and it increased over time (P < 0.01). The SCD index and SCD:glyceraldehyde 3-phosphate dehydrogenase ratio were greater in intramuscular adipose tissue of CF steers than in that of YF steers. The SCD index did not change over time in liver and decreased over time in duodenal digesta. We conclude that, unlike essential fatty acids, the SFA and MUFA composition of adipose tissue is regulated by adipose tissue fatty acid desaturation, with little contribution from hepatic or duodenal fatty acids.  相似文献   

11.
Fatty acid composition of beef adipose tissue is one of important traits because high proportions of monounsaturated fatty acid are related to favorable beef flavor and tenderness. In this study, we investigated effects of genetic factors such as stearoyl-CoA desaturase (SCD) and sterol regulatory element binding protein (SREBP) on beef carcass traits including fatty acid composition using two cattle populations. Sire effect was significantly related to almost all traits except BMS, suggesting that the trait examined in this study is highly controlled by genetic factors. The effect of SCD genotype on fatty acid composition was detected remarkably in both cattle groups, especially on stearic and oleic acids. This result was consistent with our previous studies and suggests that SCD is associated with fatty acid composition. Unlike SCD genotyping, the effect of SREBP genotype was not identified in this study. Our results suggested that SCD genotype would contribute to improving beef quality in field populations. Further studies about the relationship among these factors will bring an insight into the molecular mechanism of fatty acid metabolism in cattle.  相似文献   

12.
The basis for the variation in fatty acid composition in different ovine adipose tissue depots was investigated. The proportion of stearic (C18:0) and oleic (C18:1) acids vary in a site-specific fashion; abdominal depots (omental and perirenal) contain relatively more C18:0 than C18:1, and carcass depots, especially sternum, have a markedly higher proportion of C18:1. Additionally, expression of a number of lipogenic enzyme genes (stearoyl-CoA desaturase [SCD], acetyl-CoA carboxylase-alpha [ACC-alpha], lipoprotein lipase [LPL]) and the cytoskeletal protein gene alpha-tubulin vary among depots, although the pattern of variation differs for each mRNA. When these expression data were related to the mean cell volume of adipocytes pooled from all depots, a significant pattern emerged: expression of the ACC-alpha, LPL, and alpha-tubulin genes was highly correlated with the size of adipocytes. In contrast, when the expression of SCD mRNA was assessed as a function of mean cell volume, two populations of adipocytes emerged: no significant correlation was found between the expression of SCD mRNA per adipocyte and mean cell volume for the abdominal depots, although a highly significant correlation was observed between SCD gene expression and mean cell volume for the carcass and epicardial depots. Similarly, a highly significant correlation was found for the amount of C18:1 per adipocyte and the abundance of SCD mRNA per adipocyte for the carcass and epicardial depots, whereas no significant correlation was observed for these traits for the omental and perirenal depots. Thus, the SCD gene seems to be regulated in a depot-specific fashion and in a manner distinct from that of the ACC and LPL genes.  相似文献   

13.
Our objective was to determine the influence of bovine growth hormone (bGH) and bovine growth hormone-releasing factor (bGRF) administration on the mRNA abundance of lipoprotein lipase (LpL) and stearoyl-CoA desaturase (SCD). Primiparous Holstein cows received bGH, bGRF, or no treatment from 118 to 181+/-1 d postpartum. We hypothesized that bGH and bGRF treatment would increase the mRNA abundance of both SCD and LpL in the mammary gland with a corresponding reduction in adipose tissue. Milk yield significantly increased but milk fat percentage did not change as a result of bGH or bGRF treatment. Short-, medium-, and long-chain fatty acid concentrations in milk were not affected by either bGH or bGRF treatments, with the exception of a modest, but significant, increase in C16:1 and C18:1 following bGH treatment. Analysis was conducted on the genes encoding LpL (E.C. 3.3.1.34), a key enzyme involved in the uptake of fatty acids into tissues, and SCD (E.C. 1.14.99.5), which is the enzyme responsible for introducing delta9 double bonds in fatty acids of 16 and 18 carbons in length. In adipose tissue, treatment with bGH and bGRF reduced the mRNA abundance of LpL to 14.6 and 25.7% respectively, of that observed for control animals. Similarly, these treatments reduced the SCD mRNA abundance to undetectable levels in adipose tissue. In mammary gland, bGH and bGRF had no significant impact on LpL mRNA abundance. Bovine GH did not significantly affect SCD mRNA abundance in the mammary gland, and bGRF reduced SCD mRNA abundance. From this study to examine the role of bGH and bGRF on the expression of the genes encoding these key lipogenic enzymes in cattle, we conclude that the increased substrate required for enhanced milk fatty acid yield may have been provided through redirection of nutrients to the mammary gland away from adipose tissue and through overall increased metabolism in the mammary gland.  相似文献   

14.
牛SCD基因研究进展   总被引:1,自引:0,他引:1  
硬脂酰辅酶A去饱和酶(SCD)是催化主要包括棕榈酰CoA(C16:0)、硬脂酰CoA(C18:0)在内的饱和脂肪酸(SFA)产生单不饱和脂肪酸(MUFA)合成的关键酶,对牛奶、脂肪组织中脂肪酸的组成以及肌肉间脂肪沉积有着重要影响.文章概述了近年来牛SCD基因相关的研究进展.  相似文献   

15.
Ruminants rely on short-chain fatty acids (SCFA) as principal energy source. Herein, we compared the effects of propionate, β-hydroxybutyrate (BHB) and insulin on mRNA abundance of energy balance-related genes by short-term incubation (4 h) in bovine subcutaneous (SC) and retroperitoneal (RP) adipose tissue (AT) explants in vitro. Propionate either significantly (p < 0.05), or as a trend (p ≤ 0.1) affected mRNA abundance of genes such as adiponectin system in both depots in treated samples versus controls. Propionate increased adiponectin receptor 1 (AdipoR1) and AdipoR2 mRNA only in SC AT. β-hydroxybutyrate decreased mRNA abundance of adiponectin and AdipoR1 in SC AT as a trend. The mRNA abundance of free fatty acid receptor 2/3 (FFAR2/3) and other genes of interest (GOI) was increased during differentiation in bovine preadipocyte culture. The mRNA abundance of all the GOI remained unchanged after short-term insulin stimulation. In total, propionate, BHB or insulin during short-term treatment exert divergent effects on the mRNA abundance of GOI in both depots in vitro. Our results indicate that the bovine adiponectin system might be more sensitive to propionate than to BHB. We demonstrated the presence of FFAR2/3 mRNA not only in both AT depots but also in differentiating preadipocytes isolated from bovine SC AT. Therefore, we established that SCFA are able to exert insulin-independent effects on bovine adipose tissue, which might be independent from propionate uptake-related events.  相似文献   

16.
Genetic regulation of the site of fat deposition is not well defined. The objective of this study was to investigate adipogenic differentiation state-specific gene expression in feedlot cattle (>75% Angus; <25% Simmental parentage) of varying adipose accretion patterns. Four groups of 4 steers were selected via ultrasound for the following adipose tissue characteristics: low subcutaneous-low intramuscular (LSQ-LIM), low subcutaneous-high intramuscular (LSQ-HIM), high subcutaneous-low intramuscular (HSQ-LIM), and high subcutaneous-high intramuscular (HSQ-HIM). Adipose tissue from the subcutaneous (SQ) and intramuscular (IM) depots was collected at slaughter. The relative expression of adipogenic genes was evaluated using quantitative PCR. Data were analyzed using the mixed model of SAS, and gene expression data were analyzed using covariate analysis with ribosomal protein L19 as the covariate. No interactions (P > 0.10) were observed between IM and SQ adipose tissue depots for any of the variables measured. Therefore, only the main effects of high and low accretion within a depot and the effects of depot are reported. Steers with LIM had smaller mean diameter IM adipocytes (P < 0.001) than HIM steers. Steers with HSQ had larger mean diameter SQ adipocytes (P < 0.001) than LSQ. However, there were no differences (P > 0.10) in any of the genes measured due to high or low adipose accretion. Preadipogenic delta-like kinase1 mRNA was greater in the IM than the SQ adipose tissue; conversely, differentiating and adipogenic genes, lipoprotein lipase, PPARγ, fatty acid synthetase, and fatty acid binding protein 4 were greater (P < 0.001) in the SQ than the IM depot. Intramuscular adipocytes were smaller than SQ adipocytes and had greater expression of the preadipogenic gene, indicating that more hyperplasia was occurring. Meanwhile, SQ adipose tissue contained much larger (P < 0.001) adipocytes that had a greater expression (P < 0.001) of differentiating and adipogenic genes than did the IM adipose tissue, indicating more cells were undergoing differentiation and hypertrophy. Adipogenic differentiation state-specific gene expression was not different in cattle with various phenotypes, but adipogenesis in the SQ and IM adipose tissues seems to occur independently.  相似文献   

17.
Twelve Angus X Hereford steers were assigned to either a control high-energy diet or a test diet consisting of 20% rapeseed at the expense of 20% corn. Twelve pigs were allotted to a control diet and two test diets containing either 10 or 20% canola oil (CO). Both CO and oil in the rapeseed contained 60 to 64% oleic acid. Cattle fed rapeseed exhibited little effect from the diet due to apparent indigestibility of the rapeseed. Total saturated fatty acids decreased from 40% in adipose tissue of the control pigs to 15% in the 20% CO-fed pigs. The ratio of monounsaturated to saturated fatty acids (M/S) increased from 1.19 in adipose tissue from control pigs to 3.63 with the addition of 20% CO to the diet. In muscle, the M/S ratio increased from 1.21 in control pigs to 2.46 in the 20% CO treatment group. The percentage of the saturated fatty acids in muscle decreased from 42% in the control to 23% in the 20% CO treatment. Significant increases in "oiliness" and decreases in fat firmness were observed when increasing levels of canola oil were fed. Sensory traits, cooking loss and shear-force values of pork chops were similar among treatment groups. In conclusion, monounsaturated fatty acid content can be elevated substantially in pork without adversely influencing the quality of the meat, thus producing a product perceived to be more healthful by the consumer.  相似文献   

18.
硬脂酰辅酶A去饱和酶(SCD)是催化主要包括棕榈酰CoA(C16:0)、硬脂酰CoA(C18:0)在内的饱和脂肪酸(SFA)产生单不饱和脂肪酸(MUFA)合成的关键酶,对牛奶、脂肪组织中脂肪酸的组成以及肌肉间脂肪沉积有着重要影响。文章概述了近年来牛SCD基因相关的研究进展。  相似文献   

19.
硬核油对瘤胃体外发酵及脂肪酸组成的影响   总被引:1,自引:0,他引:1  
本研究利用体外产气法,探究饲粮中分别添加1%、2%、3%及4%(干物质基础)的硬核油对瘤胃体外发酵24 h产气参数、发酵参数及脂肪酸组成的影响,旨在确定硬核油在瘤胃发酵中的最适添加水平。结果表明:1)饲粮中添加硬核油对24 h产气量、理论最大产气量及产气速率无显著影响(P0.05)。2)氨氮(P=0.044)、总挥发性脂肪酸(P0.001)、乙酸(P0.001)、丙酸(P=0.047)及丁酸浓度(P=0.017)随硬核油添加水平的增加呈二次曲线升高,且总挥发性脂肪酸及乙酸浓度在1%、2%及3%组显著高于对照组及4%组(P0.05);p H、微生物蛋白浓度、干物质降解率、中性洗涤纤维降解率及酸性洗涤纤维降解率未受硬核油添加的影响(P0.05)。3)饱和脂肪酸的含量随硬核油添加水平的增加呈线性(P=0.008)及二次(P=0.028)降低,其中C18∶0的含量也呈线性降低(P=0.030);不饱和脂肪酸的含量随硬核油添加水平的增加呈线性(P=0.008)及二次(P=0.028)升高,其中t9-C18∶1含量呈线性(P=0.002)、t11-C18∶1含量呈二次(P0.001)、c9-C18∶1含量呈线性(P=0.028)和二次(P=0.005)升高,且t9-C18∶1及c9-C18∶1含量均在3%添加水平下出现最大值。在本试验条件下,1%、2%及3%添加水平的硬核油可提高瘤胃体外发酵不饱和脂肪酸含量,同时增加挥发性脂肪酸的浓度,3%添加水平效果最佳。  相似文献   

20.
An experiment was conducted to determine the effects of Cu supplementation on performance, subcutaneous adipose tissue mRNA expression of acetyl CoA carboxylase (ACC), stearoyl CoA desaturase (SCD), uncoupling protein 2 (UCP2), and leptin in growing and finishing steers. Forty-eight purebred Angus steers were allotted to one of five treatments: 1) control (no supplemental Cu); 2) 10 mg Cu/kg DM from CuSO4; 3) 10 mg Cu/kg DM from a Cu amino acid complex (Availa Cu); 4) 20 mg Cu/kg DM from CuSO4; 5) 20 mg Cu/kg DM from Availa Cu. Steers were fed an alfalfa hay corn-based diet for 56 d (basal diet contained 7.1 mg Cu/kg DM) and switched to a high-concentrate diet for 144 d (basal diet contained 6.1 mg Cu/kg DM). Blood samples were obtained every 28 d throughout the entire experiment. On d 112 of the finishing period, subcutaneous adipose tissue biopsies were obtained from the tailhead of three animals per treatment and analyzed for ACC, SCD, UCP2, and leptin mRNA expression. Animal performance was not affected by Cu supplementation during the growing phase. Steers receiving 10 mg Cu/kg DM from Availa Cu had higher (P < 0.05) ending body weights and tended (P < 0.10) to have higher ADG than steers receiving 10 mg Cu/kg DM from CuSO4 during the finishing phase. Serum concentrations of nonesterified fatty acid and insulin were not affected by Cu supplementation. Steers receiving supplemental Cu tended (P < 0.11) to have less backfat relative to controls. However, dietary Cu did not influence the level of subcutaneous adipose tissue ACC and SCD mRNA. Neither UCP2 nor leptin gene expression was affected by Cu supplementation. These results indicate that dietary Cu supplementation (10 to 20 mg Cu/kg DM diet) may alter lipid metabolism of subcutaneous adipose tissue; however, it does not seem to affect expression of certain lipogenic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号