共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
【目的】农作物生长过程中,作物产量会受到各种病害影响,实现自动精准地识别农作物病害以及病害程度的测定是农作物病害防治的关键。【方法】文章设计了一种基于卷积神经网络的农作物病害的识别方法并建立了农作物病害识别模型,模型利用10种作物中常见的59种病害类型的叶片图像数据集进行训练,并对模型的训练过程和训练结果进行评估。【结果】(1)农作物病害识别模型对59种病害类型的总识别精度达到0.83,部分类别的识别率高于0.9;(2)当训练的迭代次数增加到50轮以上时,农作物病害识别模型的性能不再提升,此时数据集图像的数量对模型性能的影响较大。【结论】实验证明,利用卷积神经网络进行农作物病害识别具有较高的可行性和准确性,为农作物病害的防治打下基础。 相似文献
3.
李尤丰 《金陵科技学院学报》2022,38(1):26-31
为提高卷积神经网络的图像分类性能,通过图像数据集CIFAR-10的数据实验,验证了数据集、隐藏神经元数目和训练方法等优化因素对卷积神经网络的分类准确度、运行时间和网络参数量的影响,从而为有效提高卷积神经网络图像分类性能的研究提供了参考。 相似文献
4.
5.
6.
基于自注意力卷积网络的遥感图像分类 总被引:1,自引:0,他引:1
7.
基于颜色特征进行农作物图像分类识别的应用研究综述 总被引:4,自引:1,他引:4
利用农作物自身的特征对农作物图像进行分类识别是计算机视觉技术在农业自动化应用中的重要前提条件。本文首先探讨了基于颜色特征的两种图像分类识别方法:统计直方图法和颜色参量的统计特征法,并分析比较了两类方法的特点,试图为以农作物颜色为特征的图像分类识别应用提供思路。最后综述了从分析农作物外在的颜色特征进行农作物图像分类识别的国内外最新研究方法和成果,以促进计算机视觉技术在我国农业领域的应用和发展。 相似文献
8.
目的 图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法 首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果 本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 dB与29.17 dB的效果。结论 本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。 相似文献
9.
针对目前当归产业病虫害识别方法缺失、人工提取特征存在主观因素及卷积神经网络训练需要大量数据等不足,提出1种基于多卷积神经网络融合的当归病虫害识别方法。构建当归常见病虫害数据集;选择在当归病虫害数据集中表现性能最好的ResNet50、InceptionNetV3、VGG19、DenseNet201 4个网络作为模型融合的基学习器;使用XGBoost(极度梯度提升)算法作为元学习器,得到基于多卷积神经网络融合的当归病虫害识别模型。结果表明,该融合模型比单个卷积神经网络模型具有更高的识别准确率,并优于其他融合方法融合的模型,对当归病虫害识别的查准率、查全率、F1值分别达到98.33%、97.14%、97.68%。本研究提出的基于XGBoost融合方法融合的模型实现了当归常见病虫害的精确分类,对常见病害的识别准确率达到98.33%,为当归产业提供了一种有效的病虫害识别方法。 相似文献
10.
为快速、高效地利用高光谱成像技术诊断小麦赤霉病病症,分析了卷积层结构与光谱病症特征的关联性,并重点研究了高光谱的像元分类建模方法。首先,基于深度卷积神经网络的2种典型结构,构建了不同深度的卷积神经网络,比较了小麦赤霉病高光谱数据点集的训练和测试结果。结果显示:Visual Geometry Group(VGG)结构随着网络深度的增加,模型损失值不断下降;残差神经网络(ResNet)结构随着深度增加,损失值没有明显降低,说明ResNet网络的深度与模型性能无关。从测试集评测模型泛化性可知,具有4个基础单元模块的22层VGG网络在所有深度卷积模型中最优,其建模和验证准确率远高于传统的支持向量机(SVM),分别为0.846和0.843,测试集准确率为0.742。以VGG为基础单元构建的深度神经网络,能有效提取小麦赤霉病病症的高光谱特征。研究结果可为大尺度小麦赤霉病的智能成像诊断提供理论基础。 相似文献
11.
基于MF-SSD卷积神经网络的玉米穗丝目标检测方法 总被引:1,自引:0,他引:1
目的 玉米穗丝是玉米的授粉器官,生长发育状况会影响玉米的产量。为了在玉米生长状态监测和产量预测工作中实时准确识别玉米穗丝,提出一种基于多特征融合SSD (MF-SSD)卷积神经网络的玉米穗丝检测模型。方法 基于特征图对玉米穗丝进行检测,在VGG16-SSD的基础上,用MobileNet替换特征提取器,加入多层特征融合结构,得到MF-SSD网络模型;通过网络优化调整,试验了MF-SSD-cut-3、MF-SSD和MF-SSD-add-3共3种网络结构,优选出检测性能最好的网络结构用于玉米穗丝检测。基于玉米穗丝图像数据集,应用0~180°随机旋转原始图像和水平翻转、平移原始图像2种数据增广技术提升模型训练效果。对是否使用二次训练策略和是否使用Focal loss解决样本不平衡问题进行了试验,并对比分析Loss的下降过程。结果 通过加入多层特征融合结构对SSD模型改进后能够提高网络的检测能力,提升识别速度。与VGG16-SSD相比,MF-SSD在交并比指标方面的平均精度提高7.2%,对玉米穗丝小目标检测的平均召回率提高19.6%,检测速度最高能提升18.7%。在存储空间和运行时间有较高要求的嵌入式环境下,MF-SSD-cut-3模型在满足检测效果的前提下,以较小的空间代价获得了相对较短的运行时间;在不考虑空间和时间因素的情况下,MF-SSD模型获得更好的检测效果。二次训练策略提高了网络的收敛速度和模型的稳定性;Focal loss有效解决了SSD算法中正负样本数量不平衡问题,使网络模型的训练更容易收敛。结论 MF-SSD模型对小目标的检测能力能满足农业生产中对玉米穗丝的实时检测需要,可以用于玉米生长状态的自动监控和产量的精准预测。 相似文献
12.
应用深度学习的图像分析技术,可较早地、无损地检测作物病害,但移动端计算资源的有限性限制了深度学习在移动端的应用和发展.利用迁移学习方法,进行多种神经网络的预训练,将其在ImageNet图像数据集上学到的知识迁移运用到多种农作物数据集及番茄单作物数据集的多种病害识别上,并进行多个深度学习模型在多种作物数据集的计算复杂度、... 相似文献
13.
14.
微藻在生态系统的结构和功能中具有极为重要的作用,而传统光学人工镜检方法对微藻种类鉴别具有较大的难度。本研究将微藻的光学图像进行了采样,并结合国内外专家对微藻鉴定的经验知识,制作了微藻图像数据集,并进行了数据增强处理。借助深度学习的原理和方法,构建了基于卷积神经网络结构的深度学习模型(AlexNet),对模型进行了训练,并利用5折交叉验证方法确保模型的稳定性。结果表明,模型的训练精度可达到98.78±0.98%,测试精度达85.46±0.23%,达到了预期效果。利用AlexNet模型训练得到的参数,对预留的280个样本图像进行实际测试,7个藻种的平均精确度、平均召回率和平均F1 Score分别为0.832,0.844和0.833。表明深度学习方法是鉴定微藻的一种有效方法。 相似文献
15.
16.
17.
歌声检测是音乐人工智能领域重要的基础性工作,也是很多相关研究的必备技术或者增强技术.提出一种基于深度残差卷积神经网络的歌声检测算法,该算法在仅仅输入简单朴素特征的情况下,通过多层次卷积神经网络,能学习到比浅层卷积神经网络更多的、更有效的歌声特征,从而提高算法的整体性能.根据2种基本的残差网络结构,设计了6种不同深度的卷... 相似文献
18.
采用AlexNet、VGG16、GoogLeNet和ResNet50等4种CNN模型对黄瓜4个病害级别的白粉病叶片图像进行反复迭代训练,探究迭代次数、BATCH_SIZE参数对4种模型识别分类效果的影响,分析不同CNN模型的性能,以选择出应用于黄瓜白粉病识别的最优模型。结果表明:从训练集损失函数的损失率、识别准确率及训练时间综合考量,在当前试验样本条件下,迭代次数为40次,BATCH_SIZE值等于90时,ResNet50模型结果最优,其训练用时为24 min,模型识别准确率为91.30%,对黄瓜白粉病不同病害级别智能识别具有较好的分类性能。 相似文献
19.
20.
为了提高水稻病害计算机视觉识别的准确性,研究提出针对水稻白叶枯病、赤枯病、胡麻斑病和纹枯病4种病害进行分类识别的模型。利用计算机视觉和机器学习软件库opencv对病斑图像进行随机旋转、随机翻转、随机亮度变换及随机对比度等处理方式扩充样本,应用区域生长、基于水平集的CV模型、显著性检测3种算法对图像进行分割。通过Tensorflow深度学习平台,构建网络层分别为6层(输入层32×32×3,卷积核大小为5×5)和8层(输入层227×227×3,卷积核大小为11×11、5×5、3×3)的卷积神经网络,将图像分割后得到的3组数据,均以8∶2的比例分别作为卷积神经网络的训练数据和测试数据,训练后得到6个模型,并结合召回率、F1评价指标对模型进行评估。结果表明,6个模型中训练识别准确率最低为97.66%,测试识别准确率最低为95.31%,其中以显著性检测分割算法和8层网络层的卷积神经网络结合得到的模型效果最佳,其训练识别准确率为99.99%,测试识别准确率为99.88%,相较于端到端的卷积神经网络水稻病害识别结果也有所提升。 相似文献