共查询到17条相似文献,搜索用时 62 毫秒
1.
为解决山地地形起伏大、无人机飞行高度高导致图像中尺度小且纹理模糊的松枯死木识别困难问题,该研究提出了一种在特征层级进行超分辨率重建的YOLOv5松枯死木识别算法。在YOLOv5网络中添加选择性核特征纹理迁移模块生成有细节纹理的高清检测特征图,自适应改变感受野的机制分配权重,将更多注意力集中在纹理细节,提升了小目标和模糊目标的识别精度。同时,使用前景背景平衡损失函数抑制背景噪声干扰,增加正样本的梯度贡献,改善正负样本分布不平衡问题。试验结果表明,改进后算法在交并比(intersection over union, IoU)阈值取0.5时的平均精度均值(mean average precision, mAP50)为92.7%,mAP50~95(以步长0.05从0.5到0.95间取IoU阈值下的平均mAP)为62.1%,APsmall(小目标平均精度值)为53.2%,相比于原算法mAP50提高了3.2个百分点,mAP50~95提升了8.3个百分点,APsmall提升了15.8个百分点。不同算法对比分析表明,该方法优于Faster R-CNN、YOLOv4、YOLOX、MT-YOLOv6、QueryDet、DDYOLOv5等深度学习算法,mAP50分别提高了16.7、15.3、2.5、2.8、12.3和1.2个百分点。改进后松枯死木识别算法具有较高精度,有效缓解了小目标与纹理模糊目标识别困难问题,为后续疫木清零提供技术支持。 相似文献
2.
无人机补播是草地修复工作的有效手段之一。针对无人机作业过程中,空斑定位精度不高导致的效率低下、工作量大等问题,该研究提出一种基于无人机图像超分辨率重建和Transformer的退化草地空斑定位方法YOLOFG(YOLO for Gap)。基于YOLOv5s网络框架,在模型颈部设计联级特征纹理选择模块,强化模型特征纹理细节聚焦力,解决无人机空斑影像尺度变化大、纹理模糊问题;其次,以ShuffleNetV2构建主干网络,嵌入信息交互Transformer自注意力结构,提取像素间更多差异化特征,以提升模型对空斑边缘像素的精确捕获能力;最后,基于空斑锚框信息建立无人机位姿信息和空间平面的成像模型,实现目标空斑的精准定位。试验结果表明,YOLOFG模型平均精度均值为96.57%,相较于原始YOLOv5s模型提升3.84个百分点;参数量约为6.24 MB,比原始模型降低约11.2%。与YOLOv4、YOLOv7、YOLOv8模型相比,检测精度分别提高11.86、9.65、6.82个百分点。空斑定位的平均误差为0.4404 m,满足无人机作业对草地空斑精准定位的需求,可为开展退化草地植被恢复与重建工作提供有力技术支持。 相似文献
3.
受部分容积效应影响,土壤计算机断层扫描(Computed Tomography,CT)图像存在孔隙边界模糊现象,影响土壤孔隙结构研究的准确性。针对该问题,该研究提出基于序列信息的生成式对抗网络(Sequence information Generative Adversarial Network,SeqGAN),实现土壤CT图像的超分辨率重建。针对土壤CT序列图像具有较高相似性的特点,SeqGAN法引入序列卷积块挖掘前后图像的序列信息,并将多重特征增强融合于目标图像中;利用多层残差块提取图像特征,构建残差块输入和输出的直接连接,以减少模型退化;利用对抗网络实现损失间接反馈,提高模型的特征学习能力。在序列相似性较高的土壤图像数据集验证了该方法性能。结果表明,SeqGAN法均方误差比次优方法GAN降低25%,峰值信噪比提升1.4 dB,结构相似性提升0.2%。重建的土壤图像具有较高准确率和清晰度,可为后续土壤物理学研究提供准确的数据基础。 相似文献
4.
基于无人机和卫星遥感的胡杨林地上生物量估算 总被引:1,自引:3,他引:1
基于光谱信息的森林地上生物量遥感模型多存在精度不高的问题,如何更准确地获取森林地上生物量是遥感领域的研究热点。该研究以位于塔里木河下游的河岸胡杨林为例,探讨在无人机摄影测量技术支持下,使用高分辨率卫星遥感技术,通过面向对象影像分析和回归分析等技术,获取区域尺度下胡杨冠幅、树高和密度等森林结构参数,在此基础上,通过生长方程计算得到区域尺度森林地上生物量。在30、50、100和250 m 4个空间尺度上,与无人机数据的估算结果相比,高分辨率卫星遥感数据的地上生物量估算结果高22%~26%,其误差主要来自于树冠生物量部分。随着空间尺度增大,基于卫星遥感的地上生物量回归模型R2也随之增大,其中在100 m尺度上,地上生物量回归模型R2为0.851,表明使用高分辨率卫星遥感技术可以在较大的区域尺度上获得较高的森林地上生物量估算精度。地上生物量回归模型的标准化系数分析表明,对森林地上生物量估算精度影响最大的因素是密度和树高,冠幅影响最小,并且随着空间尺度增大,密度的影响有增加趋势,树高的影响有减少趋势。研究结果可为使用无人机和卫星遥感技术研究森林地上生物量提供参考。 相似文献
5.
针对自然条件下油茶果生长条件复杂,存在大量遮挡、重叠的问题,提出了一种基于RGB-D(red green blue-depth)多模态图像的双主干网络模型YOLO-DBM(YOLO-dual backbone model),用来进行油茶果的识别定位。首先,在YOLOv5s模型主干网络CSP-Darknet53的基础上设计了一种轻量化的特征提取网络。其次,使用两个轻量化的特征提取网络分别提取彩色和深度特征,接着使用基于注意力机制的特征融合模块将彩色特征与深度特征进行分级融合,再将融合后的特征层送入特征金字塔网络(feature pyramid network,FPN),最后进行预测。试验结果表明,使用RGB-D图像的YOLO-DBM模型在测试集上的精确率P、召回率R和平均精度AP分别为94.8%、94.6%和98.4%,单幅图像平均检测耗时0.016 s。对比YOLOv3、YOLOv5s和YOLO-IR(YOLO-InceptionRes)模型,平均精度AP分别提升2.9、0.1和0.3个百分点,而模型大小仅为6.21MB,只有YOLOv5s大小的46%。另外,使用注意力融合机制的YOLO-DBM模型与只使用拼接融合的YOLO-DBM相比,精确率P、召回率R和平均精度AP分别提高了0.2、1.6和0.1个百分点,进一步验证该研究所提方法的可靠性与有效性,研究结果可为油茶果自动采收机的研制提供参考。 相似文献
6.
基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究 总被引:10,自引:1,他引:10
遥感数据已经在数字土壤制图中得到广泛应用,并且可以一定程度上提高土壤属性预测的精度。本文以榆阳区的黄土丘陵和风沙滩地两种地貌区为例,利用不同分辨率的专题制图仪(thematic mapper,TM)、先进宽视场传感器(advanced wide field sensor,AWIFS)和中等分辨率成像仪(Moderate resolution imaging spectroradiometer,MODIS)的遥感影像数据(分辨率分别为30 m、56 m和250 m)和基于高级热量散射和反射辐射仪全球数字高程模型(advanced spaceborne thermal emission and reflection radiometer global digital elevation model,ASTER GDEM)的地形衍生数据,结合其他影响土壤有机质分布的辅助因子,用随机森林算法(random forest,RF)对表层土壤有机质进行模拟预测,并通过实测数据的百分比抽样对预测结果进行了验证。结果表明,在榆阳区的黄土丘陵区,基于TM数据的土壤有机质预测结果较好;在风沙滩地区,基于AWIFS数据的土壤有机质预测结果较好。基于RF的土壤有机质预测在榆阳区的黄土丘陵区结果较好,三个分辨率下的平均绝对误差在1.27~1.57 g kg-1之间,在风沙滩地区预测精度较低,平均绝对误差在1.46~2.08 g kg-1之间。高程、地理位置和植被是影响黄土丘陵区土壤有机质预测的主要因素,在风沙滩地区,植被、高程和离水源地的距离是影响有机质预测的主要因素。可见,在地貌相对简单的地区进行土壤有机质含量的预测时可以使用较低分辨率的数据代替较高分辨率的数据,同时,RF算法在复杂地貌区的土壤有机质预测更有效。 相似文献
7.
运用模糊数学与神经网络理论相结合,利用人工神经网络的GFMM算法,通过学习与实验,探索了遥感数据融合方法。 相似文献
8.
为了进一步提高低分辨率遥感数据用于干旱和半干旱地区地物分类精度,该文以新疆石河子垦区为研究区,利用PSA(purposive selection algorithm)算法结合地物分布的统计特性对样本窗口进行选择,确定了最佳样本窗口组合;采用概率密度估计的方法获取了真实的隶属度函数,基于类别隶属度函数构建地物辨别模型;建立了多分辨率数据大尺度土地利用/覆盖遥感分类流程。研究结果表明,借助高空间分辨率数据提取各地物类别的精细分布特征,与Erdas非监督分类相比,模糊分类的总体分类精度提高了20%。该研究可为低分辨率数据的研究与应用提供借鉴。 相似文献
9.
为准确、快速的获取区域范围内的育种玉米垄数信息,该研究充分利用无人机(unmanned aerial vehicle,UAV)超低空遥感监测技术,通过提取UAV影像的超绿特征和Hough变换方法提取育种玉米的垄数。研究区为金色农华种业科技股份有限公司崖城育种基地,基地内存在正处于苗期、拔节期和成熟期的玉米试验地块,使用的数据源为利用固定翼瑞士e Bee Ag精细农业用无人机获取的超低空可见光影像。研究过程中,首先计算UAV影像的超绿特征,并进行二值优化与形态学开启运算处理,以分离玉米植株与土壤背景信息,采用3种尺寸的窗口搜索并检测用于垄数提取的定位点;然后,用影像分割投影法提取玉米垄线的中心点,减小后续处理的计算量;最后,对已经提取的直线特征不明显的无人机影像中垄线中心点进行Hough变换,以提取玉米垄数。精度评价结果为:采用3种搜索窗口,苗期地块内的43垄玉米的提取精度分别为97.67%、95.35%、88.37%;拔节期地块内的74垄玉米的提取精度分别为100.00%、100.00%、58.11%;成熟期地块内的44垄玉米的提取精度分别为95.45%、90.91%、88.64%。该研究所提出的基于影像分割投影法和Hough变换可以正确提取不同生育期的玉米垄数,其中以拔节期的玉米垄数提取精度最高,此时的玉米植株在UAV影像上可以识别且又尚未封垄,是提取种植垄数的最佳时相;对于定位点检测,与玉米种植的垄间间隔相近的窗口尺寸(1?15或者1?25)是垄数监测的最佳尺寸。 相似文献
10.
基于主被动遥感数据融合的土壤水分信息提取 总被引:2,自引:3,他引:2
为改善西北半干旱地区的土壤含水率监测精度,该文选择张掖地区黑河流域为研究区,提出了一种基于主被动遥感融合数据贝叶斯网络分类的土壤水分信息提取方法。该方法依据光学与雷达遥感数据本身在反演土壤水方面的各自优势,首先利用小波变换与IHS结合的算法将TM5、4、3与ASAR数据融合,融合规则采用局部距离最大替代法,在突出融合影像细节的同时,一定程度上保留了TM数据的光谱信息。然后构建BN网络进行分类,以融合后新的R'、G'、B'分量和TM6波段作为网络的输入,输出为5个不同的类别,分别对应5个不同等级的土壤水分含量。经实测数据对融合前后分类结果的比较分析,结果表明,此方法在植被区能取得更好的效果,分类精度达到76.1%,对荒漠区效果欠佳。因此该方法在植被覆盖区对提取区域土壤水分信息是可行的、有效的。 相似文献
11.
为提高土壤含水量格点数据的区域适用性、准确性,该研究提出了基于离散小波多尺度分解与重构的多源土壤含水量数据融合方法,利用2016-2018年6-9月ESA-CCI、SMAP、ERA5-Land数据集以及地面站点观测的土壤含水量数据,在以黄河流域为主体的主要农业气候区开展了融合方法可行性和适用性研究。结果表明,融合方法能有效捕获融合数据源的多尺度特征信息,通过多源多尺度逐层特征信息权重融合与重构,能有效改进单一数据源在不同农业气候区域的适用性、时空结构和波动特征的准确性。融合结果总体评估的均方根误差、偏差(Bias)和相关系数(r)分别为0.053 m3/m3、0.001 m3/m3和0.721,时空分解评估的综合表现均优于单一融合数据源的评估指标,多尺度时空波动频谱结构特征与观测时空序列更吻合,特别在25 d时间尺度以内时空波动吻合度改进最为明显。该研究获得了较理想的区域土壤含水量改进预期,可为区域生态环境监测、农业可持续发展、水土保持、防灾减灾等科学研究和业务应用提供可行有效的方法参考。 相似文献
12.
利用遥感数据时空融合技术提取水稻种植面积 总被引:4,自引:4,他引:4
为解决水稻种植面积提取过程中的数据缺失问题,提出了一种利用遥感数据时空融合技术提取水稻种植面积的方法。该方法从时序MODIS数据中提取地物的时间变化信息,结合早期Landsat-ETM+影像的纹理信息,融合出具有MODIS时间分辨率和ETM+空间分辨率的影像,再利用关键期的高时空分辨率融合影像,利用光谱角分类法进行水稻种植面积的提取。以江苏省南京市江宁区为研究区对该方法进行了测试。结果显示,该方法能够有效的提取水稻种植面积,水稻种植面积提取精度为93%,Kappa系数为0.96。 相似文献
13.
数据融合及其在农情遥感监测中的应用与展望 总被引:5,自引:8,他引:5
长期以来,由于对数据融合一直没有一个严格的统一的定义,对于数据融合的理解、表达存在各种差异,在一定程度上影响了学术交流的顺利开展和应用渠道的畅通。另一方面,数据融合在遥感领域的长期发展已取得了丰硕的成果,将这些成果应用于农情遥感监测中,是非常有意义的。该文详细介绍了数据融合的概念及其发展过程,包括数据融合的定义、数据融合层次和融合方法;分析了当前数据融合在遥感尤其农情遥感监测中的应用现状,并针对农情遥感监测的特点,展望数据融合在农情遥感监测中的应用前景。 相似文献
14.
数据融合是解决不同来源遥感数据无法直接对比分析这一瓶颈的有效方法。实时更新的SMOS土壤水分数据(soil moisture and ocean salinity)可开展实时干旱评价(2010年至今),但由于序列短无法开展频率及演变分析。CCI(climate change initiative)土壤水分数据是联合了多种主被动遥感数据合成的长序列数据产品(1979—2013年)。为提高不同来源遥感数据的融合精度,该研究基于累积分布匹配原理构建了多源遥感土壤水分连续融合算法,将SMOS和CCI融合成长序列、近实时的遥感土壤水分数据。经验证分析,累积概率曲线相关性中表征干旱的低值区纳什效率系数由0.52提高到0.99,且融合后土壤水分数据可以较准确地反映当地的干旱事件。该研究提出的多源遥感土壤水分连续融合算法显著提高了现有融合算法的融合精度。 相似文献
15.
基于MODIS数据的黄淮海夏玉米高温风险空间分布 总被引:3,自引:1,他引:3
近年来中国高温灾害频发,对黄淮海地区的玉米生产造成较大影响。目前已有的高温风险研究多用的是气象站点的点源数据,针对气象站点数据对大范围区域代表性较差的问题,该文使用搭载在Aqua卫星上的MODIS陆地表面温度产品(MYD11A1),在研究其与气象日最高温度间具有显著相关性的基础上,使用遥感温度数据获取黄淮海夏玉米花期的高温风险空间分布,并结合高程、水体等地理环境因素分析高温风险的成因。结果表明:气象日高温数据与遥感温度数据间的决定系数R2为0.51,P0.001,存在显著的正相关性。通过遥感温度计算发现近年高温风险主要分布在秦岭山区北部以及城镇、村庄的周边地区,与实际情况相符。该研究对于大范围高温风险研究与玉米生产管理具有参考作用。 相似文献
16.
17.
基于多源遥感数据融合和LSTM算法的作物分类研究 总被引:1,自引:6,他引:1
准确、及时地获取农作物的空间分布信息,对于指导农业生产、制定农业政策具有重要意义。为了检验长短时记忆网络(long short-term memory,LSTM)算法在基于时序遥感数据进行作物分类中的优势,该文以临汾盆地为研究区域,利用Savitzky-Golay滤波对MODIS NDVI进行平滑处理,并采用ESTARFM(enhanced spatial and temporal adaptive reflectance fusion model)算法对滤波后的MODIS NDVI和Landsat NDVI进行融合,生成空间分辨率为30 m、时间分辨率为8天的时序NDVI。基于Landsat NDVI利用LSTM算法进行作物分类,同时,基于融合NDVI分别利用LSTM算法和神经网络(neuralnetwork,NN)算法进行作物分类,并对比3种方法的分类精度。结果表明,Savitzky-Golay滤波后的时序MODISNDVI能够反映不同作物的物候特征;基于融合NDVI的分类精度明显高于基于LandsatNDVI的分类精度,表明融合后的时序NDVI由于具有更高的时间分辨率,能够更加突出不同作物的物候特征,显著提高作物分类精度;基于融合NDVI和LSTM算法的分类精度高于基于融合NDVI和NN算法的分类精度,前者的冬小麦面积估测精度高于后者的估测精度,表明LSTM算法的分类精度高于NN算法。该文可为基于遥感影像进行不同作物种植区域提取的研究提供重要的方法参考。 相似文献