首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
The aim is to assess whether soil microbial biomass carbon (biomass C) could be used as an indicator of environmental change in natural and semi-natural ecosystems. Biomass C was measured by fumigation-extraction in soils from two sites at Rothamsted. One was a plot from the Broadbalk Wheat Experiment, given inorganic fertiliser and chalk, which has been in continuous cultivation for more than 150 yr. The other was a similar sized area, from Geescroft Wilderness, which has been left to revert to woodland since 1885, after being an arable field. Other soil properties (pH, soil organic C and exchangeable cations) were also measured to compare with biomass C. The coefficients of variation (cvs) of the properties measured were calculated for comparison, little difference was found between the cvs for biomass C from each site: cv=26% for Broadbalk and 23% for Geescroft. The cvs for the other, chemical properties, were mostly <10% for Broadbalk and generally >25% for Geescroft, as expected, given the different cultivation histories. Statistical analysis of the variation in biomass C concentration revealed that such measurements would not be valid indicators of environmental change, without processing impossibly large numbers of samples. To decrease the least significant percentage change to less than 5% after three samplings, 320 samples would have to be taken each time. This would be also be true of the other chemical properties in Geescroft Wilderness, where the measured background variation would mask any subtle environmental change. This indicates that, for some properties at least, statistically significant changes will only be detected in the longer term with regular sampling, e.g. 30-40 yr.  相似文献   

2.
The change in soil carbon (C) stock over a 19–31‐year period (mean 25 years) has been measured at 179 sites on a 20‐km grid across Scotland. Sampling was by horizon from a profile pit. Although soil bulk density determinations were absent at the first sampling time, we used bulk density values from the second sampling time calibrated against NIR spectra to predict the missing values. There was no detectable change in overall total soil C stock (mean ± standard error, to a depth of 100 cm), which was 266 ± 15 and 270 ± 15 t C ha?1 for the first and second sampling times, respectively, or generally in C stock within specific vegetation or soil types. The exception was for soils under woodland, excluding those on deep peat, which exhibited a significant (P = 0.05) gain of 1.0 t C ha?1 year?1. Soils under woodland (mainly coniferous plantation) also showed a significant (P = 0.04) increase in C content (g kg?1), a significant decrease in bulk density (P = 0.006) and an increase in the thickness of the Litter‐Fermentation‐Humus (LFH) layer (P = 0.06). Recalculating the C stock to a depth of 15 cm showed a significant increase in overall C stock (when deep peat sites were excluded) as well as specifically in moorland and woodland soils, suggesting that had we sampled only to 15 cm, we would have reached a different conclusion. Both improved grassland soils and those initially under arable cultivation showed a significant decrease in C content. However, the mean thickness of Ap horizons increased from 29 to 32 cm, with a concomitant decrease in C content and a slight increase in bulk density; this we ascribe to deeper ploughing between the sample periods. In the context of possible soil C losses, we can be 95% confident that the mean loss does not exceed 0.2% year?1 and 99% confident that it does not exceed 0.4% year?1.  相似文献   

3.
《Soil biology & biochemistry》2001,33(12-13):1797-1804
Sulphur transformations were monitored in a unique set of arable, grassland and woodland soils from the Broadbalk Classical Experiment, which started in 1843. In an open incubation experiment with periodic leaching, 14–35 mg SO42−-S kg−1 was mineralised in 28 weeks at 25°C, equivalent to 4.4–8.3% soil organic S. Cumulative amounts of S mineralised increased linearly during the 28 weeks, indicating constant rates of mineralisation. The rate of mineralisation was the greatest in the woodland soil (170 μg SO4-S kg−1 day−1), followed by the grassland (120 μg SO4-S kg−1 day−1) and the arable soil from the farmyard manure (FYM) plot (110 μg SO4-S kg−1 day−1). Three soils from arable plots receiving different inorganic fertiliser treatments but no FYM had similar rates of S mineralisation (~70 μg SO4-S kg−1 day−1). In an incubation experiment with 35SO42−, addition of glucose greatly enhanced S immobilisation. In 132 days, the woodland and grassland soils immobilised more S than the arable soils, with or without glucose amendment. Immobilisation and mineralisation of S occurred concurrently, and both were stimulated by glucose addition. The results show that S mineralisation and immobilisation were influenced strongly by the type of land-use and long-term organic manuring, whereas annual application of sulphate-containing fertilisers for over 150 years had few effects on short-term S transformations.  相似文献   

4.
A simple, sensitive method developed for the analysis of geostandards was used to measure the accumulation of Cd in soils from superphosphate applied annually to grass-land and arable soils for many years. Rates of application were equivalent to 33 kg P and 5 g Cd ha?1 yr?1 for 95 yr in three experiments in England and to 37 kg P and 20 g Cd ha?1 yr ?1 for 30 yr in one experiment in New Zealand. Very little Cd accumulated in the surface horizons (0–22.5cm) of either of the arable soils from England; about one-quarter of the applied Cd was detected in the sub-soil (22.5–45.0 cm) of one experiment (Broadbalk) but none in the second (Barnfield). About one-half of the applied Cd was retained in the 0–22.5 cm horizon of grassland soils from both England and New Zealand. The light (<2.2 gcm?3) organic-rich fraction of Park Grass soil from Éngland contained about three times as much Cd as the heavier, mineral-rich fraction. This suggests that when Cd is incorporated into organic matter its mobility is decreased and soil pH then has smaller effects on its mobility. Uptake of Cd by grass-clover pasture in New Zealand averaged only 0.4 g Cd ha?1 yr?1 or 2% of the amount applied.  相似文献   

5.
The organic matter (OM) of soils with andic properties has long been considered highly stable because of the presence of Al–humus complexes and sorption of organic ligands onto amorphous compounds. In this study, we characterized soils under different land use regimes located within an amphibolitic massif close to Santiago de Compostela (Spain), where soils with andic properties are present. Slash and burn agriculture was a common practice in the area until the second half of the 20th century. Thereafter, modern agriculture was progressively introduced into the area (AGR soils), and the rest of the land was either reforested or abandoned (FOR soils). We found that the mean organic C content of AGR soils (48.7 g kg?1) was ~ 50% that of FOR soils (94.2 g kg?1). Mean soil pH was significantly greater (P < 0.05) in the AGR than in the FOR soils (4.95 compared with 4.63), which is attributed to liming and Ca‐phosphate fertilization of the former. Mean concentrations of the Al forms studied (extractable with CuCl2, sodium pyrophosphate, ammonium oxalate, or NaOH) were significantly smaller (P < 0.01) in AGR (1.4, 4.9, 9.3, 11.0 g kg?1, respectively) than in FOR soils (3.9, 10.2, 16.5, 17.9 g kg?1, respectively). The results show the vulnerability of the OM and Al–humus complexes in these soils to modern agricultural practices, which has led to the attenuation – and in some cases even the disappearance – of andic soil properties in a relatively short time (< 30 years) following changes in land use/management. We propose the inclusion of the formative element ‘andic’ in the criteria for the definition of Umbrisol subunits; this would avoid the abrupt discontinuity observed in the current World Reference Base classification.  相似文献   

6.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

7.
The potential for microorganisms to affect the quantity and quality of organic and condensed forms of phosphorus (P) in soils was investigated by repeated addition of different carbon sources (glucose, starch, cellulose; 2.5 g C kg?1) with or without inorganic P (50 mg P kg?1) to acid and calcareous soils which were either natural soils or clay–sand mixtures free of organic matter. Forms of P after five amendments and subsequent incubation periods of 5 weeks each were analyzed by 31P solution nuclear magnetic resonance (NMR) spectroscopy, and the microbial community composition was assessed by selective plate counts and fatty acid methyl ester (FAME) analysis. All carbon additions induced a redistribution of P from inorganic to organic and condensed forms, which was only little affected by the addition of inorganic P. Compared to non-carbon-amended controls, the greatest increase (7–38 mg P kg?1) in organic P was observed in the monoester region. In the acid clay–sand mixture, there was a large accumulation of pyrophosphate (101 mg P kg?1) after glucose addition and smaller accumulations (6–25 mg P kg?1) after addition of starch and cellulose. Carbon additions increased the microbial biomass in all cases and except in the natural calcareous soil also the proportion of fungi. Redundancy analysis with Monte Carlo permutation tests revealed that for carbon-amended soils, the microbial community composition was more strongly influenced by soil type than by carbon source. Pyrophosphate was positively related to fungi, and diester P was positively related to soil pH. A large proportion of organic and condensed forms of P may still have been in microbial cells at the time of extraction. We have shown that soil organic P consists of some discrete and simple compounds along with some more complex forms, and that organic P recently synthesized by microbes consists almost exclusively of and thus is a likely source for the simple compounds found in natural soils.  相似文献   

8.
Past land‐use changes, intensive cropping with large proportions of root crops, and preferred use of mineral fertilizer have been made responsible for proceeding losses of soil organic C (SOC) in the plough layer. We hypothesized that in intensive agriculturally managed regions changes in SOC stocks would be detectable within a decade. To test this hypothesis, we tracked the temporal development of the concentrations and stocks of SOC in 268 arable sites, sampled by horizon down to 60 cm in the Cologne‐Bonn region, W Germany, in 2005 and in 2013. We then related these changes to soil management data and humus balances obtained from farmers' surveys. As we expected that changes in SOC concentrations might at least in part be minor, we fractionated soils from 38 representative sites according to particle size in order to obtain C pools of different stability. We found that SOC concentrations had increased significantly in the topsoil (from 9.4 g kg?1 in 2005 to 9.8 g kg?1 in 2013), but had decreased significantly in the subsoil (from 4.1 g kg?1 in 2005 to 3.5 g kg?­1 in 2013). Intriguingly, these changes were due to changes in mineral‐bound SOC rather than to changes in sand‐sized organic matter pools. As bulk density decreased, the overall SOC stocks in the upper 60 cm exhibited a SOC loss of nearly 0.6 t C (ha · y)?1 after correction by the equivalent soil mass method. This loss was most pronounced for sandy soils [?0.73 t SOC (ha · y)?1], and less pronounced for loamy soils [?0.64 t SOC (ha · y)?1]; silty soils revealed the smallest reduction in SOC [?0.3 t SOC (ha · y)?1]. Losses of SOC occurred even with the overall humus balances having increased positively from about 20 kg C (ha · y)?1 (2003–2005) to about 133 kg C (ha · y)?1 (2005–2013) due to an improved organic fertilization and intercropping. We conclude that current management may fail to raise overall SOC stocks. In our study area SOC stocks even continued to decline, despite humus conservation practice, likely because past land use conversions (before 2005) still affect SOC dynamics.  相似文献   

9.
The major aim of this study was to evaluate how the pool size of slowly mineralizable, ‘old’ soil organic N can be derived from more easily accessible soil and site information via pedotransfer functions (PTF). Besides modeling, this pool size might be of great importance for the identification of soils with high mineralization potential in drinking‐water catchments. From long‐term laboratory incubations (ca. 200 days) at 35 °C, the pool sizes of easily mineralizable organic N (Nfast), mainly in fresh residues, and slowly mineralizable, ‘old’ soil organic N (Nslow) as well as their first‐order rate coefficients were obtained. 90 sandy arable soils from NW Germany served to derive PTFs for Nslow that were evaluated using another 20 soils from the same region. Information on former land‐use and soil type was obtained from topographical, historical, and soil maps (partly from 1780). Pool size Nslow very strongly depends on soil type and former land‐use. Mean pool sizes of Nslow were much lower in old arable lowland (105 mg N kg–1) than upland soils (175 mg N kg–1) possibly due to lower clay contents. Within lowlands, mean pool sizes in former grassland soils (245 mg N kg–1) were 2 to 3 times larger than in old arable soils due to accumulation of mineralizable N. In contrast, mean pool sizes of Nslow were lowest in recently cleared, former heath‐ and woodland (31 mg N kg–1) as a result of the input of hardly decomposable organic matter. Neither N nor C in the light fraction (density < 1.8 g cm–3) was adequate to derive pool size Nslow in the studied soils (r2 < 0.03). Instead, Nslow can be accurately (r2 = 0.55 – 0.83) derived from one or two basic soil characteristics (e.g. organic C, total N, C : N, mineral fraction < 20 μm), provided that sites were grouped by former land‐use. Field mineralization from Nslow during winter (independent data set) can be predicted as well on the basis of Nslow‐values calculated from PTFs that were derived after grouping the soils by former land‐use (r2 = 0.51***). In contrast, using the PTF without soil grouping strongly reduced the reliability (r2 = 0.16).  相似文献   

10.
Available iron, zinc, copper and manganese were determined in six pedons located in upper slope, middle slope and valley bottom soils derived from Abeokuta geological materials in Nigeria. The soils had an average of 639.8 g kg?1 sand, 241.8 g kg?1 clay and 118.4 g kg?1 silt. The fertility status of the soils was low–medium with a strongly acid–neutral reaction, 1.3–15.1 g kg?1 organic carbon contents, moderate–high exchangeable bases and 1.38 mg kg?1 available phosphorus. Both Fe (122.50 mg kg?1) and Mn (111.40 mg kg?1) occurred at toxic levels, whereas the mean Cu (1.27 mg kg?1) and Zn (2.56 mg kg?1) contents were found to be adequate for most crops grown in the region. There were significant positive correlations among the micronutrients and also between soil pH, organic carbon, particle size fractions and micronutrients. The high levels of Fe and Mn were probably due to the presence of oolitic ironstone in the parent material.  相似文献   

11.
This study aimed at clarifying whether a notable group of soils of the Jæren region, SW Norway, with deep humus‐rich top soils support a man‐made genesis. Four sites were investigated. The soils are characterized by thick top soils of 45, 70, 80, and 90 cm, which are enriched in soil organic matter and often also in artifacts, like fragments of potter's clay, indicating an anthropogenic origin. Soil pH ranges from 5.4 to 6.2 (H2O) and 4.4 to 5.3 (CaCl2), respectively. Soil organic C (SOC) contents range from 6.4 to 51.6 g kg?1 and N contents vary between 0 and 2.9 g kg?1. Increased P contents of up to 2,924.3 mg kg?1 total P (Pt) and 1,166.4 mg kg?1 citric acid‐soluble phosphorus (Pc) in the humus‐rich top soils support the assumption of an anthropogenic influence. Although many characteristics indicate an anthropogenic genesis, one soil lacks the required depth of 50 cm of a plaggen horizon and cannot be classified as Plaggic Anthrosol (WRB) and Plagganthrept (US Soil Taxonomy). As the requirement is 40 cm in the German system, all soils can be classified as Plaggenesch. The formation of these soils is related to human activity aiming at increasing soil fertility and overcoming the need of bedding material, the basic aims of the plaggen management in Europe. Highest P contents ever found for this kind of soils and references from the literature indicate that the formation of the soils in Norway started at Viking time, hence, being older than most other Plaggic Anthrosols.  相似文献   

12.
The iron oxides fractions of four major physiographic units obtained from a transect of calcareous materials were studied to assess the effects of key pedogenic processes and local hydrology conditions as well as physiographic units in controlling iron oxides forms in the north-west of Iran. Samples from different horizons belonging to six pedons were selected and analyzed for soil physicochemical properties, clay minerals, and Fe oxides forms (Fed, Feo, Fep). In general, the soils indicated some variation in the concentration of iron oxides that could be related to rate of weathering, pedogenic accumulations, geomorphologic conditions (as results of different in physiographic units), wet and dry cycle, and organic matter. A wide relative variation in mean values of Fed (6.4–9.9 g kg?1), Feo (2.9–4 g kg?1), and Fep (0.68–1.3 g kg?1) was observed among physiographic units. On the plateau unit, the presence of the most stable geomorphologic conditions and high rate in situ weathering (reflected in clay content), coupled with minor deposition of sediment suggest that the soils have more dynamic conditions than other units, reflecting in the greatest amount Fed and the lowest Feo/Fed ratio. Fed content of the soils containing less clay content (15–25%) was significantly different from those with greater clay content (25–35%).  相似文献   

13.
Oxidative treatment can isolate a stable organic matter pool in soils for process studies of organic matter stabilization. Wet oxidation methods using hydrogen peroxide are widely used for that purpose, but are said to modify poorly crystalline soil constituents. We investigated the effect of a modified NaOCl oxidation (pH 8) on the mineral composition of 12 subsoils (4.9–38.2 g organic C kg?1) containing varying amounts of poorly crystalline mineral phases, i.e. 1.1–20.5 g oxalate‐extractable Fe kg?1, and of different phyllosilicate mineralogy. Post‐oxidative changes in mineral composition were estimated by (i) the determination of elements released into the NaOCl solution, (ii) the difference in dithionite‐ and oxalate‐extractable Si, Al and Fe, and (iii) the specific surface areas (SSAs) of the soils. The NaOCl procedure reduced the organic C concentrations by 12–72%. The amounts of elements released into the NaOCl extracts were small (≤ 0.14 g kg?1 for Si, ≤ 0.13 g kg?1 for Al, and ≤ 0.03 g kg?1 for Fe). The SSA data and the amounts of dithionite‐ and oxalate‐extractable elements suggest that the NaOCl oxidation at pH 8 does not attack pedogenic oxides and hydroxides and only slightly dissolves Al from the poorly crystalline minerals. Therefore, we recommend NaOCl oxidation at pH 8 for the purpose of isolating a stable organic matter pool in soils for process studies of organic matter stabilization.  相似文献   

14.
Land use change (LUC) is known to have a large impact on soil organic carbon (SOC) stocks. However, at a regional scale, our ability to explain SOC dynamics is limited due to the variability generated by inconsistent initial conditions between sample points, poor spatial information on previous land use/land management history and scarce SOC inventories. This study combines the resampling in 2003–2006 of an extensive soil survey in 1950–1960 with exhaustive historical data on LUC (1868–2006) to explain observed changes in the SOC stocks of temperate forest soils in the Belgian Ardennes. Results from resampling showed a significant loss of SOC between the two surveys, associated with a decrease in variability. The mean carbon content decreased from 40.4 to 34.5 g C kg?1 (10.6 to 9.6 kg C m?2), with a mean rate of C change (ΔSOC) of ?0.15 g C kg?1 year?1 (?0.023 kg C m?2 year?1). Soils with high SOC content tended to loose carbon while conversely soils with low SOC tended to gain carbon. Land use change history explained a significant part of past and current SOC stocks as well as ΔSOC during the last 50 years. We show that the use of spatially explicit historical data can help to quantitatively explain changes in SOC content at the regional scale.  相似文献   

15.
Among factors controlling decomposition and retention of residue C in soil, effect of initial soil organic C (SOC) concentration remains unclear. We evaluated, under controlled conditions, short-term retention of corn residue C and total soil CO2 production in C-rich topsoil and C-poor subsoil samples of heavy clay. Topsoil (0–20 cm deep, 31.3 g SOC kg?1 soil) and subsoil (30–70 cm deep, 4.5 g SOC kg?1 soil) were mixed separately with 13C–15N-labeled corn (Zea mays L.) residue at rates of 0 to 40 g residue C kg?1 soil and incubated for 51 days. We measured soil CO2–C production and the retention of residue C in the whole soil and the fine particle-size fraction (<50 μm). Cumulative C mineralization was always greater in topsoil than subsoil. Whole-soil residue C retention was similar in topsoil and subsoil at rates up to 20 g residue C kg?1. There was more residue C retained in the fine fraction of topsoil than subsoil at low residue input levels (2.5 and 5 g residue C kg?1), but the trend was reversed with high residue inputs (20 and 40 g residue C kg?1). Initial SOC concentration affected residue C retention in the fine fraction but not in the whole soil. At low residue input levels, greater microbial activity in topsoil resulted in greater residue fragmentation and more residue C retained in the fine fraction, compared to the subsoil. At high residue input levels, less residue C accumulated in the fine fraction of topsoil than subsoil likely due to greater C saturation in the topsoil. We conclude that SOC-poor soils receiving high C inputs have greater potential to accumulate C in stable forms than SOC-rich soils.  相似文献   

16.
The iron‐cyanide complexes ferricyanide, [FeIII(CN)6]3?, and ferrocyanide, [FeII(CN)6]4?, are anthropogenic contaminants in soil. We studied the interactions of ferricyanide with humic soils and charred straw (maize and rye, both charred at 300, 400 and 500°C) by batch experiments and Fourier transform infrared (FTIR) spectroscopy. All soil samples sorbed ferricyanide (up to 8.4 g kg?1). Precipitation of a manganese ferrocyanide after reduction of ferricyanide in the moderately acidic to neutral soils was deduced from both FTIR spectroscopy (CN absorption bands at 2069–2065 cm?1) and geochemical modelling. Ferricyanide was also adsorbed onto the charred straw. The amounts of iron‐cyanide complexes adsorbed increased with increasing charring temperature, with a maximum of 1.71 g kg?1. An absorption band at 2083 cm?1 indicated weakly adsorbed intermediates of the reduction of ferricyanide to ferrocyanide. This band disappeared in the samples charred at higher temperature, whereas a band at 2026 cm?1 was present in all spectra and became intensified in the high‐temperature straw. We attribute this band to ferrocyanide forming inner‐sphere complexes, presumably with quinone species of the organic matter. The band at 2026 cm?1 was also present in the spectra of the soils, indicating that soil organic matter also adsorbs ferrocyanide. However, in humic soils the main processes of ferricyanide interaction include reduction to ferrocyanide and precipitation as manganese ferrocyanide. Quantitatively, adsorption on highly aromatic substances plays only a less important role as compared with precipitation.  相似文献   

17.
A new method for the determination of biomass in soil is described. Soil is fumigated with CHCl3 vapour, the CHCl3 removed and the soil then incubated. The biomass is calculated from the difference between the amounts of CO2 evolved during incubation by fumigated and unfumigated soil. The method was tested on a set of nine soils from long-term field experiments. The amounts of biomass C ha?1 in the top 23 cm of soil from plots on the Broadbalk continuous wheat experiment were 530 kg (unmanured plot), 590 (plot receiving inorganic fertilizers) and 1160 (plot receiving farmyard manure). Soils that had been fallowed for 1 year contained less biomass than soils carrying a crop. A calcareous woodland soil contained 1960 kg biomass C ha?1, and an unmanured soil under permanent grass 2020. The arable soils contained about 2% of their organic C in the biomass; uncultivated soils a little more—about 3%.  相似文献   

18.
l3C–nuclear magnetic resonance (NMR) spectra taken using magic–angle spinning (MAS), cross polarization (CP) and with total suppression of side bands (TOSS) are reported for soils from two long–term field experiments. One set of soils was from the Broadbalk Experiment at Rothamsted, UK (monoculture of winter wheat since 1843) and the other was from the Lermarken site of the Askov Long–Term Experiment on Animal Manure and Mineral Fertilizers (arable rotation since 1894). At both sites soil samples were taken from three fertilizer treatments: nil, inorganic fertilizers, animal manure. Spectra were obtained from whole soil samples and from the size fractions clay (<2 μrn), silt (2–20 μm) and, in some cases, sand (20–2000 μm). Comparison of the total strengths of the 13C–NMR signal for each size separate in relation to its total organic C content shows that clay, particularly, contains large percentages of C not detected by NMR because of the large magnetic susceptibilities of the soil minerals. It is proposed that the observed signals come from the more labile pools of soil organic matter (SOM), on the presumption that these pools are less closely associated with soil minerals and iron oxides and are likely to be less protected from microbial or enzymic decomposition. For both Rothamsted and Askov, functional groups in the 45–110 ppm region (N– and O–alkyls) dominate in the spectra for whole soils, with aromatics (110–160 ppm) and alkyls (0–45 ppm) signals being the next prominent. In the Askov whole soil samples 13C–NMR revealed no differences between nil, inorganic fertilizer and animal manure treatments but in the Rothamsted whole soil there were some small differences. Clay and silt fractions from Askov contain more alkyls and less aromatics than those from Rothamsted. For both sites clay in enriched in alkyls and depleted in aromatics relative to silt. Clay from Askov, but not Rothamsted, contains more N–alkyls (45–65 ppm) and less acetals (90–110 ppm) than silt. O–alkyls (65–90 ppm) account for more than 20% of the total signal in clay and silt from both sites. Fertilization regimes have not significantly affected the chemical composition of SOM associated with clay– and silt–sized fractions in the soils at either site. We conclude that the chemical composition of SOM is determined primarily by the interaction between the organisms responsible for decomposition and the mineral soil matrix rather than the nature of substrate input.  相似文献   

19.
Soil organic matter can be intimately associated with mineral particles of various sizes. For structural studies, soil organic matter can be isolated in particle size fractions after complete dispersion of the aggregates by ultrasonication. The ultrasonic dispersion energy necessary for complete dispersion was investigated in three A and two B horizons originating from four soils differing in pedogenesis (Gleysol, Phaeozem, Podzol, Alisol), organic C (4.2–34.5 g kg–1) and clay content (24–294 g kg–1). Calorimetric calibration of five probe-type ultrasonifiers revealed that the actual energy output from an instrument can depart widely from its nominal output, and that this discrepancy varies from instrument to instrument. Calorimetric calibration is therefore essential for consistency and comparisons between laboratories. Between 450 and 500 J ml–1 of ultrasonic dispersion energy was enough to disperse completely all samples investigated. The particle size distributions obtained were close to those from standard analysis, except for smaller yields (–20 to –80 g kg–1) of sand size fractions, which suggests that dispersion by ultrasound is more effective. Based on total C, C:N ratio and distribution of dissolved C, no detachment of soil organic matter from primary organomineral complexes and no redistribution between particle size fractions could be detected in the range 30–590 J ml–1 of dispersion energy.  相似文献   

20.
We have examined the effect that acid deposition and other sources of acidity have had over the last 110–140 years on soil under woodland (Broadbalk and Geescroft Wildernesses) and grassland (Park Grass) comprising some of the Classical Experiments at Rothamsted Experimental Station. Changes in soil chemistry have been followed by analysing some of the unique archive of stored samples for pH, water-soluble and exchangeable base cations, aluminium, iron and manganese, exchangeable acidity, cation exchange capacity (CEC) and soluble anions. Proton balances and historical data show the importance of acid deposition to acidification and concomitant changes in the chemistry of the soil. The pH of the surface soil of Geescroft Wilderness has fallen from 6.2 to 3.8 since 1883. The decrease in the pH of the unlimed, unfertilized plot on Park Grass was less over a similar period (from pH 5.2 to 4.2), illustrating the significant effect of the woodland canopy on the interception of acidifying pollutants. The effect of increasing acidity on the soil chemistry of Geescroft Wilderness is seen in its decreasing base saturation and CEC, with base cations moving down the soil profile. Clay minerals are being irreversibly weathered, and Mn and Al progressively mobilized, so that today Al occupies 70% of the exchange complex in the surface soil. Even with present reductions in sulphur deposition critical loads for sulphur, nitrogen and acidity are still exceeded. Such semi-natural ecosystems are unsustainable under the current climate of pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号