首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Liquid elemental mercury occurrence in the subsurface as dense non-aqueous phase liquid (DNAPL) is reported worldwide in proximity of several industrial facilities, such as chlor-alkali plants. Insight into Hg0 DNAPL infiltration behavior is lacking and, to date, there are no experimental observations of its infiltration and distribution in water-saturated porous media, except for capillary pressure-saturation column experiments. To better understand the processes governing elemental mercury DNAPL flow behavior, a series of flow container experiments were performed using mercury DNAPL (in sands and glass beads) and tetrachloroethylene (PCE) (in sands). While liquid Hg0 was not able to infiltrate in the sand-filled container due to an overall lower permeability of the sample and a defect of the setup, in the glass beads experiment mercury DNAPL infiltration occurred. Dual gamma ray measurements showed that, in glass beads, liquid Hg0 preferentially migrated towards higher porosity zones. As for PCE, infiltration and distribution of Hg0 DNAPL are strongly affected by the heterogeneities within the porous formation. However, compared to other DNAPLs, liquid Hg0 shows a strong attenuation potential of gamma rays. Finally, numerical simulations of the glass beads experiment showed an overall good agreement with the experimental results, highlighting that, among the factors influencing the prediction of liquid Hg0 migration in water-saturated porous media, the most critical are (i) the knowledge of the inflow rate, (ii) the reliable estimation of the porous formation permeability, and (iii) the accurate representation of the correlation between retention properties and intrinsic permeability.  相似文献   

2.
The NMR relaxation signals from complex products such as ice cream are hard to interpret because of the multiexponential behavior of the relaxation signal and the difficulty of attributing the NMR relaxation components to specific molecule fractions. An attribution of the NMR relaxation parameters is proposed, however, based on an approach that combines quantitative analysis of the spin-spin and spin-lattice relaxation times and the signal intensities with characterization of the ice cream components. We have been able to show that NMR can be used to describe the crystallized and liquid phases separately. The first component of the spin-spin and spin-lattice relaxation describes the behavior of the protons of the crystallized fat in the mix. The amount of fat crystals can then be estimated. In the case of ice cream, only the spin-lattice relaxation signal from the crystallized fraction is relevant. However, it enables the ice protons and the protons of the crystallized fat to be distinguished. The spin-lattice relaxation time can be used to describe the mobility of the protons in the different crystallized phases and also to quantify the amount of ice crystals and fat crystals in the ice cream. The NMR relaxation of the liquid phase of the mix has a biexponential behavior. A first component is attributable to the liquid fraction of the fat and to the sugars, while a second component is attributable to the aqueous phase. Overall, the study shows that despite the complexity of the NMR signal from ice cream, a number of relevant parameters can be extracted to study the influence of the formulation and of the process stages on the ice fraction, the crystallized fat fraction, and the liquid aqueous fraction.  相似文献   

3.
Equilibrium and kinetic studies have been made on the adsorption of acrylonitrile(CH2=CHCN) on three soils and four minerals from aqueous solutions.It was shown that the organic matter was the major factor affecting the adsorption process in the soils.The conformity of the equilibrium data to linear type(one soil) and Langmuir type(two soils) isotherms indicated that different mechanisms were involved in the adsorption.This behavior appears bo be related to the hydrophobicity of soil organic matter due to their composition and E4/E6 ratio of humic acids.The adsorption kinetics were also different among the soils,indicating the difference in porosity of organic matter among the soils,and the kinetics strongly affected the adsorption capacity of soils for acrylonitrile.Acrylonitrile was slightly adsorbed from aqueous solutions on pyrophyllite with electrically neutral and hydrophobic nature,and practically not on montmorillonite and kaolinite saturated with Ca.However,much higher adsorption occurred on the zeolitized coal ash,probably caused by high organic carbon content(107g/kg).  相似文献   

4.
Calcite and gypsum are salts of major ions characterized by poor solubility compared with other salts that may precipitate in soils. Knowledge of calcite and gypsum solubility products in water‐saturated soil samples substantially contributes to a better assessment of processes involved in soil salinity. The new SALSOLCHEMIS code for chemical equilibrium assessment was parameterized with published analytical data for aqueous synthetic calcite and gypsum‐saturated solutions. Once parameterized, SALSOLCHEMIS was applied to calculations of the ionic activity products of calcium carbonate and calcium sulphate in 133 water‐saturated soil samples from an irrigated salt‐affected agricultural area in a semi‐arid Mediterranean climate. During parameterization, sufficiently constant values for the ionic activity products of calcium carbonate and calcium sulphate were obtained only when the following were used in SALSOLCHEMIS: (i) the equations of Sposito & Traina for the free ion activity coefficient calculation, (ii) the assumption of the non‐existence of the Ca (HCO 3)+ and CaCO3o ion pairs and (iii) a paradigm of total ion activity coefficients. The value of 4.62 can be assumed to be a reliable gypsum solubility product (pKs) in simple aqueous and soil solutions, while a value of 8.43 can only be assumed as a reliable calcite solubility product (pKs) in simple aqueous solutions. The saturated pastes and saturation extracts were found to be calcite over‐saturated, with the former significantly being less so (p IAP = 8.29) than the latter (p IAP = 8.22). The calcite over‐saturation of saturated pastes increased with the soil organic matter content. Nevertheless, the inhibition of calcite precipitation is caused by the soluble organic matter from a dissolved organic carbon threshold value that lies between 7 and 12 mm . The hypothesis of thermodynamic equilibrium is more adequate for the saturated pastes than for the saturation extracts.  相似文献   

5.
A 300 d solubility study involving two carbonate-rich, uranium-contaminated soils from the Department of Energy's Fernald Environmental Management Project site was conducted to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the solubility measurements to predict the on-site uranium leaching and transport potential. Results showed that the soluble levels of the major components (total uranium, calcium, magnesium, and carbonate) increased continually for the first 4 weeks. After the first 4 weeks, these components either reached a steady-state or continued to increase linearly throughout the study. Soluble uranium levels of both soils and their correlation with alkalinity was strongly mediated by the source term of the contamination. Geochemical modeling predicted and anion exchange experiments confirmed that uranyl-carbonate complexes were the most stable and abundant complexes. Further modeling showed that uranium solubility in these soils and in onsite groundwater wells is controlled by UO2(H2PO4)2, but is also mediated by complexation with carbonate and the oxidation state of the uranium. For assessing the risk related to off-site transport of uranium, it should be recognized that the solubility of uranium-bearing minerals is the critical factor in controlling uranium solubility of these soils rather than sorption/desorption processes as measured by the uranium distribution coefficient (Kd) in these soils.  相似文献   

6.
为研究海南省海湾地区分布的有机质浸染砂水泥土的力学特性,该文首先对有机质浸染砂水泥土和标准砂水泥土进行无侧限抗压强度对比试验(采用配合比均为熟石灰掺入比7.5%、水泥掺入比20%、水灰比0.45),定量分析养护龄期对其无侧限抗压强度及试样破坏形式的影响。然后对有机质浸染砂水泥土进行单轴抗压试验,获得了水泥土材料的应力-应变全过程曲线、刚度变化规律以及改进邓肯-张本构模型。结果表明:1)有机质浸染砂水泥土试样的破坏类型为塑性剪切破坏和脆性剪切破坏;2)有机质浸染砂水泥土抗压强度随着养护龄期的增加基本呈指数形式增长,但在养护龄期14 d后,增长速度逐渐降低并趋于稳定;3)随着养护龄期增长,水泥土刚度增加。在加载初期,水泥土切线模量随着轴向应变增加而增大,呈现刚度硬化现象;4)基于单轴抗压试验得到应力-应变全过程曲线,可分为2个阶段:塑性阶段、软化阶段;5)通过对应力-应变全曲线的描述,得到了修正的邓肯-张模型,确定模型参数后,与实测数据对比发现,该修正模型可以模拟有机质浸染砂水泥土的应力-应变关系。  相似文献   

7.
Targeted metabolite analysis of aqueous extract of Rumex induratus leaves, in terms of phenolic compounds and organic acids, and the study of its antioxidant activity against the DPPH(*) radical, a reactive oxygen species, hypochlorous acid, and a reactive nitrogen species, nitric oxide ((*)NO), were performed. The samples were collected in several locations, spontaneously occurring or from greenhouse culture, at different stages of development and seasons. The phenolic composition was achieved by high-performance liquid chromatography (HPLC)-diode array detection, and four hydroxycinnamic acid derivatives and 10 flavonoid glycosides (C- and O-heterosides) were determined. Organic acids composition was established by HPLC-UV, revealing five compounds. The total amount of phenolic compounds and organic acids were affected by growing conditions and developmental phase. The aqueous extract exhibited a dose-related activity against all tested reactive species.  相似文献   

8.
Abstract

Sewage‐sludge‐amended soils generally contain elevated levels of organic matter and heavy metals compared to control soils. Because organic matter is known to complex with heavy metals, the solubility behavior of the organic matter in such soils may exert a significant influence on the solubility of the metals. Little is known about such a process. Using batch experiments in which the solubility of organic matter in a heavily sludge‐amended soil was artificially manipulated, we show that the solubilities of the heavy metals copper (Cu), nickel (Ni), and lead (Pb) show a strong positive relationship to the solubility of organic matter, particularly at high pH. The results suggest that under field conditions, spatiotemporal variations in the solid–solution partitioning of organic matter may have a bearing on the environmental significance (mobility and bioavailability) of these heavy metals.  相似文献   

9.
The Toxic Compounds and Leaching Characteristics of Spent Foundry Sands   总被引:2,自引:0,他引:2  
Ji  S.  Wan  L.  Fan  Z. 《Water, air, and soil pollution》2001,132(3-4):347-364
In foundry industry, the millions tones of spent sands weresuccessfully used as landfill materials for many years. Butthis practise is becoming a problem as the disposal costsincrease rapidly and legislation gets tighter. However, thereis not much experimental data to describe their chemicalcharacteristics, especially for the leaching behaviour andtoxic compounds of the different kinds of spent sands. Thisarticle aims to present the analysis of organic compounds andleaching characteristics of the spent foundry sands. Based onthe evaluation of the chemistry of spent sands, the contentsof the selected 32 polyaronmatic hydrocarbon (PAH) and otherorganic compounds in 11 different spent foundry sands wereanalysed. The concentrations of As, Ba, Cd, Cr, Pb, Hg, Se,Ag, Cu and Zn in 11 different spent foundry sands were alsomeasured with regard to leaching characteristics. ThepH-dependent leaching characteristics of chromium were furtherinvestigated. It was found that all spent foundry sandscontain PAHs in which naphthalene is about 30%. The PAHs ingreen sands are much higher than those in chemical binderspent sands, even though phenolic/ester sands have higher PAHsthan furan/acid and silicate sands. The leaching metals arevery low in all spent foundry sands. The leached Cr increaseswith increasing pH of the eluted solution, which can be usedin practise for shortening the leaching time of the spentfoundry sands.  相似文献   

10.
Photoinduced decarboxylation via homolytic cleavage of the ester linkage generating two benzyl radicals being recoupled is known to be a major photolytic pathway of the insecticide fenvalerate in aqueous or organic solvents. A highly sensitive and selective fluorescence spectroscopic method was applied to detect these radicals generated under xenon lamp irradiation in organic solvents and aqueous acetonitrile solutions. The short-lived radicals were efficiently trapped by the nitroxide free radical having a primary amino group, and the resultant diamagnetic adducts were instantaneously derivatized with fluorescamine as a fluorescent probe. The highly fluorescent derivatives were successfully separated and detected by a reversed-phase high-performance liquid chromatography equipped with a fluorescence detector, and their structures were individually identified by liquid chromatography/mass spectrometry.  相似文献   

11.
Zinc solubility in clay and soil suspensions was controlled by chemisorption at pH 4.5 – 7.0. The solubility in clay mineral suspensions was in the order palygorskite < montmorillonite « kaolinite and reflected the high affinity of zinc to palygorskite and the high CEC of montmorillonite. The solubility in soil suspensions was in the order Haplustoll < Torrifluvents and reflected the effect of high CEC and organic matter content of the first. The slopes of the pH-pZn curves, calculated zinc potential and sequential desorption data suggested that Zn++ ? Zn(OH)2 aqueous controlled the solubility of zinc in soil and clay mineral suspensions at pH 7.5 – 9.0. The slopes of the pH–pZn curves of two soils were, however, modified by the possible peptization of organic matter and Zn(OH)2.  相似文献   

12.
为改善β-环糊精(β-CD)的水溶性及对重金属的配位能力,将β-环糊精和甘氨酸在碱性条件下用环氧氯丙烷连接起来,合成水溶性极好并能跟重金属形成配位作用的甘氨酸-β-环糊精(GCD),研究了GCD对铅的增溶、解吸行为,考察了pH、离子强度、有机质和甘氨酸-β-环糊精初始浓度对铅的解吸影响。结果表明,GCD对碳酸铅的增溶效果显著,当其浓度为30g.L-1时,水溶液中铅离子浓度可接近7000mg.L-1。GCD对铅解吸能力随着土壤中有机质含量的增加而降低,pH值的升高、离子强度的增加和GCD初始浓度增加有利于铅的解吸。GCD对铅污染土壤的解吸符合准二级动力学模式,该静态解吸研究可以为铅污染土壤的修复提供基础信息。  相似文献   

13.

Purpose

Despite experiments with humic substances and positively charged proteins, the colloidal behavior of HS-protein mixture in the system of two immiscible liquids has been neglected. In this context, the main objective of this study was to reveal the interference of HS and globular proteins on its partition in an aqueous/organic liquid system and the adsorption at liquid/liquid interface as a model of natural organic matter interaction with proteins in nature at hydrophobic/hydrophilic surfaces.

Materials and methods

Coal humic acids (HA) and two globular proteins lysozyme and albumin were under the test. Aqueous phase was prepared in phosphate-buffered saline (pH 7.2?±?0.1, 0.16 M); p-xylene was chosen as an organic phase. Experiments were performed for fixed concentration of protein (0.1 g L?1 for lysozyme and 0.06 g L?1 for albumin) and varied HA concentration from 0.2 to 50 mg L?1. Radiotracer method including tritium thermal activation and scintillation phase method, dynamic light scattering, and optical microscopy were used to control mixed adsorption layer at the aqueous/p-xylene interface and composition of each contact phase.

Results and discussion

The results suggest that if both HA and protein are negatively charged (HA-albumin mixture), the mechanism of interaction between them in the bulk of water and at liquid/liquid interface is controlled by HA concentration. At low HA concentrations, free protein prevents HA adsorption at liquid/liquid interface and its transition to the organic phase via coulomb repulsion. At high HA concentration, the formation of hydrophilic complexes occurs via both electrostatic attraction between positively charged amino acid residues and the hydrophobic interaction. In HA-lysozyme mixture, the interaction between protein and HA is preferably provided by electrostatic attraction that provides higher hydrophobicity of HA-lysozyme complex compared with free HA. An increase in HA concentration results in partial recharge of the conjugate that leads to lysozyme amount reduction at the interface. We also measured the composition of spontaneously formed precipitate of HA-lysozyme conjugate and followed its self-organization.

Conclusions

This work demonstrates colloidal chemical behavior of net positively and negatively charged model protein by coal humic acids under environmentally relevant solution conditions in the system of two immiscible liquids that were used as a model of natural membrane. For the first time, quantities of both protein and HA in mixed adsorption layer at the liquid/liquid interface in the cases of positively and negatively charged protein have been determined.  相似文献   

14.
The rate of loss of total P and accumulation of organic P were investigated in a chronosequence of weakly weathered soils developed on wind-blown sand. The net loss of total P during 10 000 years of soil development was 1910 kg/ha m profile. This calculation assumes a constancy in the total P content of the parent material. An approximately straight-line plot was obtained for the loss of total P between 500 and 10 000 years. The organic P content of the beach sands was very low but increased rapidly in the early stages of soil development. With increasing time, the rate of accumulation of organic P decreased. The net accumulation of organic P during 10 000 years was 1050 kg/ha m profile. A slow rate of formation of organic P, coupled with a rapid mineralization, has probably limited organic P build-up. It is suggested that loss of phosphorus by leaching is a consequence of the low phosphate retention capacity of these weakly weathered soils.  相似文献   

15.
Although microbially-mediated redox environments can alter the characteristics of soil/sediment organic matter (SOM) and its interactions with persistent hydrophobic organic contaminants (HOCs) bound to soils and sediments, the nature of their effects has not been adequately addressed. In this study, a field soil collected from a manufacturer gas plant site and contaminated historically with creosotes was incubated under aerobic and anoxic/anaerobic conditions along with various amendments (extra carbon and enrichment minerals) for stimulating microbial activities. Anaerobic conditions stimulated significant fractions of bound polycyclic aromatic hydrocarbons (PAHs) encompassing naphthalene through benzo[g,h,i]perylene to be mobilized to the aqueous phase, leaving their aqueous phase concentrations far in excess of solubility (increases in their apparent aqueous phase concentrations by factors as high as 62.8 relative to their initial aqueous phase concentrations). Such effects became more evident for high molecular weight PAHs. Dissolved organic matter exhibiting a high affinity for PAHs was liberated from soils during the anaerobic soil incubations. Feasibility of this concept for field applications was evaluated with a lab-scale continuous flow system composed of an anaerobic soil column followed by an aerobic bioreactor inoculated with PAH-degrading microbes. High quantities of PAHs exceeding their aqueous solubilities were eluted from the anaerobic soil column and those mobilized PAHs were readily bioavailable in the secondary aerobic bioreactor. This study may offer a potential method for cost-effective and performance-efficient ex situ remediation technologies (or in situ if appropriate hydrological control available in the contaminated field site) and risk assessment for the HOC-contaminated soils/sediments.  相似文献   

16.
Maple sap and syrups in eastern Canada were analyzed for pH, total solids, and the heavy metals Cu, Fe, Pb, and Zn. The levels of heavy metals found were within the range normally contained in food and water samples except for Pb. The concentration factor found in reducing sap to syrup did not reflect the same concentration change for the measured parameters. This indicates removal or conversion of heavy metals and organic acids with the sugar sands. There was no statistical difference among provinces with respect to the heavy metal, pH, and total solids content of sap. The only significant difference in syrup occurred with Cu and this appeared to be the result of the processing procedure. As the season progressed, the Cu, Pb, pH, and total solids content of the sap decreased while Zn increased and Fe showed little change. Syrups reflected a similar change. Statistical differences occurred in sap composition among sites within each province.  相似文献   

17.
Volatilization can be an important process influencing the transport and persistence of trace organic compounds in the environment. Henry's Law constants (H) describe the equilibrium distribution between vapor and aqueous phases, and thus are important for prediction of biogeochemical dynamics of organic chemicals subject to significant volatilization. Variability in reported H values can be appreciable, particularly for compounds such as polychlorinated biphenyls (PCBs) which possess low vapor pressures and solubilities. Recently reported Henry's constants for a number of PCB congeners were compiled to assess the magnitude of this variability. Coefficients of variation were generally 30 to 70% and tended to increase with increasing chlorine substitution and decreasing magnitude of Henry's constant. The influence of this variability on predicted transport and persistence of PCBs in soil and aquatic systems was evaluated using the behavior assessment and two-layer models, respectively. The 2,4′, 2,2′, 5,5′, and 2,2′,4,4′,5,5′ congeners were selected for this analysis on the basis of their high content in Arochlor fluids and range in hydrophobicity, solubility, and reported H values. Results from the two-layer model indicate that both the liquid and gas boundary layers contribute to the overall resistance to mass transfer. Selection of H had a moderate influence on predicted transport and persistence for the idealized lotic aquatic system modeled. Decreasing H and increasing relative contributions of gas phase resistance to overall resistance to mass transport resulted in longer predicted congener persistence. Selection of H also influenced predicted volatilization rates from soil. The volatilization flux rate was found to be controlled by impedance in the soil body for all but very short times, where boundary layer effects tended to limit volatilization. Evaporation, previously demonstrated to enhance volatilization for some chemicals, did not have a significant effect on predicted PCB vapor losses from soil.  相似文献   

18.
Solanidine is a steroidal aglycon of potato (Solanum tuberosum L.) glycoalkaloids and a very important precursor for the synthesis of hormones and some pharmacologically active compounds. Glycoalkaloids are hydrolyzed by mineral acid, yielding solanidine. This paper deals with the kinetics of solanidine hydrolytic extraction in different solid-liquid-liquid systems. The dried and milled potato (S. tuberosum L.) vines were used as a source of glycoalkaloids and as the solid phase. The solutions of hydrochloric acid in 2 and 10% (w/v) aqueous acetic acid, in 50% (volume) aqueous methanol, and in 50% (volume) aqueous ethanol were first liquid phase, and the medium for glycoalkaloid extraction from potato vines and their hydrolysis to solanidine. The chloroform, trichloroethylene, or carbon tetrachloride were the second, organic, liquid phase and the medium for solanidine extraction. This procedure combines three different processes: extraction of glycoalkaloids from potato vines, their hydrolysis to solanidine, and the extraction of solanidine, in a single step. The term hydrolytic extraction of solanidine was used for these processes. The purpose of the paper was to choose an optimal solid-liquid-liquid system for solanidine extraction and to define the procedure for its isolation from the organic liquid phase. The best degree of solanidine hydrolytic extraction (DHE) of more than 98% was achieved when 10% (w/v) hydrochloric acid in 50% (volume) methanol were the first liquid phase and chloroform was the second liquid phase, after 90 min. The yield of solanidine (q(S)) under these conditions is calculated to be 0.24 g/100 g of potato vines. Approximately 78% of the maximal possible yield of solanidine was isolated from chlorofom liquid phase. The IR and MS spectra of isolated solanidine were recorded.  相似文献   

19.
Adaptation of the steady-state soil chemistry model PROFILE was studied, on the following two parts, to calculate the critical loads for East Asian soils: (1) Dissolution rate coefficients of volcanic glass were derived from published experimental data, and calculated field weathering rate was compared with the rate estimated based on Sr isotope analysis. When BET surface area of sand fraction was regarded as mineral surface area, the calculated rates fairly agreed with the estimate, suggesting that sand fraction surface area is a reasonable estimate of weatherable mineral surface area of volcanic soils. (2) In repeated leaching experiments, Al solubility of a number of Japanese soils was explained by a model which assumed complexation of Al to soil organic matters. Such an Al solubility model is more appropriate for predicting soil chemistry than apparent gibbsite dissolution equilibrium.  相似文献   

20.

Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal concentration, kaolinite concentration and time. The organic acids used were p-hydroxybenzoic acid, o-toluic acid, and 2,4-dinitrophenol. Titrations were used to derive previously unavailable aqueous conditional stability constants for the organometallic complexes. Batch results showed that aqueous lead-organic complexation reduced sorption of Pb by kaolinite. Cadmium behavior was similar, except for 2,4-dinitrophenol, where Cd sorption was increased. Metal sorption increased with increasing pH and decreasing ionic strength. Distribution ratios (K d 's) decreased with increasing solid/solution ratio. The subsurface transport of lead and cadmium may be enhanced via complex interactions with organic wastes or their degradation products and sorbent mineral surfaces.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号