共查询到19条相似文献,搜索用时 93 毫秒
1.
一株苯酚高效降解菌2N-17的分离鉴定及其降解特性 总被引:2,自引:1,他引:2
用苯酚作为惟一碳源进行驯化从化工厂废水样品中分离得到一株具有较强苯酚降解能力的菌株.经过生理生化以及用编码苯酚羟化酶大亚基基因与16S rDNA序列鉴定.初步确认其为假单胞菌.菌株降解苯酚的特性与条件研究表明,该菌株在35℃、pH值7.5、苯酚600mg·L-1以及添加营养物与一定通气量的条件下能对苯酚很好地进行降解处理.. 相似文献
2.
用苯酚作为惟一碳源进行驯化从化工厂废水样品中分离得到一株具有较强苯酚降解能力的菌株。经过生理生化以及用编码苯酚羟化酶大亚基基因与16SrDNA序列鉴定。初步确认其为假单胞菌。菌株降解苯酚的特性与条件研究表明,该菌株在35℃、pH值7.5、苯酚600mg·L^-1。以及添加营养物与一定通气量的条件下能对苯酚很好地进行降解处理。 相似文献
3.
[目的]研究高效耐冷精对苯二甲酸(PTA)降解菌的分离鉴定及其降解特性。[方法]采用富集培养法,采用液相色谱法和分光光度法分析菌株的降解PTA的性能。[结果]分离出一株能以PTA为唯一碳源生长的耐冷菌菌株PTA201,经16S rDNA基因序列分析,该菌被鉴定为恶臭假单胞菌(Pseudomonas putida)。PTA201在6℃,72 h内对500 mg/L的PTA降解率达99.8%以上。PTA201降解PTA的最适条件为pH 7.0,温度30℃,接种量1%。[结论]菌株PTA201在最适条件下96 h内可以完全降解PTA,是耐冷高效降解菌。 相似文献
4.
[目的]筛选可高效降解啶氧菌酯的微生物资源,并研究其降解特性,为啶氧菌酯等甲氧基丙烯酸酯类农药残留的微生物修复提供新资源.[方法]采用富集培养法分离啶氧菌酯降解菌,以生理生化特征结合16S rRNA序列系统发育分析鉴定降解菌;利用气相色谱仪(HPLC)测定啶氧菌酯残留量,分析其降解特性;采用气相色谱质谱联用仪(GCMS)测定降解菌降解啶氧菌酯的中间代谢产物,分析降解菌降解啶氧菌酯的代谢途径.[结果]分离获得一株能以啶氧菌酯为唯一碳源的降解菌株(PY3),其生理生化特征结合16S rRNA序列系统发育分析结果表明,PY3菌株属沼泽红假单胞菌(Rhodopseudomonas palustris).PY3菌株最佳生长条件测定和降解特性分析结果表明,PY3菌株生长和降解啶氧菌酯的最佳条件为pH 6.0、35℃,在最佳降解条件下培养11 d,对50 mg/L啶氧菌酯的降解率可达72.0%.PY3菌株降解啶氧菌酯的途径包括苯环和N杂环间氧桥键断裂后酯化,以及苯环和N杂环开环反应.[结论]沼泽红假单胞菌PY3菌株具有高效降解啶氧菌酯的活性和较广的pH和温度耐受性,且具有应用于农田生态环境中啶氧菌酯等甲氧基丙烯酸酯类农药残留物微生物修复的潜力. 相似文献
5.
通过富集培养法筛选分离到1株能以啶氧菌酯为唯一碳源的降解菌株PID-1,采用形态学、生理生化方法,并结合16S rDNA序列系统发育分析,将菌株PID-1初步鉴定为沼泽红假单胞菌(Rhodopseudomonas palustris)。菌株PID-1降解啶氧菌酯的最佳条件为pH 7和35 ℃。在该降解条件下,培养5 d,菌株PID-1对100 mg·L-1啶氧菌酯的降解率可达83.54%。将啶氧菌酯经PID-1降解后的物质经质谱扫描,通过谱库检索,发现其降解中间产物包括1-(1,5-dimethylhexyl-)-4-methyl-benzene、2,5-bis (1,1-dimethylethyl)-phenol、butyl 2-methyoxyethyl ester、bis (tert-butyldimethylsilyl) ester、1-(3-n-propoxyphenyl)-2-propanone oxime和2-nitro-4-(trifluoromethyl) phenol。 相似文献
6.
从某农药厂的排放口污泥中筛选分离甲氰菊酯高效降解光合细菌PSB07-28,根据菌株生理生化特征以及16S rDNA序列同源性鉴定降解菌,气相色谱法测定降解甲氰菊酯的能力,渗透休克法提取降解粗酶,测定其降解能力,定位降解酶.结果表明,PSB07-28菌株属红假单胞菌属(Rhodopseudomonas sp),对甲氰菊酯的最高耐受质量浓度为800 mg/L,降解最佳条件为35 ℃,pH 7.在最佳降解条件下,光照培养15 d,对600 mg/L甲氰菊酯降解率达42.49%.降解酶定域结果表明,降解酶是胞内酶. 相似文献
7.
苯酚高效降解菌的筛选及其降解特性的研究 总被引:5,自引:0,他引:5
从活性污泥中分离到1株苯酚高效降解细菌,初步确定为假单胞菌属(Pseudomonas);该菌株能在以苯酚为唯一碳源的无机盐培养基中生长;可以在20~40℃、pH值5.0~9.0范围内较好生长;降解苯酚最适温度为35℃,最适pH值为7.0,最大降解率达到89%。完全降解无机盐培养基中500mg/L、1 000mg/L、1 200mg/L的苯酚分别需要60h、72h、108h。 相似文献
8.
9.
一株降解甲氰菊酯的光合细菌的分离鉴定及其降解酶初步分析 总被引:1,自引:0,他引:1
从某农药厂污泥中筛选分离出一株高效降解甲氰菊酯(Fenpropathrin)的光合细菌,研究了其降解特性及生物学特性。根据分离菌株的细胞形态结构、活细胞光吸收特征、生理生化特征及其16S rDNA序列同源性鉴定降解菌;气相色谱法测定该菌降解甲氰菊酯的能力;采用超声波破碎法提取该菌降解粗酶,利用(NH4)2SO4分段盐析并测定酶活性。结果表明:PSB07-14属红假单胞菌属(Rhodopseudomonas sp.);该菌以共代谢方式降解甲氰菊酯,对甲氰菊酯的最高耐受浓度为800mg/L,降解最佳条件为:30~35℃、pH6~7,光照培养15d对600mg/L甲氰菊酯降解率达48.41%。降解酶测定结果表明:30%~60%(NH4)2SO4沉淀的蛋白降解活性最高。 相似文献
10.
苯胺高效降解菌的筛选及其生物学特性研究 总被引:2,自引:0,他引:2
采用富集培养法从高阳印染厂排污口土壤中分离得到209株微生物,定向筛选获得2株能够高效降解苯胺的细菌(菌株Ani-4-15和菌株Ani-5-61)。这2株细菌在苯胺浓度为400mg·L-1的培养液中培养30h后,培养液中苯胺的降解率均可达到85%以上;在苯胺浓度为1000mg·L-1的培养液中培养30h后,培养液中苯胺的降解率达70%左右。通过浊度测定法对菌株Ani-4-15和Ani-5-61在苯胺选择性培养基中的生长特性进行了研究,结果表明,两菌株最佳培养时间分别为15h和18h,最适生长温度均为30℃,最适生长pH值分别为7.0和6.0,对苯胺的耐受浓度范围在100~3200mg·L-1之间。在温室条件下,通过在灭菌土中分别接入一定量的苯胺(苯胺含量分别为400、600、800和1000mg·kg-1)和苯胺降解菌(106个菌体·g-1土),48h时菌株Ani-4-15和Ani-5-61对苯胺的降解率分别高达93.4%和96.6%。通过16SrDNA序列分析法明确了两株细菌均为假单胞菌属,利用非肠道革兰氏阴性杆菌鉴定系统(API20NE)进一步鉴定到种,菌株Ani-4-15为恶臭假单胞菌(Pseudomonas putida),菌株Ani-5-61为施氏假单胞菌(Pseudomonas stutzeri)。 相似文献
11.
[目的]研究DDT降解菌的生物学、降解特性及其发酵条件的优化。[方法]从化工厂采集土样,分离、筛选到1株能够在好氧条件下DDT降蟹率较高的菌株DH-7,并对其进行研究。[结果]通过16SrDNA序列分析结合传统分类学方法初步确定菌株DH-7为铜绿假单胞菌。对菌体降解DDT特性的研究表明,该菌株对DDT降解10d的降解率为73.6%。在优化培养条件后,该菌株10d的降解率达81.4%。[结论]该研究结果为DDT污染土壤的生物修复提供依据。 相似文献
12.
13.
【目的】筛选能降解灭线磷的微生物,解决土壤环境中存在的灭线磷残留问题。【方法】从长期施用灭线磷的土壤中采集土样,通过富集培养方法分离能降解灭线磷的微生物。用紫外分光光度法测定灭线磷的含量。【结果】获得一株能以灭线磷为唯一碳源生长的细菌DS-1,结合生理生化特性及16SrDNA序列相似性分析将其鉴定为蜡状芽孢杆菌(Bacilluscereus)。生长特性和灭线磷降解试验结果表明,灭线磷浓度为10mg·L-1时降解率最高为77.1%,50mg·L-1的相对降解量最高为26.8mg·L-1;DS-1在温度为30℃时对灭线磷的降解率为51.6%,显著高于4℃、25℃以及40℃的降解率。【结论】DS-1降解灭线磷的最适温度为30℃,最适pH为7.0,最佳碳源和氮源分别为蔗糖和硫酸铵,最佳碳氮摩尔比为4:1。 相似文献
14.
One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar suspension (6.5×10 3 and 6.0×10 3 cfu·mL -1 ) compared to that in the normal saline control (6.1×10 2 cfu·mL -1 ),and it was far lower than that in LB (Luria-Bertani) control (1.1×10 8 cfu·mL -1 ).In conclusion,the bacterium strain BR5-1 could degrade agar. 相似文献
15.
丁草胺降解菌的分离鉴定及降解特性的研究 总被引:4,自引:1,他引:4
从处理农药生产废水的膜生物反应器中分离到一株能以丁草胺为惟一碳源和能源生长的细菌BD-1,经鉴定为施氏假单孢菌(Pseudomonas stutzeri).在纯培养的条件下测定了BD-1对丁草胺的降解性能.结果表明,在接种量为菌浓度OD415=0.2,pH7.0、30℃条件下,BD-l对丁草胺的降解符合一级动力学特征,1.0、10.0和100.0 rag·L的丁草胺的降解半衰期分别为0.11、0.60和0.96d.BD-1在不同pH及温度下对丁草胺的降解作用为pH 7.0>pH6.0>pH 8.0,30℃>20℃>40℃.GC/MS初步分析结果表明,丁草胺的主要微生物降解产物为2-氯-2',6'-二乙基乙酰苯胺和2,6-二乙基苯胺. 相似文献
16.
克百威降解菌CYW-44的分离及其酶促降解研究 总被引:1,自引:1,他引:1
为了有效治理克百威农药污染,以克百威为唯一碳源,利用富集培养的方法从农药厂活性污泥中分离到一株克百威降解菌CYW-44,经生理生化、16S rDNA序列分析及API 50CHB鉴定试剂条分析,将菌株鉴定为枯草芽孢杆菌(Bacillus subtilis)。该菌在营养培养基中培养5 d时对100 mg.L-1的克百威降解率为97.72%,6 d能够完全降解克百威。通过液相色谱(HPLC)法检测,发现在降解过程中,克百威降解产物呋喃酚及其他代谢产物不产生累积;研究证实该菌株能分泌胞外降解酶和胞内降解酶高效降解克百威,对克百威的降解率分别达到99.1%和82.63%;通过SDS-PAGE验证了克百威对菌株降解酶活性的诱导作用。 相似文献
17.
降解甲氰菊酯光合细菌的分离鉴定及其降解特性研究 总被引:6,自引:1,他引:6
采用富集分离法从农药厂污泥中分离到一株能降解甲氰菊酯(fenpropathrin)的光合细菌新菌株PSB07-15,通过形态特征、生理生化特征以及对16S rDNA序列(Genbank Accession N0.EU005383)进行了同源比较、鉴定.结果表明,该菌株为沼泽红假单孢菌(Rhodopseudomonas palustris).生长特性和甲氰菊酯降解实验结果表明,该菌株的最适生长温度为30℃,最适pH为6.5.该菌以共代谢方式降解甲氰菊酯,对甲氰菊酯的最高耐受浓度为600 mg·L-1,培养15 d对600 mg·L-1甲氰菊酯降解率达35.26%.通过GC-MS对降解产物进行了分析,结果显示间苯氧基苯乙腈是展出惟一的降解产物,推测该菌的降解途径是可能作用于甲氰菊酯的酯键处.本研究工作为利用光合细菌进行生物修复提供了理论依据. 相似文献
18.
19.
一株邻苯二甲酸二异辛酯高效降解菌的筛选及其降解特性的初步研究 总被引:6,自引:3,他引:6
从某化工厂的活性污泥中分离到一株能高效降解DEHP(邻苯二甲酸二异辛酯)的细菌DW1,该菌株能够以DEHP为惟一碳源和能源生长。根据革兰氏染色的结果以及其形态特征、生理生化特性等对该菌株进行菌种鉴定,初步鉴定该菌株为纤维单胞菌属(Cellulomonassp.),并对该菌株的DEHP降解特性进行了初步研究。研究表明,菌株DW1可以耐受较高浓度的DEHP,在7d的时间内对摇瓶中2000mg·L-1的DEHP降解率达到96%,其降解DEHP的最适温度和pH值分别是30℃和8.0。菌株对DEHP的降解曲线显示,经过短暂的延滞期后培养基中DEHP的降解很快就进入了对数期,在第3d降解率即可达到89%,菌体生长量在第5d进入稳定期。研究了添加土壤浸液对菌株DW1降解DEHP的影响,结果表明,添加少量的外来碳源可以刺激微生物的生长并提高了DEHP的降解率,但过多的外加碳源减缓了细菌对DEHP的降解。 相似文献