首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The moisture sorption isotherms of a commercial potato powder were investigated at 20 degrees C for water activities ranging from 0.11 to 0.97. The sorption isotherms were typical type-II sigmoidal curves, with a steep increase in moisture content for water activities above 0.9 and exhibiting hysteresis over the whole water activity range. On the basis of the isotherms, the influence of the initial water activity and moisture content on both Maillard browning and acrylamide formation was determined by heating oil containing potato powder mixtures in a closed stainless-steel tubular reactor. The Maillard browning, as determined spectrophotometrically, showed an optimum at intermediate water activities. The yields of acrylamide, expressed relatively to the molar amount of asparagine, remained constant below 0.8 aw and below moisture contents of about 20% (on a dry basis). For the more intense heat treatments, an increased acrylamide yield was however observed at higher moisture contents, with an optimum at water contents of about 100% (on a dry basis). However, this increase and optimum was not observed at less intense heat treatments. At moisture contents above 100%, a significant decrease in acrylamide yields was assessed, although the water activity increased only marginally in this area of the sorption isotherms. It was thus observed that the acrylamide content was rather dependent upon the moisture content than upon the water activity in the high-moisture potato powder model system.  相似文献   

2.
The browning of glucose-fructose-glycine mixtures involves parallel glucose-glycine and fructose-glycine reactions, which share a common intermediate, the immediate precursor of melanoidins in the kinetic model. At pH 5.5, 55 degrees C glucose is converted into this intermediate in a two step process where k(1) = (7.8 +/- 1.1) x 10(-)(4) mol L(-)(1) h(-)(1) and k(2) = (1.84 +/- 0.31) x 10(-)(3) h(-)(1) according to established kinetics, whereas fructose is converted into this intermediate in a single step where k(4) = 5.32 x 10(-)(5)()()mol L(-)(1) h(-)(1). The intermediate is converted to melanoidins in a single rate limiting process where k(mix) = 0.0177 h(-)(1) and the molar extinction coefficient (based on the concentration of sugar converted) of the melanoidins so formed is 1073 +/- 4 mol(-)(1) L cm(-)(1). Whereas the value of k(mix) is the same when the individual sugars undergo browning, the value of the molar extinction coefficient is similar to that for melanoidins from the glucose-glycine reaction (955 +/- 45 mol(-)(1) L cm(-)(1)) but it is approximately double the value for melanoidins from the fructose-glycine reaction (478 +/- 18 mol(-)(1) L cm(-)(1)). This is the reason that the effects of glucose and fructose on the rate of browning are synergistic.  相似文献   

3.
The kinetics of acrylamide (AA) was analyzed by heating a simple model system consisting of asparagine and glucose, fructose, or sucrose (0.01 M, pH 6) at temperatures between 140 and 200 degrees C. The AA concentration appeared to be the net result of simultaneous formation and elimination. A general kinetic model describing the AA yield was identified, and kinetic parameters were obtained by nonlinear regression on the nonisothermally derived data. On the basis of kinetic parameters, the AA formation appeared to proceed faster and to be more temperature sensitive in the asparagine-glucose than in the asparagine-fructose model system. The AA elimination kinetics, on the other hand, was similar. Significantly less AA was formed in the asparagine-sucrose model system as compared to the model systems with glucose or fructose.  相似文献   

4.
Acrylamide formed in browning model systems was analyzed using a gas chromatograph with a nitrogen-phosphorus detector. Asparagine alone produced acrylamide via thermal degradation at the level of 0.99 microgram/g of asparagine. When asparagine was heated with triolein-which produced acrolein at the level of 1.82 +/- 0.31 (n = 5) mg/L of headspace by heat treatment-acrylamide was formed at the level of 88.6 microgram/g of asparagine. When acrolein gas was sprayed onto asparagine heated at 180 degrees C, a significant amount of acrylamide was formed (114 microgram/g of asparagine). On the other hand, when acrolein gas was sprayed onto glutamine under the same conditions, only a trace amount of acrylamide was formed (0.18 microgram/g of glutamine). Relatively high levels of acrylamide (753 microgram/g of ammonia) were formed from ammonia and acrolein heated at 180 degrees C in the vapor phase. The reaction of acrylic acid, which is an oxidation product of acrolein and ammonia, produced a high level of acrylamide (190 000 microgram/g of ammonia), suggesting that ammonia and acrolein play an important role in acrylamide formation in lipid-rich foods. Acrylamide can be formed from asparagine alone via thermal degradation, but carbonyl compounds, such as acrolein, promote its formation via a browning reaction.  相似文献   

5.
The reactions of asparagine with methyl linoleate ( 1), methyl 13-hydroperoxyoctadeca-9,11-dienoate ( 2), methyl 13-hydroxyoctadeca-9,11-dienoate ( 3), methyl 13-oxooctadeca-9,11-dienoate ( 4), methyl 9,10-epoxy-13-hydroxy-11-octadecenoate ( 5), methyl 9,10-epoxy-13-oxo-11-octadecenoate ( 6), 2,4-decadienal ( 7), 2-octenal ( 8), 4,5-epoxy-2-decenal ( 9), and benzaldehyde ( 10) were studied to determine the potential contribution of lipid derivatives to acrylamide formation in heated foodstuffs. Reaction mixtures were heated in sealed tubes for 10 min at 180 degrees C under nitrogen. The reactivity of the assayed compounds was 7 > 9 > 4 > 2 > 8 approximately 6 > 10 approximately 5. The presence of compounds 1 and 3 did not result in the formation of acrylamide. These results suggested that alpha,beta,gamma,delta-diunsaturated carbonyl compounds were the most reactive compounds for this reaction followed by lipid hydroperoxides, more likely as a consequence of the thermal decomposition of these last compounds to produce alpha,beta,gamma,delta-diunsaturated carbonyl compounds. However, in the presence of glucose this reactivity changed, and compound 1/glucose mixtures showed a positive synergism (synergism factor = 1.6), which was observed neither in methyl stearate/glucose mixtures nor in the presence of antioxidants. This synergism is proposed to be a consequence of the formation of free radicals during the asparagine/glucose Maillard reaction, which oxidized the lipid and facilitated its reaction with the amino acid. These results suggest that both unoxidized and oxidized lipids are able to contribute to the conversion of asparagine into acrylamide, but unoxidized lipids need to be oxidized as a preliminary step.  相似文献   

6.
Fried potato products such as French fries and chips may contain substantial amounts of acrylamide. Numerous efforts are undertaken to minimize the acrylamide content of these products while sensory properties such as color and flavor have to be respected as well. An optimization of the frying process can be achieved if the basic kinetic data of the browning and acrylamide formation are known. Therefore, heating experiments with potato powder were performed under controlled conditions (moisture, temperature, and time). Browning and acrylamide content both increased with heating time at all temperatures and moisture contents tested. The moisture content had a strong influence on the activation energy of browning and acrylamide formation. The activation energy strongly increased at moisture contents below 20%. At higher moisture contents, it was very similar for both parameters. At low moisture contents, the activation energy of acrylamide formation was larger as compared to the one for browning. This explains why the end of the frying process is very critical. Therefore, a lower temperature toward the end of frying reduces the acrylamide content of the product while color development is still good.  相似文献   

7.
Acrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored. Citric acid limited the generation of volatiles, particularly the alkylpyrazines. Glycine increased the total volatile yield by promoting the formation of certain alkylpyrazines, namely, 2,3-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, and 2,5-diethyl-3-methylpyrazine. However, the formation of other pyrazines and Strecker aldehydes was suppressed. It was proposed that the opposing effects of these treatments on total volatile yield may be used to best advantage by employing a combined treatment at lower concentrations, especially as both treatments were found to have an additive effect in reducing acrylamide. This would minimize the impact on flavor but still achieve the desired reduction in acrylamide levels.  相似文献   

8.
The effect of pH on acrylamide formation and elimination kinetics was studied in an equimolar (0.1 M) asparagine-glucose model system in phosphate or citrate buffer, heated at temperatures between 120 and 200 degrees C. To describe the experimental data, a simplified kinetic model was proposed and kinetic parameters were estimated by combined nonlinear regression and numerical integration on the data obtained under nonisothermal conditions. The model was subsequently validated in a more realistic potato-based matrix with varying pH. By increasing acidity, the reaction rate constants at T(ref) (160 degrees C) for both acrylamide formation and elimination can significantly be reduced, whereas the temperature dependence of both reaction rate constants increases. The introduction of a lyophilized potato matrix (20%) did not affect the acrylamide formation reaction rate constant at reference temperature (160 degrees C) as compared to the asparagine-glucose model system; the elimination rate constant at T(ref), on the contrary, was almost doubled.  相似文献   

9.
Surveys determining amounts of acrylamide formed as a byproduct of cooking in frequently consumed fried and baked foods have sometimes found variability in the levels, even when comparing items having similar ingredients and cooking procedures. To better understand the sources of variability, the effects of different ingredients on formation and elimination of acrylamide were studied in a model system based on wheat flour and water, that resembled crackers. It was found that NaHCO3 eliminated acrylamide. To a lesser extent, NH4HCO3, cysteine, sodium bisulfite, and ascorbate also enhanced elimination. Some ingredients, including citric acid, ferulic acid, and NaCl, were found to decrease the amount of acrylamide produced while having little or no effect on elimination. Asparagine, but not reducing sugar, caused a large increase in acrylamide formation.  相似文献   

10.
The effect of high pressure-high temperature (HPHT) processing on the formation of acrylamide and other Maillard-type reaction compounds was investigated in order to elucidate the impact of HPHT conditions on the different stages of the Maillard reaction. This study was performed in equimolar asparagine-glucose model systems that were treated at various HP/HT conditions (100-115 °C, 400-700 MPa, 0-60 min), and, for comparison, the model system was also heat-treated at ambient pressure. On the treated samples, the concentration of acrylamide, reactants, hydroxymethylfurfural, organic acids, and melanoidins was determined and the pH prior to and after treatment was measured. Based on the measured responses, the retarding effect of high pressure on the overall Maillard reaction was demonstrated; no or little differences were observed between 400 and 700 MPa. The study was conducted in two types of buffer, i.e. phosphate and MES buffer. In case of acrylamide, aspartic acid and browning, a higher concentration was generated in the MES buffer system, but these differences with the phosphate buffer system could be ascribed to pH changes resulting from the application of combined high pressure and high temperature. Based on the results, acrylamide formation is not expected to pose a major hazard to HPHT-treated products.  相似文献   

11.
The formation of acrylamide was studied in low-moisture Maillard model systems (180 degrees C, 5 min) based on asparagine, reducing sugars, Maillard intermediates, and sugar degradation products. We show evidence that certain glycoconjugates play a major role in acrylamide formation. The N-glycosyl of asparagine generated about 2.4 mmol/mol acrylamide, compared to 0.1-0.2 mmol/mol obtained with alpha-dicarbonyls and the Amadori compound of asparagine. 3-Hydroxypropanamide, the Strecker alcohol of asparagine, generated only low amounts of acrylamide ( approximately 0.23 mmol/mol), while hydroxyacetone increased the acrylamide yields to more than 4 mmol/mol, indicating that alpha-hydroxy carbonyls are much more efficient than alpha-dicarbonyls in converting asparagine into acrylamide. The experimental results are consistent with the reaction mechanism based on (i) a Strecker type degradation of the Schiff base leading to azomethine ylides, followed by (ii) a beta-elimination reaction of the decarboxylated Amadori compound to afford acrylamide. The beta-position on both sides of the nitrogen atom is crucial. Rearrangement of the azomethine ylide to the decarboxylated Amadori compound is the key step, which is favored if the carbonyl moiety contains a hydroxyl group in beta-position to the nitrogen atom. The beta-elimination step in the amino acid moiety was demonstrated by reacting under low moisture conditions decarboxylated model Amadori compounds obtained by synthesis. The corresponding vinylogous compounds were only generated if a beta-proton was available, for example, styrene from the decarboxylated Amadori compound of phenylalanine. Therefore, it is suggested that this thermal pathway may be common to other amino acids, resulting under certain conditions in their respective vinylogous reaction products.  相似文献   

12.
Acrylamide formation was studied by use of a new heating methodology, based on a closed stainless steel tubular reactor. Different artificial potato powder mixtures were homogenized and subsequently heated in the reactor. This procedure was first tested for its repeatability. By use of this experimental setup, it was possible to study the acrylamide formation mechanism in the different mixtures, eliminating some variable physical and chemical factors during the frying process, such as heat flux and water evaporation from and oil ingress into the food. As a first application of this optimized heating concept, the influence on acrylamide formation of the type of deep-frying oil was investigated. The results obtained from the experiments with the tubular reactor were compared with standardized French fry preparation tests. In both cases, no significant difference in acrylamide formation could be found between the various heating oils applied. Consequently, the origin of the deep-frying vegetable oils did not seem to affect the acrylamide formation in potatoes during frying. Surprisingly however, when artificial mixtures did not contain vegetable oil, significantly lower concentrations of acrylamide were detected, compared to oil-containing mixtures.  相似文献   

13.
NH4HCO3 is known to promote acrylamide formation in sweet bakery products. This effect was investigated with respect to sugar fragmentation and formation of acrylamide from asparagine and sugar fragments in model systems under mild conditions. The presence of NH4HCO3 led to increases in acrylamide and alpha-dicarbonyls from glucose and fructose, respectively. As compared to glucose or fructose, sugar fragments such as glyoxal, hydroxyethanal, and glyceraldehyde formed much higher amounts of acrylamide in reaction with asparagine. The enhancing effect of NH4HCO3 is explained by (1) the action of NH3 as base in the retro-aldol reactions leading to sugar fragments, (2) facilitated retro-aldol-type reactions of imines in their protonated forms leading to sugar fragments, and (3) oxidation of the enaminols whereby glyoxal and other reactive sugar fragments are formed. These alpha-dicarbonyl and alpha-hydroxy carbonyl compounds may play a key role in acrylamide formation, especially under mild conditions.  相似文献   

14.
The formation of color and Maillard reaction products in two model systems consisting of lactose and lysine or N(alpha)-acetyllysine has been investigated. During heating, the blockage of the N(alpha) group of lysine determined a faster color and antioxidative ability development compared to the system with free lysine. This is combined to a greater amount of melanoidin formation in the acetylated lysine system, while in the free lysine system a higher amount of pyrraline and hydroxymethyl furfural were detected. The pattern of low molecular weight products suggests that 3-deoxyglucosone and 1-deoxyglucosone degradation pathways are favored for free lysine and N(alpha)-acetyllysine, respectively. Whole data allow us to hypothesize that in a lactose-N(alpha)-acetyllysine model system the formation of colored high molecular weight polymer proceeds faster because less material is dispersed in reaction pathways, mainly the Strecker degradation, which leads to small and intermediate molecular weight products.  相似文献   

15.
On the basis of the recent findings that "biogenic amines" can also be formed during thermal food processing from their parent amino acids in a Strecker-type reaction, the formation of 3-aminopropionamide, the biogenic amine of asparagine, was investigated in model systems as well as in thermally processed Gouda cheese. The results of model studies revealed that, besides acrylamide, 3-aminopropionamide was also formed in amounts of 0.1-0.4 mol % when asparagine was reacted in the presence of either glucose or 2-oxopropionic acid. Results of a second series of model experiments in which [(13)C(4)(15)N(2)]-asparagine ([(13)C(4)(15)N(2)]-Asn) and unlabeled 3-aminopropionamide were reacted together in the presence of glucose revealed a >12-fold higher efficacy of 3-aminopropionamide in acrylamide generation as compared to asparagine. Both [(13)C(3)(15)N(2)]-3-aminopropionamide and [(13)C(3)(15)N(1)]-acrylamide were formed during [(13)C(4)(15)N(2)]-Asn degradation in a ratio of about 1:4, supporting the idea that 3-aminopropionamide is a transient intermediate in acrylamide formation. In this study, 3-aminopropionamide was identified and quantified for the first time in foods, namely, in Gouda cheese. Although the fresh cheese contained low amounts of 3-aminopropionamide, its concentrations were much increased to approximately 1300 mug/kg after thermal processing. In isotope labeling studies, performed by administering to the cheese [(13)C(4)(15)N(2)]-Asn in a ratio of 1:2 as compared to the "natural" concentrations of asparagine, similar ratios of unlabeled/labeled 3-aminopropionamide and unlabeled/labeled acrylamide were determined. Thus, 3-aminopropionamide could be verified as a transient intermediate of acrylamide formation during food processing.  相似文献   

16.
The use of glycine to limit acrylamide formation during the heating of a potato model system was also found to alter the relative proportions of alkylpyrazines. The addition of glycine increased the quantities of several alkylpyrazines, and labeling studies using [2-13C]glycine showed that those alkylpyrazines which increased in the presence of glycine had at least one 13C-labeled methyl substituent derived from glycine. The distribution of 13C within the pyrazines suggested two pathways by which glycine, and other amino acids, participate in alkylpyrazine formation, and showed the relative contribution of each pathway. Alkylpyrazines that involve glycine in both formation pathways displayed the largest relative increases with glycine addition. The study provided an insight into the sensitivity of alkylpyrazine formation to the amino acid composition in a heated food and demonstrated the importance of those amino acids that are able to contribute an alkyl substituent. This may aid in estimating the impact of amino acid addition on pyrazine formation, when amino acids are added to foods for acrylamide mitigation.  相似文献   

17.
A number of parameters linked to the selection of potato tubers were evaluated with regard to their potential to influence acrylamide formation in French fries. The formation of acrylamide, which is a potential human carcinogen, can be minimized for a big extent by the selection of an appropriate tuber. This study focused on the following selection criteria: variety as influenced by storage time and soil type, underwater weight, and tuber size. A total of 16 varieties were compared, concerning their potential for acrylamide formation. From that survey, certain varieties, such as Tebina and Quincy, could be appointed as unsuitable for frying. The differences in the potential of acrylamide formation between the varieties could mainly be explained by the reducing sugar content of the potato (R2 = 0.82, n = 96). The investigated type of soil and storage time at 8 degrees C appeared to have a minor influence on the acrylamide formation during frying. On the other hand, the tuber size of the potato did contribute in a significant manner to the acrylamide formation. Smaller tubers were more susceptible to acrylamide formation and should be avoided in the frying process. The last selection parameter, the underwater weight, appeared to be of minor importance in the acrylamide formation. On the basis of these simple selection criteria, it is possible to make a first screening of potatoes to reduce the acrylamide formation during frying.  相似文献   

18.
Metolachlor retention on a Sharkey clay soil was quantified using a kinetic batch method for different initial solution concentrations.Time-dependent adsorption was carried out by monitoring solution concentration at different reaction times.Adsorption was kinetic multireaction model which includes reverible and irreversible retention processes of the equilibrium and kinetic types,The predictive capability of the model for the dexcription of experimental results for metolachlor retention was examined and proved to be adequate。  相似文献   

19.
The thermal reaction between cysteine and furfural was investigated at 65 degrees C in five-component food grade oil/water (O/W) microemulsions of R-(+)-limonene/ethanol, EtOH/water/propylene glycol, PG/Tween 60 as apart of a systematic study on the generation of aroma compounds by utilizing structured W/O and O/W fluids. The furfural-cysteine reaction led to the formation of unique aroma compounds such as 2-furfurylthiol (FFT), 2-(2-furanyl)thiazolidine (main reaction product), 2-(2-furanyl)thiazoline, and N-(2-mercaptovinyl)-2-(2-furanyl)thiazolidine. These products were determined and characterized by GC-MS. Enhancement in flavor formation is termed "microemulsion catalysis". The chemical reaction occurs preferably at the interfacial film, and therefore a pseudophase model was assumed to explain the enhanced flavor formation. The product internal composition is dictated by process conditions such as temperature, time, pH, and mainly the nature of the interface. Increasing water/PG ratio leads to a dramatic increase in the initial reaction rate (V(0)). V(0) increased linearly as a function of the aqueous phase content, which could be due to the increase in the interfacial concentration of furfural. Microemulsions offer a new reaction medium to produce selective aroma compounds and to optimize their formation.  相似文献   

20.
The report of elevated acrylamide levels in some foods raised an international health alarm, because acrylamide probably has carcinogenic, neurotoxic, and genotoxic properties. However, data on the bioavailability of acrylamide from food matrices in humans are limited. In particular, only little is known about the interactions of acrylamide with food ingredients. Using a human intestine model (Caco-2 cells), this study shows that acrylamide monomers are highly bioavailable and pass the cell monolayer via passive diffusion. Furthermore, acrylamide binds to dietary proteins such as chicken egg albumin under intestinal and cooking conditions. This binding reduces the concentration of acrylamide monomers and leads to a reduced uptake by Caco-2 cells. Hence, it is concluded that a protein-rich diet may reduce acrylamide uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号