首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The airborne transmission of Classical Swine Fever (CSF) virus to susceptible pigs, as well as the effect of vaccination with the CSF virus PAV-250 strain was investigated on this mode of transmission. Experiment I: four pigs were inoculated with the ALD CSFV strain (10(4.3) 50% TCID) by the intramuscular route, and at the onset of fever, they were introduced into an enclosed chamber. At the end of the experiment surviving pigs were sedated, anesthetized and euthanatized. Experiment II: four pigs were previously vaccinated with the CSF virus PAV-250 strain, and at 14 days post-vaccination they were challenged with the CSF virus ALD strain. In both experiments, four susceptible pigs were exposed to infectious aerosols by placing them in a chamber connected by a duct to the adjacent pen containing the infected animals and were kept there for 86 hs. In Experiment I, pigs exposed to contaminated air died as a result of infection with CSF virus on days 14, 21 and 28 post-inhalation. These four pigs seroconverted from day 12 post-inhalation. CSF virus was isolated from these animals, and the fluorescent antibody test on tonsils was positive. In Experiment II, a vaccinated pig exposed to contaminated air did not seroconvert, nor was CSF virus isolated from lymphoid tissues. However, mild fluorescence in tonsil sections from these pigs was observed. In conclusion, CSF virus was shown to be transmitted by air at a distance of 1 m to susceptible pigs. Vaccination with the PAV-250 CSF virus strain protected the pigs from clinical disease under the same conditions.  相似文献   

2.
Several routes contribute to the spread of classical swine fever (CSF) during outbreaks of this disease. However, for many infected herds in recent epidemics, no route of virus introduction could be indentified. To obtain more insight into the relative importance of secretions and excretions in transmission of CSF virus, a model was developed. This model quantified the daily transmission probabilities from one infectious pig to one susceptible pig, using quantitative data on: (a) virus excretion by infected pigs, (b) survival of virus in the environment and (c) virus dose needed to infect susceptible pigs. Furthermore, the model predicted the relative contribution of secretions and excretions to this daily probability of infection of a susceptible pig. Three virus strains that differed in virulence were evaluated with the model: the highly virulent strain Brescia, the moderately virulent strain Paderborn and the low virulent strain Zoelen. Results suggest that it is highly probable that susceptible pigs in contact with Brescia or Paderborn infected pigs will be infected. For a pig in contact with a Zoelen infected pig, infection is less likely. When contact with blood is excluded, the predicted overall probability of infection was only 0.08 over the entire infectious period. The three strains differed in the relative contribution of secretions and excretions to transmission, although blood had a high probability of causing infection of a susceptible pig when in contact with a pig infected with any strain. This supports the statement that during outbreaks, control measures should ideally be based on the characteristics of the specific virus strain involved, which implies the development of strain-specific measures.  相似文献   

3.
An experiment was set up to investigate the role of excretions and secretions in the indirect transmission of classical swine fever virus (CSFV). In five small pens, 10 weaner pigs (two pigs per pen) were housed and inoculated with CSFV. Experimental infection was successful in all pigs. The infected pigs were kept in the pens for a period of 15 days after which the pens were depopulated and pigs were killed. At the moment of depopulation, all inoculated pigs were visibly clinically diseased and had high fever. Ten hours later the same pens were repopulated with five pairs of susceptible pigs. From inoculation onwards and especially between depopulation and restocking, the pens were neither cleaned nor disinfected. Four days post-repopulation, three of the susceptible pigs were detected positive on virus isolation. A fourth pig was detected positive 2 days later. Later on, the remaining pigs also became infected, most probably due to contact and between pen infections. It can be concluded that transmission of the virus via excretions and secretions succeeded in four of 10 pigs. This result indicates that transmission of CSFV via excretions and secretions can be of importance in a late, clinical stage of disease.  相似文献   

4.
The most effective method of containing an outbreak of foot-and-mouth disease (FMD) is by the culling of livestock. However, qualified people must diagnose the disease before the culling can begin, and they must avoid susceptible animals after having been in contact with infected premises, to prevent them from transmitting the virus. To test the effectiveness of biosecurity procedures in preventing the transmission of FMD virus (O/UK/35/2001) investigators contacted and sampled pigs inoculated with FMD virus for approximately 45 minutes and then contacted and sampled sentinel pigs and sheep after either using no biosecurity procedures, or washing their hands and donning clean outerwear, or showering and donning clean outerwear. The virus was detected in the nasal secretions of one investigator immediately after the postmortem investigation of the inoculated pigs but was not detected in samples collected between approximately 12 and 84 hours later. After the contaminated personnel had showered and changed into clean outerwear they did not transmit the strain of FMD virus to susceptible pigs and sheep.  相似文献   

5.
It has been demonstrated that pigs that have been double vaccinated with an E2 sub-unit marker vaccine and that are infected with classical swine fever virus (CSFV) through a natural contact infection may react positive in a CSFV detecting RT-nPCR test, whereas no virus could be isolated by using the conventional virus isolation (VI) technique. To evaluate whether these vaccinated and infected pigs may spread the virus, three experiments were set up. In the first, susceptible pigs were inoculated with serum originating from vaccinated RT-nPCR positive pigs. In the second, vaccinated RT-nPCR positive pigs were brought into contact with sentinel animals. In the third, vertical transmission was evaluated in RT-nPCR positive vaccinated pregnant gilts. In the first two experiments, no proof of virus transmission was found, whereas in the third vertical transmission was observed. The conclusion is that in vaccinated pigs that are positive in RT-nPCR but negative in VI, the level of circulating virus is probably not high enough for horizontal transmission, whereas vertical transmission of the virus is possible.  相似文献   

6.
Eight 2-month-old merino lambs were inoculated intranasally with different (10(2.0)-10(5.0)TCID50) amounts of Aujeszky's disease virus (ADV). Electron microscopic studies indicated that ADV replicated in extra-neural sites, in the epithelial cells of the mucosa of the upper and lower respiratory tract. Although the virus was excreted continuously in nasal discharges, horizontal transmission to contact lambs failed. The surviving exposed and contact lambs had no demonstrable antibodies against ADV and they were susceptible when challenged by ADV. However, the virus was transmitted to susceptible pigs in contact with the exposed lambs. One of the five contact pigs showed characteristic clinical signs of Aujeszky's disease, developed a nonsuppurative meningoencephalomyelitis and ADV was recovered from the brain, nasal discharge and other organs. Restriction enzyme analysis of DNA from this virus confirmed the sheep origin of the isolate. The other 4 pigs seroconverted. ADV infection in sheep is therefore a possible source of infection for pigs, but the lack of horizontal transmission in sheep was confirmed.  相似文献   

7.
It has been demonstrated that pigs that have been double vaccinated with an E2 sub‐unit marker vaccine and that are infected with classical swine fever virus (CSFV) through a natural contact infection may react positive in a CSFV detecting RT‐nPCR test, whereas no virus could be isolated by using the conventional virus isolation (VI) technique. To evaluate whether these vaccinated and infected pigs may spread the virus, three experiments were set up. In the first, susceptible pigs were inoculated with serum originating from vaccinated RT‐nPCR positive pigs. In the second, vaccinated RT‐nPCR positive pigs were brought into contact with sentinel animals. In the third, vertical transmission was evaluated in RT‐nPCR positive vaccinated pregnant gilts. In the first two experiments, no proof of virus transmission was found, whereas in the third vertical transmission was observed. The conclusion is that in vaccinated pigs that are positive in RT‐nPCR but negative in VI, the level of circulating virus is probably not high enough for horizontal transmission, whereas vertical transmission of the virus is possible.  相似文献   

8.
This paper describes a methodology to quantify the transmission of Actinobacillus (A.) pleuropneumoniae from subclinically infected carrier pigs to susceptible contact pigs, and to test the effect of possible interventions on the transmission. The methodology includes the design of a transmission experiment, and a method with which A. pleuropneumoniae transmission can be quantified and with which the effect of an intervention on the transmission can be tested. The experimental design consists of two parts. First, subclinically infected carrier pigs are created by contact exposure of specific-pathogen-free pigs to endobronchially inoculated pigs. Second, transmission is observed from the group of carrier pigs to a second group of susceptible contact pigs after replacing the inoculated pigs by new contact pigs. The presented analytical method is a generalised linear model (GLM) with which the effect of an intervention on the susceptibility and infectivity can be tested separately, if the transmission is observed in heterogeneous populations. The concept of the experimental transmission model is illustrated by describing an A. pleuropneumoniae transmission experiment in which the effect of vaccination on the susceptibility is quantified. Although it could not be demonstrated that vaccination has an effect on the susceptibility of pigs, it was demonstrated that nasal excretion of A. pleuropneumoniae is related to the infectivity of pigs.  相似文献   

9.
10.
At present, two types of vaccines against classical swine fever (CSF) virus are commercially available: E2 sub-unit marker vaccines and the conventional attenuated live C-strain vaccines. To evaluate the reduction of the horizontal virus transmission, three comparable experiments were carried out in which groups of weaner pigs (vaccinated with a marker vaccine or a C-strain vaccine) were challenged with CSF virus at 0, 7, and 14 days post-vaccination (dpv). Virus transmission was prevented totally when the challenge occurred at 14 dpv with an E2-marker vaccine (0/12 contact pigs positive in virus isolation (VI); R = 0 (0; 1.5)). At 7 dpv, transmission was reduced slightly (5/12 contact pigs positive in VI; R = 1.0 (0.3; 3.0)), whereas at 0 dpv, vaccination had no effect on transmission (10/12 contact pigs positive in VI; R = 2.9 (1.5; 10.8)). In the C-strain-vaccinated pigs, no virus transmission was detected even when the challenge was performed at the same day as the vaccination (0/12 contact pigs positive in VI; R = 0 (0; 1.5)).  相似文献   

11.
During epidemics of classical swine fever (CSF), neighbourhood infections occurred where none of the 'traditional' routes of transmission like direct animal contact, swill feeding, transport contact or transmission by people could be identified. A hypothesized route of virus introduction for these herds was airborne transmission. In order to better understand this possible transmission route, we developed a method to detect and quantify classical swine fever virus (CSFV) in air samples using gelatine filters. The air samples were collected from CSFV-infected pigs after experimental aerosolization of the virus. Furthermore, we studied the viability of the virus with time in aerosolized state. Three strains of CSFV were aerosolized in an empty isolator and air samples were taken at different time intervals. The virus remained infective in aerosolized state for at least 30 min with half-life time values ranging from 4.5 to 15 min. During animal experiments, concentrations of 10(0.3)-10(1.6)TCID(50)/m(3) CSFV were detected in air samples originating from the air of the pig cages and 10(0.4)-10(4.0)TCID(50)/m(3) from the expired air of infected animals. This is the first study describing the isolation and quantification of CSFV from air samples originating from infected pigs and their cages, supporting previous findings that airborne transmission of CSF is feasible.  相似文献   

12.
OBJECTIVE: To determine serum concentrations of the selected acute-phase proteins (APPs) haptoglobin, serum amyloid A (SAA), and C-reactive protein (CRP) in pigs experimentally inoculated with classical swine fever (CSF) and African swine fever (ASF) viruses. ANIMALS: 8 crossbred (Large White x Landrace) 10-week-old pigs. PROCEDURES: Pigs were allocated to 2 groups (4 pigs/group). One group was inoculated with the CSF virus Alfort 187 strain, whereas the other groupwas inoculated with the ASF virus Spain 70 isolate. Blood samples were collected at various time points. At the end of the study, pigs were euthanized and a complete necropsy was performed, including histologic and immunohistochemical analyses. RESULTS: Serum concentrations of APPs increased in pigs inoculated with CSF and ASF viruses, which suggested an acute-phase response in the course of both diseases. The most noticeable increase in concentration was recorded for SAA in both groups (up to a 300-fold increase for CSF virus and an approx 40-fold increase for ASF virus), followed by CRP and then haptoglobin, which each had only 3- to 4-fold increases. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of APPs increased significantly in pigs inoculated with CSF and ASF viruses. However, differences were evident in serum concentrations of the proteins evaluated in this study.  相似文献   

13.
In this experiment transmission of classical swine fever (CSF) virus via excretions of infected pigs was investigated under experimental conditions. Five pairs of pigs were experimentally infected with CSF virus. Eight days after experimental infection, when all pigs were viraemic for at least 3 days, the pens were depopulated and 20 h later, restocked with five pairs of susceptible pigs which stayed in these pens for 35 days. During the first 3 weeks of the experiment, the pens were neither cleaned nor disinfected. During the observation period, none of the susceptible pigs became infected. This result indicates that CSF virus spread via excretions is of minor importance in the early stages of infection. For extrapolation of these findings to the field situation and to increase the validity of the conclusions further research is needed to evaluate the effect of factors like virus strain, interval, ..., that may influence the outcome of the experiment.  相似文献   

14.
OBJECTIVE: To determine whether pigs can be infected with strains of vesicular stomatitis virus New Jersey (VSV-NJ) and vesicular stomatitis virus Indiana (VSV-I) isolated during recent vesicular stomatitis outbreaks that primarily involved horses in the western United States and determine the potential for these viruses to be transmitted by contact. ANIMALS: 128 pigs. PROCEDURE: Pigs were challenged with VSV-NJ or VSV-I from the 1995 and 1997 outbreaks of vesicular stomatitis in the western United States, respectively, or with VSV-NJ (OS) associated with vesicular stomatitis in feral pigs on Ossabaw Island, Ga. Pigs (3/group) were inoculated with each virus via 3 routes and evaluated for viral shedding, seroconversion, and the development of vesicular lesions. In another experiment, the potential for contact transmission of each virus from experimentally infected to na?ve pigs was evaluated. RESULTS: Infection of pigs was achieved for all 3 viruses as determined by virus isolation and detection of seroconversion. In inoculated pigs, all 3 viruses were isolated from multiple swab samples at concentrations sufficient to infect other pigs. However, compared with results obtained with the 2 VSV-NJ strains, viral titers associated with VSV-I were low and the duration of virus shedding was reduced. Results from the contact transmission trials were consistent with these results; virus transmission was detected most frequently with the VSV-NJ strains. CONCLUSIONS AND CLINICAL RELEVANCE: Pigs can be infected with VSV-NJ and VSV-I. Differences in the extent of viral shedding and potential for contact transmission were apparent between serotypes but not between the VSV-NJ strains investigated.  相似文献   

15.
Contact transmission of vesicular stomatitis virus New Jersey in pigs   总被引:4,自引:0,他引:4  
OBJECTIVE: To determine how viral shedding and development or lack of clinical disease relate to contact transmission of vesicular stomatitis virus New Jersey (VSV-NJ) in pigs and determine whether pigs infected by contact could infect other pigs by contact. ANIMALS: 63 pigs. PROCEDURE: Serologically naive pigs were housed in direct contact with pigs that were experimentally inoculated with VSV-NJ via ID inoculation of the apex of the snout, application to a scarified area of the oral mucosa, application to intact oral mucosa, or ID inoculation of the ear. In a second experiment, pigs infected with VSV-NJ by contact were moved and housed with additional naive pigs. Pigs were monitored and sampled daily for clinical disease and virus isolation and were serologically tested before and after infection or contact. RESULTS: Contact transmission developed only when vesicular lesions were evident. Transmission developed rapidly; contact pigs shed virus as early as 1 day after contact. In pens in which contact transmission was detected, 2 of 3 or 3 of 3 contact pigs were infected. CONCLUSIONS AND CLINICAL RELEVANCE: Transmission was lesion-dependent; however, vesicular lesions often were subtle with few or no clinical signs of infection. Contact transmission was efficient, with resulting infections ranging from subclinical (detected only by seroconversion) to clinical (development of vesicular lesions). Long-term maintenance of VSV-NJ via contact transmission alone appears unlikely. Pigs represent an efficient large-animal system for further study of VSV-NJ pathogenesis and transmission.  相似文献   

16.
Fifteen 6-week-old crossbred weaners weighing about 12 kg each were randomly divided into three groups of five animals each. One group of pigs was inoculated first with porcine reproductive and respiratory syndrome (PRRS) virus and then 3 days later with CSF virus. The second group received classical swine fever (CSF) virus, while the third group was inoculated with PRRS virus only. The aim of the experiment was to determine whether a primary PRRS virus infection influences the clinical outcome of experimentally induced CSF in young pigs. The PRRS virus infected weaners developed mild respiratory symptoms and recovered completely. All five weaners which were inoculated with CSF virus only showed severe clinical signs typical of the acute form of CSF. One pig had to be killed 15 days post-inoculation (p.i.); the remaining four died between the 18th and 22nd day p.i. The clinical course of the animals inoculated with both viruses was slightly different from that of the pigs that received only CSF virus. Four out of five pigs from the PRRS/CSF group became febrile and viraemic earlier than the animals which received CSF virus only. These pigs had to be killed 15–17 days post CSF virus inoculation. One animal in this group survived the acute phase of CSF and recovered completely. It was concluded that the observed divergences of the clinical courses would not have been noticed under field conditions. Therefore these findings cast doubt on the relevance of PRRS virus infection potentiating significantly the clinical outcome of CSF in young pigs.  相似文献   

17.
Fifteen 6-week-old crossbred weaners weighing about 12 kg each were randomly divided into three groups of five animals each. One group of pigs was inoculated first with porcine reproductive and respiratory syndrome (PRRS) virus and then 3 days later with CSF virus. The second group received classical swine fever (CSF) virus, while the third group was inoculated with PRRS virus only. The aim of the experiment was to determine whether a primary PRRS virus infection influences the clinical outcome of experimentally induced CSF in young pigs. The PRRS virus infected weaners developed mild respiratory symptoms and recovered completely. All five weaners which were inoculated with CSF virus only showed severe clinical signs typical of the acute form of CSF. One pig had to be killed 15 days post-inoculation (p.i.); the remaining four died between the 18th and 22nd day p.i. The clinical course of the animals inoculated with both viruses was slightly different from that of the pigs that received only CSF virus. Four out of five pigs from the PRRS/CSF group became febrile and viraemic earlier than the animals which received CSF virus only. These pigs had to be killed 15-17 days post CSF virus inoculation. One animal in this group survived the acute phase of CSF and recovered completely. It was concluded that the observed divergences of the clinical courses would not have been noticed under field conditions. Therefore these findings cast doubt on the relevance of PRRS virus infection potentiating significantly the clinical outcome of CSF in young pigs.  相似文献   

18.
《Veterinary microbiology》1997,54(2):113-122
Pseudorabies virus (PRV) vaccines are often compared for their capacity to reduce virus excretion after a challenge infection. Vaccines, used for the eradication of PRV, however, should reduce transmission of PRV among pigs. The purpose of this study was to investigate whether the amount of virus excreted after a challenge infection is an accurate measure of the capacity of a vaccine to reduce transmission of PRV among pigs. Two experiments were carried out, each using two groups of 10 pigs. The pigs in group one were intramuscularly vaccinated once with the glycoprotein E (gE)-negative vaccine X, the pigs in group two with the gE-negative strain 783. Eight weeks later, 5 pigs in each group were inoculated with wild-type PRV. A gE-ELISA was used to detect PRV infection. The transmission of PRV was estimated from the number of contact infections and expressed as the reproduction ratio R. The inoculated pigs vaccinated with vaccine X shed significantly more virus than the inoculated pigs vaccinated with strain 783. However, despite the difference in virus excretion, the transmission of PRV between the two groups did not differ. We conclude that virus excretion is not an accurate measure for determining vaccine effectiveness. However, R of vaccine X (R = 0.98) was not significantly below one, whereas R of vaccine 783 (R = 0) was significantly below one. Consequently, we cannot exclude the possibility that major outbreaks of PRV occur among pigs vaccinated with vaccine X.  相似文献   

19.
In this paper, we describe the transmission of Classical Swine Fever virus (CSF virus) within herds during the 1997–1998 epidemic in the Netherlands. In seven herds where the infection started among individually housed breeding stock, all breeding pigs had been tested for antibodies to CSF virus shortly before depopulation. Based upon these data, the transmission of CSF virus between pigs was described as exponential growth in time with a parameter r, that was estimated at 0.108 (95% confidence interval (95% CI) 0.060–0.156). The accompanying per-generation transmission (expressed as the basic reproduction ratio, R0) was estimated at 2.9. Based upon this characterisation, a calculation method was derived with which serological findings at depopulation can be used to calculate the period in which the virus was with a certain probability introduced into that breeding stock. This model was used to estimate the period when the virus had been introduced into 34 herds where the infection started in the breeding section. Of these herds, only a single contact with a herd previously infected had been traced. However, in contrast with the seven previously mentioned herds, only a sample of the breeding pigs had been tested before depopulation (as was the common procedure during the epidemic). The observed number of days between the single contact with an infected herd and the day of sampling of these 34 herds fitted well in the model. Thus, we concluded that the model and transmission parameter was in agreement with the transmission between breeding pigs in these herds.

Because of the limited sample size and because it was usually unknown in which specific pen the infection started, we were unable to estimate transmission parameters for weaned piglets and finishing pigs from the data collected during the epidemic. However, from the results of controlled experiments in which R0 was estimated as 81 between weaned piglets and 14 between heavy finishing pigs (Laevens et al., 1998a. Vet. Quart. 20, 41–45; Laevens et al., 1999. Ph.D. Thesis), we constructed a simple model to describe the transmission of CSF virus in compartments (rooms) housing finishing pigs and weaned piglets. From the number of pens per compartment, the number of pigs per pen, the numbers of pigs tested for antibodies to CSF virus and the distribution of the seropositive pigs in the compartment, this model gives again a period in which the virus most probably entered the herd. Using the findings in 41 herds where the infection started in the section of the finishers or weaned piglets of the age of 8 weeks or older, and of which only a single contact with a herd previously infected was known, there was no reason to reject the model. Thus, we concluded that the transmission between weaned piglets and finishing pigs during the epidemic was not significantly different from the transmission observed in the experiments.  相似文献   


20.
A stochastic simulation model to investigate the transmission of classical swine fever (CSF) virus within an infected farm is described. The model is structured according to the processes that occur within and between management groups (pig units or houses). It uses the individual pig as the unit of interest and estimates the number of animals in the states 'susceptible', 'infected', 'infectious', and 'removed' for each day of the disease incident. Probabilities are assigned to the transitions between states. The probability of a pig becoming infected is made dependent on the probability of contact between a susceptible and an infectious pig as well as the probability of transmission. The more pigs become infected in one unit, the more likely is subsequent spread to another management group on the farm. Ultimately, the probability that a shipment of pigs from the farm will include at least one infected pig can be estimated in order to identify high-risk movements during a CSF epidemic. The model results were compared with experimental data on CSF transmission within one pig unit (management group). It could be shown that the model was capable of reproducing the experimentally observed infection and mortality rates. To improve the input parameters and for further model validation, more experimental data and field data from CSF outbreaks are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号