共查询到20条相似文献,搜索用时 0 毫秒
1.
Eight-year-old lychee (Litchi chinensis Sonn.) trees, cv. 'Bengal,' growing in krasnozem soil were subjected to soil water deficit from one month before flowering until harvest by covering the ground with polyethylene sheeting and withholding irrigation. The ratio of daytime stomatal conductance of unirrigated to irrigated trees decreased 20% during the three months of increasing water deficit. Predawn leaf water potentials of irrigated trees averaged about -0.3 MPa throughout the period, whereas they declined progressively to -0.9 MPa in unirrigated trees. Minimum daytime leaf water potential in the unirrigated trees decreased from -1.0 to -1.1 MPa at the beginning of the drought period to -2.2 to -2.4 MPa after three months, and calculated whole-plant conductance did not change with decreasing availability of water. The calculated soil-root water potential declined to less than -1.0 MPa in unirrigated trees. Capacitance effects on the relationship between leaf water potential and transpiration were significant only at low transpiration rates. Although unirrigated trees reduced soil water content at 0-30 cm depths to an equivalent water potential of -1.0 MPa, fruit shedding was significantly less than in irrigated trees. Water deficit had no effect on the fresh weight of pericarp, but caused increased seed size and decreased fresh weight of flesh, resulting in fruit from unirrigated trees being 16% lower in total fresh weight per fruit than fruit from irrigated trees. 相似文献
2.
Sap flow was measured on five branches of two poplar (Populus trichocarpa Torr. & A. Gray x P. tacamahaca L.) trees from June to September 1994 in the south of England with stem-surface, heat balance gauges, and was scaled up to estimate transpiration from single trees on the basis of leaf area. On six days, stomatal conductance and plant water potential were measured simultaneously with a porometer and pressure chamber, respectively. The effects of solar radiation (S), vapor pressure deficit (D) and stomatal conductance on transpiration were evaluated. Sap flow per unit leaf area (F(a)) was closely related to the time course of demand attributable to S and D throughout the season, and only slightly affected by the water content of the top 120 cm of soil. Although F(a) increased linearly at low values of D, it showed a plateau with increases in D above 1.2 kPa. The canopy coupling coefficient (1 - Omega) ranged from 0.48 to 0.78 with a mean of 0.65 +/- 0.01, indicating that transpiration was controlled more by stomatal conductance than by incident radiation. The seasonal pattern of tree water loss followed potential evaporation with a peak in late June or early July. On bright days, daily transpiration over the projected crown area was 3.6 mm early in the season, 3.8 mm in mid-season, and 2.7 mm late in the season. The water balance of the system indicated that poplar trees took 15-60% of water transpired from groundwater, with the proportion increasing as the soil in the unsaturated zone dried out. Access to the water table resulted in high predawn water potentials throughout the season. Estimated hydraulic resistance to water flow in the soil-tree system was in the range of 1.5 to 1.93 x 10(6) MPa s m(-3). 相似文献
3.
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils. 相似文献
4.
We evaluated the osmotic adjustment capacity of leaves and roots of young olive (Olea europaea L.) trees during a period of water deficit and subsequent rewatering. The trials were carried out in Basilicata (40 degrees 24' N, 16 degrees 48' E) on 2-year-old self-rooted olive plants (cv. 'Coratina'). Plants were subjected to one of four drought treatments. After 13 days of drought, plants reached mean predawn leaf water potentials of -0.45 +/- 0.015 MPa (control), -1.65 +/- 0.021 (low stress), -3.25 +/- 0.035 (medium stress) and -5.35 +/- 0.027 MPa (high stress). Total osmotic adjustment increased with increasing severity of drought stress. Trees in the high stress treatment showed total osmotic adjustments ranging between 2.4 MPa at 0500 h and 3.8 MPa at 1800 h on the last day of the drought period. Osmotic adjustment allowed the leaves to reach leaf water potentials of about -7.0 MPa. Active osmotic adjustment at predawn decreased during the rewatering period in both leaves and roots. Stomatal conductance and net photosynthetic rate declined with increasing drought stress. Osmotic adjustment in olive trees was associated with active and passive osmotic regulation of drought tolerance, providing an important mechanism for avoiding water loss. 相似文献
5.
Changes in leaf size, specific leaf area (SLA), transpiration and tissue water relations were studied in leaves of rooted cuttings of selected clones of Eucalyptus globulus Labill. subjected to well-watered or drought conditions in a greenhouse. Significant differences between clones were found in leaf expansion and transpiration. There was a significant clone x treatment interaction on SLA. Water stress significantly reduced osmotic potential at the turgor loss point (Pi0) and at full turgor (Pi100), and significantly increased relative water content at the turgor loss point and maximum bulk elastic modulus. Differences in tissue water relations between clones were significant only in the mild drought treatment. Among clones in the drought treatments, the highest leaf expansion and the highest increase in transpiration during the experiment were measured in those clones that showed an early and large decrease in Pi0 and Pi100. 相似文献
6.
We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic increase in the stress resistance of I. pedunculosa may be related to its characteristic life form because I. pedunculosa grows taller than the other species studied. 相似文献
7.
Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees 总被引:1,自引:0,他引:1
We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa. 相似文献
8.
We analyzed annual carbohydrate storage and mobilization of bearing ("on") and non-bearing ("off") 'Kerman' pistachio (Pistacia vera L.) trees growing on three different rootstocks. On all rootstocks, carbohydrate storage in shoots and branches of "on" and "off" trees was lowest following the spring growth flush. In "off" trees, stored carbohydrates increased and remained high after the initial growth flush. In "on" trees, stem carbohydrates increased temporarily in early summer, but were mobilized in mid-season during kernel fill, and then increased again after nut harvest. During the dormant season, the only substantial differences in carbohydrate storage between previously "on" and "off" trees were found in the roots of the weakest rootstock. The annual carbohydrate storage and mobilization pattern in canopy branches of heavily cropped pistachio trees appeared to be driven by carbohydrate demands related to nut development and untempered by tree vigor. Mobilization of carbohydrates from current-season and 1- and 2-year-old stem wood of "on" trees during the primary period of kernel fill corresponded with the period of inflorescence bud abscission. Thus, the alternate bearing pattern associated with inflorescence bud abscission in 'Kerman' pistachio may be a function of mid-season mobilization of stored carbohydrates in current-season stems resulting in stimulation of inflorescence bud abscission. 相似文献
9.
The primary objective of this study was to investigate if responses of pottedPinus densiflora Sieb. et Zucc. seedlings to ozone exposure could be altered by water deficit stress applied before or during ozone exposure.
One-year-old seedlings grown from seeds in pots were used. Water deficit preconditioning was done for ten weeks from May 1,
1998, followed by ozone exposure and simultaneous water deficit for eight weeks. Water deficit was controlled by monitoring
xylem water potentials with a pressure chamber. Ozone was fumigated in open top chambers with an eight-hour mean concentration
of 0.1 ppm. A 23 factorial design was employed. Dry weights, carbohydrate concentrations, and leaf gas exchanges were measured. In response
to the water deficit, growth and stomatal conductance were reduced, while soluble carbohydrate concentrations were enhanced.
Interactions between ozone and simultaneous water deficit were significant. Dry weights were significantly decreased by ozone
exposure only in well-watered seedlings, suggesting that simultaneous water deficit may alleviate the adverse effects of ozone.
This protection from ozone stress observed in water-stressed seedlings resulted from: (1) reduced ozone uptake due to stomatal
closure and (2) enhanced TNC (Total Nonstructural Carbohydrates) which acted as a buffer against ozone injury. 相似文献
10.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values. 相似文献
11.
Bucci SJ Goldstein G Meinzer FC Scholz FG Franco AC Bustamante M 《Tree physiology》2004,24(8):891-899
Functional convergence in hydraulic architecture and water relations, and potential trade-offs in resource allocation were investigated in six dominant neotropical savanna tree species from central Brazil during the peak of the dry season. Common relationships between wood density and several aspects of plant water relations and hydraulic architecture were observed. All species and individuals shared the same negative exponential relationship between sapwood saturated water content and wood density. Wood density was a good predictor of minimum (midday) leaf water potential and total daily transpiration, both of which decreased linearly with increasing wood density for all individuals and species. With respect to hydraulic architecture, specific and leaf-specific hydraulic conductivity decreased and the leaf:sapwood area ratio increased more than 5-fold as wood density increased from 0.37 to 0.71 g cm(-3) for all individuals and species. Wood density was also a good predictor of the temporal dynamics of water flow in stems, with the time of onset of sap flow in the morning and the maximum sap flow tending to occur progressively earlier in the day as wood density increased. Leaf properties associated with wood density included stomatal conductance, specific leaf area, and osmotic potential at the turgor loss point, which decreased linearly with increasing wood density. Wood density increased linearly with decreasing bulk soil water potential experienced by individual plants during the dry season, suggesting that wood density was greatest in individuals with mostly shallow roots, and therefore limited access to more abundant soil water at greater depths. Despite their taxonomic diversity and large intrapopulation differences in architectural traits, the six co-occurring species and their individuals shared similar functional relationships between all pairs of variables studied. Thus, rather than differing intrinsically in physiological responsiveness, the species and the individuals appeared to have distinct operating ranges along common physiological response curves dictated by plant architectural and structural features. The patterns of water uptake and access to soil water during the dry season appeared to be the main determinant of wood density, which constrained evolutionary options related to plant water economy and hydraulic architecture, leading to functional convergence in the neotropical savanna trees studied. 相似文献
12.
13.
Growth,nutrient, water relations,and gas exchange in a holm oak plantation in response to irrigation and fertilization 总被引:2,自引:0,他引:2
Eighty 6-years-old Quercus ilex L. subsp. ballota seedlings planted on a former agricultural land were subjected during two growing seasons to one of four treatments: fertilization and irrigation, irrigation, fertilization, and control. Seasonal and between-treatment variations on water relations, gas exchange parameters, growth and nutrient status were analyzed. Water potential () was related to climatic conditions. Thus, the frequent rain storms during the summer allow seedlings to maintain relatively high values, joined to moderate photosynthetic activity. Differences on , photosynthesis and stomatal conductance due to irrigation were shown at the onset and end of growth, related with lower water availability. Fertilization had a greater effect on growth than irrigation. Both fertilization and irrigation positively affected the relative increment on leaf nutrient concentration at the end of the second year. The results indicate that water availability was not a limited factor, thus irrigation is not justified; while fertilization improve growth. 相似文献
14.
Cell behavior in the cambium and developing xylem of 3-year-old Japanese cedar (Cryptomeria japonica D. Don.) trees, during and after an 11-day suspension of irrigation, was analyzed. Leaf xylem pressure potential and tangential strain of the stem surface were monitored throughout the experiment. Anatomical features and numbers of developing tracheids and cambial cells were observed in four trees, sampled on Days 0, 4, 8 and 11 after irrigation was suspended. Daytime xylem pressure potential decreased to -1.9 MPa on Day 7 and remained the same until irrigation was resumed on Day 11. The transverse dimensions of the tracheids, which began to form secondary walls, began to decrease on Day 4. The number of cells in the cambial zone and cell expansion zone decreased abruptly on Day 8. Tangentially aligned developing tracheids with collapsed cell walls were observed in samples harvested on Days 8 and 11. Secondary wall formation was recognized in these tracheids. After the resumption of irrigation, xylem pressure potential recovered rapidly to the same value as before the suspension of irrigation. Tangential strain increased within 30 min after the resumption of irrigation, and continued to increase until the onset of light the next day. Eighteen days after the resumption of irrigation, anatomical features of cells in the cambium and cell-expansion zone were similar to those observed before suspension of irrigation. 相似文献
15.
《林业研究》2016,(3)
The efficiency of sample-based indices proposed to quantify the spatial distribution of trees is influenced by the structure of tree stands, environmental heterogeneity and degree of aggregation. We evaluated 10 commonly used distance-based and 10 density-based indices using two structurally different stands of wild pistachio trees in the Zagros woodlands, Iran, to assess the reliability of each in revealing stand structure in woodlands. All trees were completely stem-mapped in a nearly pure(40 ha) and a mixed(45 ha) stand. First, the inhomogeneous pair correlation function [g(r)] and the Clark–Evans index(CEI) were used as references to reveal the true spatial arrangement of all trees in these stands. The sampled data were then evaluated using the 20 indices.Sampling was undertaken in a grid based on a square lattice using square plots(30 m 9 30 m) and nearest neighbor distances at the sample points. The g(r) and CEI statistics showed that the wild pistachio trees were aggregated in both stands, although the degree of aggregation was markedly higher in the pure stand. Three distance- and six density-based indices statistically verified that the wild pistachio trees were aggregated in both stands. The distance-based Hines and Hines statistic(ht) and the densitybased standardised Morisita(Ip), patchiness(IP) and Cassie(CA) indices revealed aggregation of the trees in the two structurally different stands in the Zagros woodlands and the higher clumping in the pure stand, whereas the other indices were not sensitive enough. 相似文献
16.
Large, declining beech (Fagus sylvatica L.) trees (diameter at breast height = 50 cm), growing on heavy clay soils in the highlands near Zurich, Switzerland, were amply irrigated in late summer. During irrigation, the xylem sap flow rate, Q(wt), was measured by the stem-tissue heat balance method with internal heating and sensing. Only a gradual and slight increase in Q(wt) in response to irrigation was observed in the control trees, whereas Q(wt) in the declining trees, whose transpiration rates were only 2-20% those of the control trees, increased 2-5 times within minutes. This suggests, that severe local drought was the major factor limiting tree growth at the site. The extent of the response permits estimation of the supply-limited (soil water) and demand-limited (tree structure) components of stress. Drought caused a decline in Q(wt) in the trees with short crowns and limited root systems that had originally been growing in dense canopies and had become suddenly exposed to full illumination as a result of a severe wind storm and thinning. Trees with deep, narrow, dense crowns, growing in more open places and adapted over a long period to high irradiance remained healthy during drought. Prolonged, periodic water shortage reduced the amount of foliage up to 90% but during drought stimulated the growth of fine roots in the surface and upper soil layers. The stem conductive systems of the declining trees were still partially functional. 相似文献
17.
Many authors have attempted to explain the adaptive response of tropical plants to drought based on studies of water relations at the leaf level. Little attention has been given to the role of the xylem system in the control of plant water requirements. To evaluate this role, we studied the hydraulic architecture and water relations parameters of two tropical canopy trees with contrasting leaf phenologies: deciduous Pseudobombax septenatum (Jacq.) Dug and evergreen Ochroma pyramidale (Cav. ex lamb) Urban, both in the family Bombacaceae. The hydraulic architecture parameters studied include hydraulic conductivity, specific conductivity, leaf specific conductivity, and Huber value. Water relations parameters include leaf water potential, stem and leaf water storage capacitance, transpiration, stomatal conductance, and vulnerability of stems to cavitation and loss of hydraulic conductivity by embolisms. Compared to temperate trees, both species showed a pattern of highly vulnerable stems (50% loss of conductivity due to embolism at water potentials less than 1 MPa) with high leaf specific conductivities. The vulnerability of xylem to water-stress-induced embolism was remarkably similar for the two species but the leaf specific conductivity of petioles and leaf-bearing stems of the evergreen species, Ochroma (e.g., 9.08 and 11.4 x 10(-4) kg s(-1) m(-1) MPa(-1), respectively), were 3.4 and 2.3 times higher, respectively, than those of the deciduous species, Pseudobombax (e.g., 2.64 and 5.15 x 10(-4) kg s(-1) m(-1) MPa(-1), respectively). A runaway embolism model was used to test the ability of Ochroma and Pseudobombax stems to maintain elevated transpiration rates during the higher evaporative demand of the dry season. The percent loss of leaf area predicted by the runaway embolism model for stems of Pseudobombax ranged from 5 to 30%, not enough to explain the deciduous phenology of this tree species without analysis of root resistance or leaf and petiole vulnerability to embolism. 相似文献
18.
The effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit were investigated in pedunculate oak (Quercus robur), red oak (Quercus rubra) and holm oak (Quercus ilex) saplings over two years. Comparison was made with sweet chestnut (Castanea sativa), a susceptible species to infection by P. cinnamomi, and with a resistant hybrid chestnut (Castanea crenata × C. sativa). Trees were inoculated in 1998 and were subjected to water shortage in 1999. All inoculated sweet chestnuts died before the application of water shortage. Hybrid chestnut, pedunculate oak and red oak displayed low root susceptibility to P. cinnamomi. In these species, water relations, aerial growth and mineral nutrition were slightly affected by inoculation. By contrast, holm oak was the most susceptible oak species to P. cinnamomi as inoculated well‐watered trees displayed the highest root loss (67%) and a 10% mortality. Root loss was associated with a decrease in predawn leaf water potential, a 61% reduction in stomatal conductance, a 55% reduction in aerial biomass, a decrease in leaf carbon isotope discrimination and reduced leaf N and P contents in comparison with controls. In hybrid chestnut and pedunculate oak, water shortage resulted in a similar decrease of predawn leaf water potential, stomatal conductance and aerial biomass in inoculated and non‐inoculated trees. In red and holm oaks, soil volumetric water content of inoculated trees subjected to water shortage remained high. The effects observed in those trees were similar to those of inoculated well‐watered trees and were probably the result of root infection only. 相似文献
19.
以生长在呼和浩特地区的紫丁香、榆叶梅、珍珠梅为材料,通过测定植物的含水量,计算各种水分参数,研究植物对水分胁迫的反应和适应.结果表明:在整个生长季里,3个树种对水分胁迫的适应能力排序为:紫丁香>榆叶梅>珍珠梅. 相似文献
20.
Many evergreen mahogany (Swietenia macrophylla King) trees in the seasonally dry Bajo Paragua forest in northeast Bolivia carry substantial liana loads. Evergreen lianas may impede the growth of their host trees in various ways, including competition for water. Hypotheses tested were that water relations status differs (a) between lianas and their host trees, and (b) between trees infested with lianas that were cut 3.5 months previously (treated trees) and control trees with intact lianas. Diurnal measurements of stomatal conductance (g(s)) and leaf water potential (Psi) were made on canopy leaves of treated and control trees and lianas at the start and end of the dry season. Lianas had higher (less negative) Psi values (mean and predawn) and higher diurnal g(s) (expressed as mean or sum of diurnal values) than mahogany trees, indicating that lianas had a higher demand for, and ability to obtain, water than their host trees. Control and treated trees had a similar water relations status, suggesting that removal of lianas had no effect on the water relations of the trees, even at the end of the dry season. We conclude that either both life forms have conservative water relations that were unaffected by water availability in our study, or that the trees and lianas have access to sufficient and different sources of water because of differences in their rooting depths. Our data are consistent with studies of temperate species, indicating that lianas do not interfere with water availability to their host trees. 相似文献