首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 23 毫秒
1.
秸秆组成和土壤性质是秸秆腐解的重要影响因素,进而调控着秸秆还田后的土壤CO2排放和土壤养分动态。本研究选取了玉米秸秆(MS)、马铃薯秸秆(PS)及其等比例混合秸秆(CS)3种秸秆类型,分别添加到3种种植模式[玉米单作(MM)、马铃薯单作(MP)和玉米马铃薯间作(I)]土壤中,进行105 d的室内恒温培养试验,以探究秸秆类型在不同环境中的CO2排放及土壤化学性质变化。结果表明:土壤种植模式显著影响MS的CO2累积排放量,而对CS、PS没有显著影响。与玉米和马铃薯单一秸秆的加权平均(WM)相比,秸秆混合分别增加了MM土壤中CO2累积排放量和净累积排放量19.2%和19.9%。与培养前相比,MS在培养结束时增加了土壤pH和可溶性有机碳含量,但对速效磷和速效钾的影响较小,且显著低于PS和CS。当同一秸秆添加到不同作物种植模式土壤中,MP土壤的速效磷、速效钾和铵态氮含量的增幅(相对于培养前)均高于I和MM。研究表明,秸秆在土壤中的腐解与碳排放首先受碳氮比调控,而土壤种植模式的作用较小,同时这些因素均对腐解过程土壤化学性质产生显著影响。  相似文献   

2.
铵态氮源和碳源对土壤N2O、CO2释放的影响   总被引:1,自引:0,他引:1  
在田间持水量WFPS为70%、温度为20℃的条件下,通过室内静态培养方法研究铵态氮源与不同碳源结合,对华北平原典型小麦-玉米轮作体系土壤N2O、CO2释放的影响。其中,碳源种类分别为葡萄糖、果胶、淀粉、纤维素、木质素和秸秆。结果表明添加葡萄糖和果胶有效促进了土壤N2O的释放,并在第1 d达到最大值,分别为4039.85 μg N2O-N·kg-1·d-1和2533.44 μg N2O-N·kg-1·d-1;添加纤维素和只施秸秆处理降低了N2O释放。施入碳源增加了CO2释放,顺序为纤维素> 淀粉> 葡萄糖> 果胶> 秸秆> 木质素。培养结束后土壤中铵态氮几乎消耗完全,除添加葡萄糖处理外,其他施碳土壤的硝态氮含量均有所增加。在培养前3 d,土壤NH4+和NO3-总含量与N2O释放量显著相关。  相似文献   

3.
温度与微生物制剂对小麦秸秆腐解及土壤碳氮的影响   总被引:3,自引:0,他引:3  
【目的】探讨不同温度和添加微生物制剂条件下,小麦秸秆腐解对土壤中不同形态碳、氮含量的影响,为评价秸秆还田措施补充土壤养分、改善土壤肥力的贡献提供理论依据。【方法】采用室内模拟恒温培养方法,于15和20 ℃条件下,在装有127.5 g风干土样的培养盆中,分别添加不同量秸秆(0.961,0 g/盆)和微生物制剂(2.88,0.961,0 mg/盆),后培养75 d,测定秸秆腐解期间CO2释放量及腐解后土壤中不同形态碳、氮的含量。【结果】温度对秸秆腐解和养分释放影响较大,而微生物制剂未表现出作用效果。经75 d腐解培养后,添加秸秆与对照相比,15 ℃下秸秆CO2-C的净累积释放量较20 ℃下低37.1%,而土壤有机碳和微生物量碳净增量分别增加了260%和949%;同时,15 ℃下土壤全氮和铵态氮含量分别较20 ℃下降低了100%和18.4%,微生物量氮提高了262%。【结论】较低的温度有利于秸秆对土壤有机碳和微生物量碳、氮的截留和保蓄,而较高的温度会加速秸秆有机碳向无机碳转化,同时微生物制剂在本研究的水热条件下未能发挥作用。  相似文献   

4.
【目的】研究4种常规施肥模式下,添加生物炭后菜地土壤(褐潮土)CO2释放量、可溶性有机碳(DOC)和微生物生物量碳(SMBC)含量的变化,阐明添加生物炭对土壤CO2释放及不同形态碳的影响。【方法】采用室内恒温好氧培养-气象色谱测定方法,在不施肥(CK)、施有机肥(M)、施化肥(F)、有机无机混施(M+F)4种模式下投入2%和4%(质量比:生物炭/土壤干重)生物炭,定期采集气样和土样,分析土壤CO2的释放量及DOC、SMBC含量的动态变化,并分析DOC、SMBC含量变化与CO2释放量变化之间的相关关系。【结果】在F和M+F基础上,添加生物炭处理的土壤CO2释放速率在培养前期(2—8 d)显著高于未添加生物炭处理,而在10—60 d,二者CO2释放速率无显著差异;在CK和M基础上,添加与未添加生物炭处理在整个培养期间CO2释放速率没有显著差异。在CK基础上,添加2%和4%生物炭后CO2累积释放量分别为2 839和3 272 mg·kg-1,与CK(3 134 mg·kg-1)相比均无显著差异;而在F和M+F基础上,添加2%和4%生物炭后CO2累积释放量均显著提高,分别提高20.6%和19.8%、29.9%和40.7%。相关分析表明,未添加生物炭处理DOC、SMBC含量与CO2释放量之间无相关关系,而添加生物炭处理DOC、SMBC含量与CO2释放量极显著相关。【结论】将生物炭单独投入未施肥土壤中,土壤CO2排放量未出现明显增加或降低;在有机肥基础上添加生物炭,土壤CO2排放量随着生物炭投入量的增加而增加;在化肥、有机无机配施基础上添加生物炭后,土壤CO2排放增加比例最高。  相似文献   

5.
秸秆还田和氮肥施用是影响稻田土壤固碳潜力和温室气体排放的重要农作措施。通过研究油菜秸秆全量还田并配合施入不同量氮肥(150、225、300 kg·hm-2和375 kg·hm-2)对稻田土壤固碳量和温室气体排放的影响,评估综合增温潜势,对分析秸秆还田配施氮肥对稻田固碳效果有重要作用。结果表明,与单施氮肥和单施秸秆处理相比,秸秆还田配施氮肥显著增加土壤固碳量,秸秆配施氮肥处理固碳量最高值为147.74 kg·hm-2,比单施氮肥处理平均高出38%。在降低温室效应方面,与单施氮肥相比,秸秆配施氮肥处理显著降低N2O的累积排放量;与单一秸秆还田处理相比,秸秆配施氮肥处理显著提高水稻产量,降低CO2的累积排放量,但在一定程度上增加了CH4的排放。秸秆配施氮肥处理的温室气体强度和综合温室效应分别为0.372、5 394.22 kg CO2-eq·hm-2,显著低于单施氮肥处理的0.630、9 339.94 kg CO2-eq·hm-2,以及单一秸秆还田处理的0.816、9 872.2 kg CO2-eq·hm-2,因此,秸秆还田配施氮肥是降低温室气体排放强度、减缓净温室效应的有效措施。  相似文献   

6.
为探究干旱胁迫条件下CO2浓度升高对谷子抗旱性的影响机理,设置2个CO2浓度(400 μmol/mol左右正常CO2浓度和高CO2浓度,600 μmol/mol)和2个水分(正常供水和干旱处理)处理,测定孕穗期谷子光合能力、光合色素积累、叶绿素荧光、抗氧化酶、渗透调节物质、激素、信号转导相关蛋白激酶和逆境相关基因表达量等指标。结果表明:干旱胁迫下高CO2浓度(600 μmol/mol)处理显著提高谷子叶片水分利用效率(WUE)、净光合速率(Pn)、类胡萝卜素含量(Car)和类胡萝卜素/叶绿素(the ratio of carotenoids to chlorophyll);显著增加光化学淬灭系数(qP)、非光化学淬灭系数(NPQ),降低蒸腾速率(Tr);显著增加谷子叶片热休克蛋白(HSP-70)含量、脯氨酸(Pro)和脱落酸(ABA)含量及其相关基因表达量。干旱胁迫下高CO2浓度(600 μmol/mol)处理可显著增加谷子叶片丝裂原活化蛋白激酶(MAPK)含量及其相关基因表达量,过氧化氢酶(CAT)和谷胱甘肽-S-转移酶(GST)活性也显著增加。综上,高CO2浓度(600 μmol/mol)处理可通过缓解干旱胁迫下谷子叶片气孔导度和水分利用效率的降低、提高谷子渗透调节及信号转导能力,从而促进抗旱相关基因表达来提高谷子的抗旱能力。  相似文献   

7.
本研究以巴音布鲁克湿地和农田灰漠土原状土为研究对象,进行原位模拟降雨试验,利用LI-8100 土壤碳通量自动测量系统测定土壤的CO2排放,研究了不同降雨量对土壤CO2排放的影响。结果表明:降雨导致湿地土壤CO2释放速率显著增加(P<0.01),而农田土壤无显著差异。在其含水量无明显差异下,湿地不同降雨处理组的CO2排放量均大于农田组,湿地土壤CO2日累积排放量降水10 mm组> 降水20 mm 组> 对照组,土壤有机碳高的湿地土壤随降雨量增加,土壤短期碳损失高,而对低有机碳土壤(西北干旱区贫瘠土壤)短期碳损失影响不显著。降雨后农田土壤降水10 mm 组CO2排放与地表温度和5 cm 地温相关性极显著(P<0.01),其他各处理均未呈现显著相关。说明在干旱半干旱区降雨量对土壤CO2排放速率有着重要的影响。  相似文献   

8.
为探索笋用林在冬季采用二次覆盖措施的土壤温度和CO2 排放速率及动态变化情况,分析枯饼施用量和谷壳覆盖层厚度对土壤温度和 CO2 排放速率的影响,为凝练高效低碳覆盖模式提供参考,设计枯饼(发热物质)施用量 15 和 18 t·hm-2、谷壳层(保温材料)厚度 30 和 40 cm,分2次覆盖于林地,共 4 种覆盖模式,预埋地温计每天观测土壤温度,采用 Li-8100A 土壤碳通量自动测定系统每天测定土壤CO2 排放速率。结果表明,厚竹笋用林冬季林地二次覆盖措施对土壤温度和 CO2 排放速率均有显著影响(P<0.05)。覆盖期内土壤温度呈现双峰型动态曲线变化,第 1 次和第 2 次覆盖后均出现一个明显的高温峰值区;土壤 CO2排放速率呈现单峰型动态曲线变化,峰值出现在第 2 次覆盖后。不同覆盖模式间土壤温度和 CO2 排放速率的动态变化规律相似,但峰谷值存在显著差异(P<0.05)。随着枯饼施用量的增加和谷壳覆盖层厚度的增厚,土壤温度升高,CO2 排放速率加快;谷壳覆盖层厚度是影响土壤温度和 CO2 排放的主要因子,30和40 cm 谷壳层厚度之间的土壤温度和 CO2 排放速率均存在显著差异(P<0.05),15 与 18 t·hm-2 枯饼施用量间的土壤温度和 CO2 排放速率差异性不显著(P>0.05)。土壤温度与土壤 CO2 排放速率之间存在显著正相关性。厚竹笋用林林地冬季二次覆盖措施可显著提高土壤温度和 CO2 排放速率,综合考虑增温及低碳排放效果,二次覆盖时,以第1次覆盖施用枯饼7.5 t·hm-2、覆盖谷壳10 cm,第2次覆盖施用枯饼10.5 t·hm-2、覆盖谷壳 20 cm 的模式较好。  相似文献   

9.
中国已承诺大幅降低单位GDP碳排放,农业正面临固碳减排的重任。西南喀斯特地区环境独特,旱地面积占据优势比例,土壤碳循环认识亟待加强。以贵州省开阳县玉米-油菜轮作旱地为研究对象,采用密闭箱-气相色谱法对整个轮作期土壤CO2释放通量进行了观测研究,结果表明:(1)整个轮作期旱地均表现为CO2的释放源。其中油菜生长季土壤CO2通量为(178.8±104.8) mg CO2·m-2·h-1,玉米生长季为(403.0±178.8) mg CO2·m-2·h-1,全年平均通量为(271.1±176.4) mg CO2·m-2·h-1, 高于纬度较高地区的农田以及同纬度的次生林和松林;(2)CO2通量日变化同温度呈现显著正相关关系,季节变化与温度呈现显著指数正相关关系,并受土壤湿度的影响,基于大气温度计算得出的Q10为2.02,高于同纬度松林以及低纬度的常绿阔叶林;(3)CO2通量与土壤pH存在显著线性正相关关系,显示出土壤pH是研究区旱地土壤呼吸影响因子之一。  相似文献   

10.
基于华北农田长期定位试验,研究了长期施用生物炭和秸秆还田对整个玉米生育期内土壤微生物量的影响.试验共设4个处理:CK(单施氮磷钾肥)、C1(生物炭4.5 t·hm-2·a-1+氮磷钾肥)、C2(生物炭9.0 t·hm-2·a-1+氮磷钾肥)和SR(秸秆还田+氮磷钾肥).结果表明,各处理土壤微生物量碳、氮(MBC、MBN)动态变化趋势基本一致,均在玉米拔节期达到最高值,施用生物炭和秸秆还田均显著提高了土壤MBC、MBN含量(P <0.05),并且随着施炭量的增加而增加.与CK相比,C1、C2和SR处理的土壤MBC和MBN分别提高了105.2%、146.5%、96.4%和123.9%、183.6%、114.3%;与秸秆直接还田相比,施用高量生物炭更有利于增加土壤MBC、MBN含量.土壤MBC、MBN均与土壤温度呈现显著的正相关关系,而与土壤水分的相关性较差,说明在玉米生育期土壤温度是影响土壤微生物量变化的主要因素之一.施用生物炭显著降低了MBC、MBN的季节波动,而对土壤微生物量碳氮比(MBC/MBN)没有显著影响.综上所述,施用生物炭更有利于维持较高的微生物活性和较稳定的土壤环境.  相似文献   

11.
研究添加秸秆、木质素及其生物炭后潮土CO2释放特征及土壤有机碳含量变化,为合理利用有机物料提供科学依据。采用室内模拟试验,等碳量(1%秸秆/土壤质量比)施入4种物料(秸秆、木质素及其裂解的两种生物炭),分析不同处理土壤CO2释放速率、累积释放量和有机碳、水溶性有机碳(DOC)、易氧化有机碳(ROC)及微生物量碳(MBC)含量的变化与相关性。结果发现,土壤中添加不同物料对土壤CO2释放和有机碳含量有显著影响,秸秆和木质素能提高土壤CO2释放速率、累积释放量及有机碳矿化强度,均达到极显著差异,但两种生物炭处理与对照相比没有显著差异。在培养前期(30 d),不同物料均显著提高了土壤有机碳含量;但培养一年后,仅两种生物炭处理土壤有机碳含量较高,秸秆及木质素与对照相比没有显著差异。秸秆和木质素能显著增加DOC、ROC和MBC等土壤活性有机碳含量,而两种生物炭与对照相比没有明显差异;土壤DOC、ROC(167 mmol·L-1KMn O4)、ROC(33mmol·L-1KMn O4)和MBC直接影响CO2累积释放量,ROC(333 mmol·L-1KMn O4)对CO2累积释放量具有较强的间接作用。相对于秸秆和木质素而言,生物炭增加土壤有机碳含量,而没有增加CO2释放量,因此生物炭农用在固碳减排方面更具有积极意义。  相似文献   

12.
长期施用有机肥与化肥氮对华北夏玉米N_2O和CO_2排放的影响   总被引:10,自引:2,他引:10  
[目的]等施氮量条件下,比较有机肥与化肥田间施用后农田温室气体(CO2和N2O)的排放量及其增温潜势,正确认识有机肥与化肥在田间温室气体排放过程中的贡献,为制定田间合理的减排措施提供理论依据。[方法]在华北平原冬小麦-夏玉米种植制度下,以8年的长期定位试验为平台,利用静态箱-气相色谱法,于2014年6—10月,持续监测了化肥和有机肥在不同施肥水平下潮土玉米季土壤N2O和CO2的排放特征,并估算玉米季温室气体排放量及其产生的综合温室效应。[结果]施用有机肥与化肥农田土壤N2O的排放通量变化基本一致,施肥后出现短暂的排放高峰,之后逐渐趋于平稳;等氮条件下,化肥处理的N2O日排放通量明显高于有机肥处理,峰值过后的稳定期内有机肥处理的N2O排放通量略高于化肥处理。化肥的施用对农田土壤CO2的排放规律影响不明显,有机肥施用后CO2会出现持续的排放高峰。施用有机肥与化肥均会增加N2O的排放总量,且随施氮增加N2O排放总量显著增加;等氮量条件下,化肥处理的N2O排放总量显著高于有机肥。有机肥处理显著增加了农田土壤CO2的排放量,而化肥对CO2排放总量的影响不明显。施氮量为240kg·hm-2时,有机肥和化肥处理作物产量均达到较高水平,而温室气体的排放强度(GHGI)最低,分别为0.27、0.63 kg·hm-2,高于此施氮量,有机肥和化肥处理的GHGI均会明显增加。[结论]大量施用有机肥和化肥都会产生过多的温室气体。由于有机肥的固碳效应,化肥处理GHGI高于有机肥处理,适量施用有机肥是实现农田固碳减排的重要途径。  相似文献   

13.
不同生物质炭对酸化茶园土壤N2O和CO2排放的影响   总被引:1,自引:1,他引:0  
为了研究不同生物质炭对酸化茶园土壤温室气体排放的影响,采用原料为小麦秸秆、柳树枝、椰壳3种生物质炭,通过室内培养试验来探究不同生物质炭对茶园土壤性质及N_2O、CO_2排放特征的影响。试验中生物质炭添加量为20 g·kg~(-1),同时设置了施氮肥处理,采用尿素作为外加氮源,施氮量为100 mg·kg~(-1)。结果表明,施加生物质炭提高了酸化茶园土壤pH值,柳树枝生物质炭处理土壤pH值最高为6.71,显著高于其他处理。不同生物质炭对土壤DOC含量的影响效果存在差异,柳树枝生物质炭使土壤DOC平均含量增加了95.6%,椰壳生物质炭使土壤DOC含量降低36.1%,小麦秸秆生物质炭则影响不显著。生物质炭通过抑制土壤硝化和反硝化作用降低土壤N_2O的排放,椰壳生物质炭降低N_2O排放比例达91.7%,减排效果最显著。在施氮条件下柳树枝生物质炭对土壤N_2O的减排效果显著低于小麦秸秆和椰壳生物质炭。土壤CO_2的排放通量与pH值、DOC含量均呈极显著正相关,生物质炭促进了土壤CO_2的排放,柳树枝生物质炭处理CO_2的排放显著高于其他处理。此外,外加氮源降低了土壤pH值,增加了土壤N_2O的排放,但是对土壤DOC含量变化无显著影响。  相似文献   

14.
大气CO2和O3升高对菜地土壤酶活性和微生物量的影响   总被引:2,自引:2,他引:0  
利用OTC平台和青菜盆栽实验,探索[CO_2]、[O_3]或[CO_2+O_3]升高条件下,土壤理化性质、微生物量和土壤酶活性的变化,以期获得未来大气CO_2或/和O_3升高对土壤微生态系统的风险性。结果表明,[CO_2]升高不同程度地提高了土壤的可溶性有机碳(DOC)、可溶性有机氮(DON)、总磷(TP)、总碳(TC)、铵态氮(AN)、硝态氮(NN)含量和含水量(SWC),进而不同程度地提高了土壤微生物量碳(MBC)、微生物量氮(MBN)含量以及土壤蛋白酶(PRA)、蔗糖酶(SA)、脲酶(UA)、多酚氧化酶(POA)、酸性磷酸酶(APA)和中性磷酸酶(NPA)活性。相反,[O_3]升高不同程度降低了土壤DOC、TP、TK、TC、TN、AN、NN、SWC、MBC和MBN含量,提高了MBC/MBN比值,在不同程度上降低了土壤PRA、SA、UA、POA、APA和NPA酶活性。而[CO_2+O_3]在一定程度上消减了[O_3]对土壤微生物量和酶活性的抑制作用,也降低了[CO_2]升高对土壤微生物量和酶活性的刺激效应。因此,土壤微生物量和土壤酶活性的变化可用于评价未来大气CO_2或/和O_3升高对菜地土壤微生态环境的影响。  相似文献   

15.
通过长期定位肥料试验,研究了不同施肥对红壤性水稻土微生物生态特征的影响.结果表明,有机无机肥料配合施用均能明显增加土壤中细菌和放线菌数量,减少真菌数量;N,P,K肥配合稻草还田对提高土壤微生物活度的效果显著;有机无机肥料配合施用对提高土壤微生物生物碳和生物氮量的作用显著,并可降低土壤微生物碳氮比.  相似文献   

16.
土壤温室气体排放对C/N的响应   总被引:4,自引:3,他引:1  
土壤碳氮比(C/N)是影响微生物活动导致土壤温室气体排放和养分有效性变化的关键因素,秸秆还田配施氮肥则是调节农田土壤C/N的重要措施。为了探讨土壤C/N对温室气体排放的影响,通过在土壤中添加等量秸秆配以不同数量N素,在室内培养条件下测定分析了土壤不同起始C/N条件下土壤温室气体排放和活性碳氮的变化动态。研究发现:不同C/N条件下,土壤温室气体排放和溶解性有机碳(DOC)、溶解性有机氮(DON)的变化趋势基本一致。土壤CO_2排放速率和DOC含量均表现为随培养时间的延长逐渐降低,培养前30 d下降幅度较大,30~75 d降低缓慢,75 d后基本平稳;土壤N_2O的排放速率和DON含量则表现为先升高后降低,N_2O的排放速率在第7 d达到最大后逐渐降低直至平稳,土壤DON含量在第14 d达到最高后逐渐降低。土壤起始C/N越低,有机碳矿化率和净氮硝化速率越高,CO_2和N_2O排放量越多;土壤CO_2和N_2O的排放速率及累积排放量不但与土壤DOC和DON含量显著相关,而且与土壤DOC/DON比值显著相关。土壤硝态氮的含量变化表现为与土壤起始C/N相关,当土壤起始C/N在20~30时,硝态氮先升高后降低;土壤起始C/N大于40时,硝态氮先降低后升高。结果表明:在实际生产中,秸秆还田后合理配施氮肥调节土壤C/N是减少温室气体排放、提高作物氮肥利用效率的重要措施,为了掌握适宜的配施量和施用时期,有必要针对不同作物农田系统继续进行田间试验研究。  相似文献   

17.
为分析不同秸秆生物反应堆技术对茄子生产及温室土壤微环境的影响,设置常规栽培的CK、T1(秸秆22 500 kg·hm~(-2))、T2(秸秆22 500 kg·hm~(-2)+菌剂60 kg·hm~(-2)+羊粪7800 kg·hm~(-2))和T3(秸秆22500 kg·hm~(-2)+菌剂60 kg·hm~(-2)+羊粪7800 kg·hm~(-2)+腐植酸750 kg·hm~(-2))4个处理。结果表明:使用秸秆生物反应堆技术,茄子产量可以提高29.2%~32.0%,但不同秸秆反应堆处理之间无显著差异;秸秆反应堆技术可增加茄子中可溶性总糖、维生素C和固形物含量,降低硝酸盐含量,明显改善品质。3种秸秆反应堆技术均有效提高了温室土壤CO_2排放通量,增加植株根系周边土壤有机质和总氮含量,其中有机肥和菌剂的添加促进了早期CO_2释放,有利于土壤有机质和养分累积,腐植酸的添加对温室CO_2的产生影响不大,但可以提高土壤微生物代谢能力。对土壤微生物数量的分析表明,秸秆生物反应堆提高了植株根系周边土壤中的真菌数量,降低土壤细菌数量。其中T3处理倾向于提高苗期土壤中真菌数量和花期土壤中细菌数量,而T2处理倾向于提高花期和盛果期栽培土壤中的真菌数量以及盛果期栽培土壤细菌数量。研究表明,秸秆生物反应堆可以显著提高茄子产量和品质,增加温室土壤CO_2排放通量,提高植株根系周边土壤中有机质和养分含量,影响土壤中微生物代谢活性,改变栽培过程中真菌和细菌的数量变化模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号