首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to define normal gross anatomic structures in the equine stifle with magnetic resonance images. Magnetic resonance (MR) images were made in sagittal, 15° supinated, transverse, and dorsal planes of two equine stifles. The MR images were scrutinized by comparing MR images to dissection specimens and frozen cross sections of stifle joints. Sagittal and 15° supinated images were the most valuable in assessing articular cartilage, subchondral bone, and soft tissue structures within the joint. Cranial and caudal cruciate ligaments, medial and lateral menisci, meniscotibial and meniscofemoral ligaments, long digital extensor tendon, and patellar ligaments were easily evaluated. MR images provided substantially more gross anatomical information than the currently available imaging modalities.  相似文献   

2.
MAGNETIC RESONANCE IMAGING OF THE EQUINE FOOT   总被引:1,自引:1,他引:0  
The purpose of this study was to assess the ability of magnetic resonance imaging to depict abnormalities of the equine foot. MRI was performed on isolated limbs which had lesions of the foot. These images were made in 3 perpendicular planes (sagittal, transverse and frontal) using a T1 weighted sequence and were 5mm thick. Images accurately depicted normal and pathologic structures in the foot and proved to be very precise for documenting degenerative joint disease, navicular disease and laminitis lesions. This preliminary study demonstrates the considerable potential of MRI in the diagnosis of locomotor problems in the horse.  相似文献   

3.
Alberto  Arencibia  DVM  PhD  Jose M.  Vazquez  DVM  PhD  Juan A.  Ramirez  MD  PhD  Gregorio  Ramirez  DVM  PhD  Jose M.  Vilar  DVM  Miguel A.  Rivero  DVM  Santiago  Alayon  MD  Francisco  Gil  DVM  PhD 《Veterinary radiology & ultrasound》2001,42(5):405-408
The purpose of this investigation was to define the magnetic resonance (MR) imaging appearance of the brain and associated structures of the equine head. MR images were acquired in oblique dorsal (T2-weighted), sagittal (T1-weighted), and transverse planes (T2-weighted), using a magnet of 1.5 Tesla and a human body coil. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the cranioencephalic structures. Annotated MR images from this study are intended as a reference for clinical imaging studies of the equine head, specially in the diagnosis of brain diseases in the horse.  相似文献   

4.
Magnetic resonance imaging (MR) was used to make a diagnosis of equine nigropallidal encephalomalacia in a horse. Equine nigropallidal encephalomalacia is a neurodegenerative disease that has many characteristics with Parkinson-like diseases in humans. Historically, horses were euthanized based on clinical signs and exposure to the toxic weed, yellow star thistle (Centaurea solstitialis). Previously, the disease has only been confirmed on necropsy. MR imaging can provide accurate and sensitive visualization of typical lesions seen in the brain of horses affected with equine nigropallidal encephalomalacia. Lesions were seen on T1-weighted, T2-weighted and proton density images. There was no contrast enhancement following Gd-DTPA administration. Lesions seen on MR were confirmed at necropsy. Using MR to confirm a diagnosis of equine nigropallidal encephalomalacia will prevent unnecessary suffering of horses and expense to owners that would otherwise incur, while further diagnostics are performed.  相似文献   

5.
We tested an adaptation of a technique for performing magnetic resonance (MR) imaging of human cadaver limbs in the horse. The forelimbs from a normal horse were collected, frozen, and sealed with a paraffin-polymer combination prior to imaging with either a high- or midfield magnetic resonance scanner. Each forelimb was defrosted, scanned, and refrozen on two separate occasions. A five-point scale was used to evaluate the quality of each set of sagittal and transverse, T1-weighted images of each digit. There was no difference in image quality between first and second scans of either specimen (p > 0.05). We conclude that this technique allows investigators to bank tissue specimens for future magnetic resonance imaging without significant loss of image quality.  相似文献   

6.
An anatomic study of the equine digit using magnetic resonance imaging (MRI) was performed. Seventeen isolated forelimbs and one hindleg of nine warmblood horses were imaged in transverse, sagittal, and dorsal planes with a 1.5 Tesla magnet using T1-, T2- proton density-weighted spin echo sequences as well as T2 gradient echo sequences. One scan plane in each horse was compared with corresponding anatomic and histologic sections. The best imaging planes to visualize various anatomic structures were determined. Fibrocartilage was visualized in the insertion of the deep digital flexor tendon and the suspensory ligament as well as in the distal sesamoidean ligaments. The correlation of MRI images with anatomic and histologic sections confirmed that all of the anatomic structures in the equine digit could be evaluated in PD and T2 studies.  相似文献   

7.
Magnetic resonance (MR) images were made in sagittal and transverse planes through the metacarpophalangeal joint and digit of a horse. The images accurately depicted gross anatomic structures in the leg. Soft tissue structures were defined as separate entities on the images. Histologic varlation in tissues correlated with signal intensity differences on the MR images. Magnetic resonance imaging appears to be a promising imaging modality for evaluating musculoskeletal structures in equine limbs.  相似文献   

8.
The equine head is an anatomically complex area, therefore advanced tomographic imaging techniques, such as computed tomography or magnetic resonance imaging (MRI), are often required for diagnosis and treatment planning. The purpose of this multicenter retrospective study was to describe MRI characteristics for a large sample of horses with head disorders. Horses imaged over a period of 13 years were recruited. Eighty‐four horses met the inclusion criteria, having neurological (n = 65), sinonasal (n = 14), and soft tissue (n = 5) disorders. Magnetic resonance imaging accurately depicted the anatomy and allowed identification of the primary lesion and associated changes. There were good correlations between MRI findings and intraoperative or postmortem results. Magnetic resonance imaging showed the exact localization of the lesions, their size, and relation to surrounding structures. However, in the neurological group, there were 45 horses with no MRI abnormalities, 29 of which had a history of recurrent seizures, related to cryptogenic epilepsy. Magnetic resonance imaging was otherwise a valuable diagnostic tool, and can be used for studying a broad range of head disorders using either low‐field or high‐field magnets.  相似文献   

9.
Feline acromegaly is characterized by chronic excessive growth hormone secretion, most commonly caused by a functional pituitary adenoma. In this study, acromegaly was diagnosed in 15 cats on the basis of compatible clinical signs, laboratory, and magnetic resonance imaging (MRI) findings. MRI findings were reviewed retrospectively. Enlargement of the pituitary gland with suprasellar extension was present in all cats. No characteristic signal patterns were identified on T1‐weighted and T2‐weighted sequences. Contrast enhancement was nonuniform in all cats, as was suspected involvement of the adjacent hypothalamus. A mass effect on the cavernous sinus and third ventricle was present in 13 cats. Mild peritumoral edema was present in four cats, and moderate edema in one cat. Transtentorial herniation was present in one cat. Histopathology confirmed the presence of a pituitary adenoma in two cases. MRI is a useful modality to establish the diagnosis of acromegaly.  相似文献   

10.
Margaret A.  Blaik  DVM  R. Reid  Hanson  DVM  Steven A.  Kincaid  DVM  MS  PhD  John T.  Hathcock  DVM  MS  Judith A.  Hudson  DVM  PhD  Debra K.  Baird  DVM  PhD 《Veterinary radiology & ultrasound》2000,41(2):131-141
The objective of this study was to define the normal gross anatomic appearance of the adult equine tarsus on a low-field magnetic resonance (MR) image. Six radiographically normal, adult, equine tarsal cadavers were utilized. Using a scanner with a 0.064 Tesla magnet, images were acquired in the sagittal, transverse and dorsal planes for T1-weighted and the sagittal plane for T2-weighted imaging sequences. Anatomic structures on the MR images were identified and compared with cryosections of the imaged limbs. Optimal image planes were identified for the evaluation of articular cartilage, subchondral bone, flexor and extensor tendons, tarsal ligaments, and synovial structures. MR images provide a thorough evaluation of the anatomic relationships of the structures of the equine tarsus.  相似文献   

11.
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.  相似文献   

12.
13.
We compared the ability of 1.5 T magnetic resonance imaging (MRI), computed tomography (CT), and computed radiography (CR) to evaluate noncartilaginous structures of the equine metacarpophalangeal joint (MCP), and the association of imaging changes with gross cartilage damage in the context of osteoarthritis. Four CR projections, helical single‐slice CT, and MRI (T1‐weighted gradient recalled echo [GRE], T2*‐weighted GRE with fast imaging employing steady‐state acquisition [FIESTA], T2‐weighted fast spin echo with fat saturation, and spoiled gradient recalled echo with fat saturation [SPGR‐FS]) were performed on 20 racehorse cadaver forelimbs. Osteophytosis, synovial effusion, subchondral bone lysis and sclerosis, supracondylar lysis, joint fragments, bone marrow lesions, and collateral desmopathy were assessed with each modality. Interexaminer agreement was inferior to intraexaminer agreement and was generally moderate (i.e., 0.4<κ<0.6). Subchondral bone sclerosis scores using CT or MRI were correlated significantly with the reference quantitative CT technique used to assess bone mineral density (P<0.0001). Scores for subchondral lysis and osteophytosis were higher with MRI or CT vs. CR (P<0.0001). Although differences between modalities were noted, osteophytosis, subchondral sclerosis, and lysis as well as synovial effusion were all associated with the degree of cartilage damage and should be further evaluated as potential criteria to be included in a whole‐organ scoring system. This study highlights the capacity of MRI to evaluate noncartilaginous changes in the osteoarthritic equine MCP joint.  相似文献   

14.
A retrospective analysis of 619 upper and lower cheek teeth from 62 horses was performed. Based on clinical findings, as well as radiographic and magnetic resonance (MR) imaging findings, the teeth were classified into five groups. There were 20 teeth with abnormal MR imaging signals as well as clinical alterations and 599 healthy teeth. Using MR imaging, the appearance of pulp in diseased and disease‐free teeth was compared, and the appearance of abnormal pulp was studied. Subsequently, the ability of MR imaging to diagnose pulpitis and pulp necrosis in teeth with normal external appearance was investigated. In horses with clinically verified dental disease, abnormal MR imaging findings were confirmed in the pulp of all affected teeth. An enlarged blurred pulp image with a lower signal intensity was observed only in clinically diseased teeth and was a reliable criterion for diagnosing dental disease on MR imaging. On the other hand, partial or complete absence of pulp in all MR imaging sequences was observed in both diseased and nondiseased teeth. These data demonstrate that pulp changes in equine cheek teeth can be evaluated using MR imaging.  相似文献   

15.
The appearance of the equine metacarpophalangeal (MCP) joint on high‐field (1.5 T) vs. low‐field standing (0.27 T) magnetic resonance (MR) images was evaluated. Objectives were (1) to describe the MR appearance of anatomic structures of clinical interest on images of the equine MCP joint obtained from 20 equine cadaver limbs from horses without lameness using high‐field and low‐field systems, (2) to categorize the clarity of appearance of anatomic structures on low‐field MR images in comparison to high‐field images as a gold standard. We found that larger anatomic structures were visible with sharp margins on both high‐ and low‐field images, smaller structures were less distinct on low‐field images and therefore interpretation of smaller structures on low‐field images must be done with care.  相似文献   

16.
Sonography is commonly used for diagnosis of desmopathy of the proximal part of the suspensory ligament in horses. However, magnetic resonance (MR) imaging has been stated to be superior for detecting disease and localizing lesions. In this retrospective study of 39 horses or 46 hind limbs with lameness due to proximal plantar metatarsal pain, the clinical and diagnostic findings are discussed and sonography and MR imaging compared for examination of the proximal part of the suspensory ligament. With MR imaging interpreted as the clinical gold standard, desmopathy of the proximal part of the suspensory ligament was diagnosed in 21 hind limbs, proximal plantar metatarsal pain of unknown cause in 12, an osseous injury at the origin of the suspensory ligament in four and a condition unrelated to the suspensory ligament in nine. Based on these findings, sonography had a sensitivity of 0.77 and 0.66 and specificity of 0.33 and 0.31 for diagnosing proximal suspensory desmopathy and for accurately localizing lesions, respectively. MR imaging changes consistent with proximal suspensory desmopathy were signal hyperintensities and an increase in cross-sectional area compared with the contralateral limb. Anesthesia of the deep branch of the lateral plantar nerve is not specific neither for proximal suspensory desmopathy, as conditions unrelated to the suspensory ligament were diagnosed, nor for diagnosis of proximal plantar metatarsal pain, as conditions outside the proximal plantar metatarsal region were also diagnosed.  相似文献   

17.
We report the use of a low-field magnetic resonance (MR) imaging system for the detection of desmopathy of the collateral ligament of the distal interphalangeal joint and the long-term outcome. Twenty horses were studied and their medical records and MR images were reviewed retrospectively. Long-term follow-up information was obtained by telephonic questionnaires of owners, trainers, or referring veterinarians. Desmopathy of the medial collateral ligament (80%) and enthesopathy of the affected collateral ligament (80%) were common MR imaging features. Treatment consisted of stall rest followed by a rehabilitation period. Additional treatments included shoeing, extracorporeal shock wave therapy, application of a half limb or foot cast, and medication of the distal interphalangeal joint. Twelve (60%) horses returned to their previous level of exercise and maintained their previous level, whereas eight horses had a poor outcome. Low-field MR imaging in the standing patient can be used to detect collateral ligament desmopathy of the distal interphalangeal joint without a need for general anesthesia.  相似文献   

18.
Magnetic resonance (MR) imaging is increasingly used in the diagnosis of equine foot pain, but improved understanding of how MR images represent tissue-level changes in the equine foot is required. We hypothesized that alterations in signal intensity and tissue contour would represent changes in tissue structure detected using histologic evaluation. The study objectives were to determine the significance of MR signal alterations in feet from horses with and without lameness, by comparison with histopathologic changes. Fifty-one cadaver feet from horses with a history of lameness improved by palmar digital analgesia (n = 32) or age-matched control horses with no history of lameness (n = 19) were stored frozen before undergoing MR imaging and subsequent histopathological examination at standard sites (deep digital flexor tendon, navicular bone, distal sesamoidean impar ligament, collateral sesamoidean ligament, and navicular bursa). Using MR images, signal intensity and homogeneity, size, definition of anatomic margins, and relationships with other structures were described. Alterations were graded as mild, moderate, or severe for each structure. For each anatomic site examined histologically the structures were described and scored as no changes, mild, moderate, or severe abnormalities, also taking into account adhesion formation within the navicular bursa detected on macroscopic examination. Alterations in MR signal intensity were related to changes at the tissue level detected by histologic examination. A sensitivity and specificity comparison of MR imaging with histologic examination was used to evaluate the significance of MR signal alterations for detection of moderate-to-severe lesions of the deep digital flexor tendon (DDFT), navicular bone, distal sesamoidean impar ligament (DSIL), collateral sesamoidean ligament (CSL) and navicular bursa. Agreement between the MR and histologic grading was assessed for each structure using a weighted kappa agreement. Direct comparison between histology and MR imaging for individual limbs revealed that signal alterations on MR imaging did represent tissue-level changes. These included structural damage, fibroplasia, fibrocartilaginous metaplasia, and hemosiderosis in ligaments and tendons; trabecular damage, osteonecrosis, fibroplasia, cortical defects, and increased vascularity in bone; and fibrocartilage defects. MR imaging had a high sensitivity and specificity for most structures. MR imaging had high specificity for lesions of the DDFT, CSL and navicular bursa, quite high specificity for lesions of the medulla of the navicular bone and its proximal aspect, with moderate specificity for the DSIL, and distal, dorsal and palmar aspects of the navicular bone, and was sensitive for detection of abnormalities in all structures except the dorsal aspect of the navicular bone. When MR and histologic grades alone were compared, there was good agreement between MR and histologic grades for the navicular bursa, DDFT, navicular bone medulla and CSL; moderate-to-good agreement in grades of the distal and palmar aspects of the navicular bone; fair to moderate in grades of the DSIL, and poor agreement for the dorsal and proximal aspects of the navicular bone. The results of this study support our hypothesis and indicate the potential use and limitations of MR imaging for visualization of structural changes within osseous and soft tissue structures of the equine foot.  相似文献   

19.
Abnormalities of the deep digital flexor tendon, navicular bone, and collateral sesamoidean ligament can be difficult to visualize using magnetic resonance imaging (MRI) if bursal fluid is absent. The use of saline podotrochlear bursography improves podotrochlear apparatus evaluation, however, the technique has disadvantages. The objective of this prospective feasibility study was to describe saline arthrography of the distal interphalangeal joint as an alternative technique for improving MRI visualization of the deep digital flexor tendon, navicular bone, collateral sesamoidean ligament, and podotrochlear bursa, and to compare this technique with saline podotrochlear bursography. Eight paired cadaver forelimbs were sampled. Saline podotrochlear bursography or saline arthrography techniques were randomly assigned to one limb, with the alternate technique performed on the contralateral limb. For precontrast and postcontrast studies using each technique, independent observers scored visualization of the dorsal aspect of the deep digital flexor tendon, palmar aspect of the navicular bone, collateral sesamoidean ligament, and podotrochlear bursa. Both contrast techniques improved visualization of structures over precontrast MR images and visualization scores for both techniques were similar. Findings from this study demonstrated that saline arthrography is feasible and comparable to saline podotrochlear bursography for producing podotrochlear bursa distension and separation of the structures of the podotrochlear apparatus on nonweight bearing limbs evaluated with low‐field MRI. Clinical evaluation of saline arthrography on live animals is needed to determine if this technique is safe and effective as an alternative to saline podotrochlear bursography in horses with suspected pathology of the podotrochlear apparatus.  相似文献   

20.
Brain disease is an important cause of neurologic deficits in small ruminants, however few MRI features have been described. The aim of this retrospective, case series study was to describe MRI characteristics in a group of small ruminants with confirmed brain disease. A total of nine small ruminants (six sheep and three goats) met inclusion criteria. All had neurologic disorders localized to the brain and histopathologic confirmation. In animals with toxic‐metabolic diseases, there were bilaterally symmetric MRI lesions affecting either the gray matter (one animal with polioencephalomalacia) or the white matter (two animals with enterotoxemia). In animals with suppurative inflammation, asymmetric focal brainstem lesions were present (two animals with listeric encephalitis), or lesions typical of an intra‐axial (one animal) or dural abscess (one animal), respectively. No MRI lesions were detected in one animal with suspected viral cerebellitis and one animal with parasitic migration tracts. No neoplastic or vascular lesions were identified in this case series. Findings from the current study supported the use of MRI for diagnosing brain diseases in small ruminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号