首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Grassland birds have undergone substantial population declines throughout much of their historic ranges in North America. Most of the remaining grassland bird habitat is restricted to rangelands managed for livestock production, so grazing management has strong implications for grassland bird conservation efforts. We conducted 1 830 point-count surveys at 305 sites during 2016–2017 to evaluate the relative effects of three livestock grazing systems on the abundance and community composition of grassland birds in a northern mixed-grass prairie ecosystem of eastern Montana, United States. Our objectives were to 1) evaluate effects of grazing management on abundance and community composition of grassland obligate birds, focusing specifically on grazing systems, stocking rates, and interactions with rangeland productivity; 2) evaluate the importance of local vegetation characteristics for grassland birds within grazing systems; and 3) assess the effectiveness of rest-rotation grazing to create patch-heterogeneity in rangeland vegetation through the alteration of structural components and the response of grassland birds to these treatments. Overall, we found inconsistent responses in abundances of grassland birds relative to livestock grazing systems and no discernable differences among grazing systems relative to community composition. However, local abundances were often driven by interactions between grazing system and rangeland production potential, suggesting the effects of livestock grazing management were generally mediated by rangeland productivity. In addition, associations between avian abundance and grazing management parameters (e.g., stocking rate) were species specific. Ubiquitous guidelines for livestock grazing systems may be inappropriate for grassland bird conservation efforts in the northern mixed-grass prairie, and high stocking rates may negatively impact populations of dense-grass obligate grassland birds in this region.  相似文献   

2.
Many grassland species coevolved with large herbivores and require habitats along the entire structural gradient created by grazing. Widespread declines of grassland birds, however, have prompted concerns about rangeland management. Conceptually, rest-rotation grazing functions as a conservation strategy to mimic historic disturbance regimes and create pasture-level heterogeneity in the absence of fire, but its utility for improving wildlife habitat has not been directly tested, particularly in the mesic mixed-grass prairie. We evaluated rest-rotation grazing as a conservation management technique compared with more traditional grazing systems, including summer rotation and season-long grazing, and assessed effects of different grazing systems and stocking rates on nest site selection and nest survival of sharp-tailed grouse (Tympanuchus phasianellus), an indicator species for grassland ecosystems. Both nest site selection and nest survival were directly related to vertical nesting cover, which was only weakly related to grazing management variables, including grazing system and stocking rate, at moderate stocking rates (≤ 2 animal unit month [AUM] ha 1). Cattle presence during the nesting period had a positive effect on daily nest survival, potentially through an effect by either the cows or rancher presence on predator behavior. Overall, our results suggest that rest-rotation grazing did not contribute to pasture-level vegetation heterogeneity and that both the selective foraging of cattle and inherent topographic and edaphic variability in our study area may be stronger drivers of heterogeneity at the small spatial scale required by female grouse.  相似文献   

3.
Ground squirrel (Spermophilus spp.) and American badger (Taxidea taxus) burrowing activities are ecologically important disturbances that contribute to the heterogeneity of prairie environments. These activities also have a strong impact on habitat suitability for many other grassland species. However, effects of cattle grazing intensity on ground squirrel and American badger burrows are not well understood. From 2006 to 2012 we evaluated effects of grazing intensity and vegetation type on American badger burrow occurrence and ground squirrel burrow abundance using a manipulative grazing experiment in Grasslands National Park of Canada, Saskatchewan. The study area consisted of nine 300-ha pastures at a range of stocking rates, from very low to very high for the region. Each pasture had 10 plots (six upland and four lowland) where vegetation and burrow surveys were completed. Burrow abundance and occurrence as well as vegetation structure were assessed for 2 yr prior to the introduction of cattle to this landscape in 2008, which followed at least 15 yr without livestock, and from 2009 to 2012, following introduction of livestock. Data were analyzed using generalized linear mixed models. In upland habitats, ground squirrel burrow counts increased with increasing grazing intensity and decreasing vegetation biomass; conversely, badger burrow occurrence increased with decreased stocking rates and increasing average litter cover and vegetation biomass. Abundance and occurrence of both ground squirrel and badger burrows in lowland habitats was relatively independent of grazing intensity or vegetation. Vegetation composition had little impact on ground squirrel or badger burrows. A range of grazing intensities may contribute to maintaining diversity of burrowing mammals in prairie environments.  相似文献   

4.
Due to their complex structure and traditional low-intensity management, Portuguese oak woodland rangelands known as montados are often considered high nature value (HNV) farming systems, and as such, they may be deemed eligible for subsidies and incentives by governmental and nongovernmental agencies. Too little is known about how the HNV concept might be applied to conserve complex silvopastoral systems. These systems, due to their structural and functional complexity at multiple scales, tend to support high levels of biodiversity. Montados are in sharp decline as a result of the rapid specialization of land management that, through simplification, undermines multifunctionality. Understanding how changes in management influence these systems and their biodiversity is needed for prioritizing conservation efforts and for ensuring they remain HNV systems. On the basis of a field survey in 58 plots distributed among 29 paddocks on 17 farms, we conducted an integrated analysis of the relationship between grazing intensity and biodiversity in montados of similar biophysical and structural characteristics. Data on management were obtained through interviews, and biodiversity data (vegetation, macrofungi, birds, herpetofauna) were obtained through specific field protocols. Additional spatial data, such as soil characteristics, slope, land cover, and linear landscape elements, were also analyzed. The results show no overall biodiversity variation as a result of different management practices. However, different groups of species react differently to specific management practices, and within a pasture, grazing impacts are heterogenous. In low grazing intensity plots, macrofungi species richness was found to be higher, while bird species richness was lower. Using tree regeneration as proxy for montado sustainability, results show less tree regeneration in areas with higher forage quality and more intense grazing. Pathways for future progress are proposed, including creating areas within a paddock that attract grazing away from where regeneration is desired.  相似文献   

5.
Experiments investigating grazing systems have often excluded ranch-scale decision making, which has limited our understanding of the processes and consequences of adaptive management. We conducted interviews and vegetation monitoring on 17 ranches in eastern Colorado and eastern Wyoming to investigate rancher decision-making processes and the associated ecological consequences. Management variables investigated were grazing strategy, grazing intensity, planning style, and operation type. Ecological attributes included the relative abundance of plant functional groups and categories of ground cover. We examined the environmental and management correlates of plant species and functional group composition using nonmetric multidimensional scaling and linear mixed models. After accounting for environmental variation across the study region, species composition did not differ between grazing management strategy and planning style. Operation type was significantly correlated with plant community composition. Integrated cow-calf plus yearling operations had greater annual and less key perennial cool-season grass species cover relative to cow-calf  only operations. Integrated cow-calf plus yearling ranches were able to more rapidly restock following drought compared with cow-calf operations. Differences in types of livestock operations contributed to variability in plant species composition across the landscape that may support diverse native faunal species in these rangeland ecosystems. Three broad themes emerged from the interviews: 1) long-term goals, 2) flexibility, and 3) adaptive learning. Stocking-rate decisions appear to be slow, path-dependent choices that are shaped by broader social, economic, and political dynamics. Ranchers described having greater flexibility in altering grazing strategies than ranch-level, long-term, annual stocking rates. These results reflect the complexity of the social-ecological systems ranchers navigate in their adaptive decision-making processes. Ranch decision-making process diversity within these environments precludes development of a single “best” strategy to manage livestock grazing.  相似文献   

6.
Monoculture and mixed pastures in Florida provide habitat for a variety of resident and migratory bird species. The objectives of this study were to investigate the effects of grazing on vegetation structure and bird species richness and abundance in grazed monoculture and mixed pastures. Study pasture units were subject to four cattle grazing intensities: 0 = nongrazed (control), 15 = low, 20 = medium, or 35 = high animal units (AU) per pasture unit (no cattle, 1.3, 1.0, and 0.6 ha · AU?1, on monoculture pastures and no cattle, 2.1, 1.6, and 0.9 ha · AU?1, on mixed pastures). Monoculture pastures displayed a greater decrease in spatial heterogeneity of the vegetative community in the presence of grazing than mixed pastures. An increase in grazing intensity led to declines in total avian species richness and abundance and species richness within short-distance migrant, neotropical migrant, and permanent resident guilds on monoculture pastures. Declines in total species richness and abundance and neotropical migrant guild species richness and abundance were observed on mixed pastures subject to increasing grazing intensity. However, species richness within short-distance migrant and urban guilds and abundance within the grassland guild increased on this pasture type in the presence of grazing. Loss of spatial heterogeneity typically results in a lack of suitable habitat for birds that occupy the extremes of the vegetation structure gradient. This can lead to a loss of species richness and abundance. For the majority of avian guilds, a low grazing intensity of 1.3 ha · AU?1 and 2.1 ha · AU?1 on monoculture and mixed pasture, respectively, is recommended to maintain abundance. However, these grazing intensities may result in declines in species richness. Ultimately, if a range of avian species are to be supported on monoculture and mixed pastures, spatial heterogeneity of plant structure and composition must be maintained.  相似文献   

7.
Rangelands are areas used primarily for grazing by domestic livestock; however, because they support native vegetation and fauna, their potential role in conservation should not be overlooked. Typically, “off-reserve” conservation in agricultural landscapes assumes a trade-off between maintaining the ecological processes that support biodiversity and successful food production and profitability. To evaluate this potential biodiversity trade-off in rangelands, we need to understand the effect of different livestock grazing strategies on biodiversity, in relation to their performance in terms of profitability and land condition. We monitored reptile community responses to four cattle-grazing strategies (heavy, moderate, and variable stocking rates and a rotational wet season spelling treatment) in a replicated, long-term grazing trial in north Queensland, Australia. Simultaneously, measures of profitability and land condition were collected for the different grazing strategies. Overall, reptile abundance was not negatively impacted by the more sustainably managed treatments (moderate, variable, and rotational) compared with heavy stocking, although the effect of grazing treatment alone was not significant. Profitability and land condition were also higher in these treatments compared with the heavy stocking rate treatment. As drought conditions worsened over the 3 yr, the negative impact of the heavy stocking treatment on both profitability and biodiversity became more pronounced. Heavy stocking negatively impacted reptiles and was also the least profitable grazing strategy over the long term, resulting in the worst land condition. This suggests that in this tropical savanna rangeland there was no trade-off between economic performance and reptile abundance and diversity. Grazing regimes with a moderate stocking rate or flexible management strategies were better able to buffer the effects of climate variability. The consequence was a more resilient reptile community and better economic outcomes in dry years.  相似文献   

8.
Large-scale loss and degradation of North American native prairie coupled with sharp declines in grassland bird populations call for a clear understanding of the effects of livestock production on bird habitat selection. Grassland birds typically select breeding habitat based on a suite of structural and community vegetation features shaped by grazing. Rangeland health indices are a tool for assessing grassland structure and community composition that may offer biologists and range managers common language to achieve grassland bird recovery goals. We used point-count surveys, vegetation measures, and indices of rangeland health to examine bird-habitat relationships on native grassland in southwestern Saskatchewan for 10 grassland bird species. We used an information theoretic approach to compare the support of three hypotheses explaining variation in bird abundance as a function of local vegetation characteristics: bird abundance is best explained by 1) vegetation structure, 2) vegetation structure heterogeneity, or 3) plant community. Vegetation structure variables were present in top-ranking models (i.e., models within four Akaike information criterion units of top model) for eight species and solely comprised top-ranking models for Baird’s sparrow (Ammodramus bairdii), chestnut-collared longspur (Calcarius ornatus), horned lark (Eremophila alpestris), McCown’s longspur (Rhynchophanes mccownii), and savannah sparrow (Passerculus sandwichensis). Structural heterogeneity variables were present in top-ranked models for grasshopper sparrow (Ammodramus savannarum), horned lark (Eremophila alpestris), and western meadowlark (Sturnella neglecta). Plant composition variables solely comprised top-ranking models for clay-colored sparrow (Spizella pallida) and were present in top-ranked models for grasshopper sparrow and vesper sparrow (Pooecetes gramineus). Our results indicate that vegetation structure variables, namely litter mass, vegetation volume, and bare ground cover, best explain variation in bird abundance. Although the rangeland health index received little support as a predictor of bird abundance, vegetation structure components of the index could be used to communicate grazing management guidelines that maintain grassland bird habitat.  相似文献   

9.
Management of rangelands has largely operated under the paradigm of minimizing spatially discrete disturbances, often under the objective of reducing inherent heterogeneity within managed ecosystems. This has led to a simplified understanding of rangelands and in many cases simplified rangelands. We argue that this type of management focus is incapable of maintaining biodiversity. An evolutionary model of disturbance (pyric-herbivory) suggests that grazing and fire interact through a series of feedbacks to cause a shifting mosaic of vegetation patterns across the landscape and has potential to serve as a model for management of grasslands with an evolutionary history of grazing. Our study demonstrates that the spatially controlled interaction of fire and grazing can be used to create heterogeneity in grassland ecosystems and the resulting heterogeneity in vegetation is expressed through other trophic levels, specifically small mammals in this study. Discrete fires were applied to patches, and patchy grazing by herbivores promoted a shifting vegetation mosaic across the landscape that created unique habitat structures for various small mammal species. Peromyscus maniculatus was about 10 times more abundant on recently burned patches (1–2 mo) than the uniform treatment or unburned patches within the shifting mosaic treatment. Chaetodipus hispidus was about 10 times greater in patches that were 15–20 mo post-fire in the shifting mosaic treatment than in the uniform treatment. Sigmodon hispidus, Microtus ochrogaster, and Reithrodontomys fluvescens became dominant in the shifting mosaic in patches that were more than 2 yr post-fire. This study, along with others, suggests that by managing transient focal patches, heterogeneity has the potential to be a new central paradigm for conservation of rangeland ecosystems and can enhance biological diversity and maintain livestock production across broad scales.  相似文献   

10.
A comprehensive understanding of multipaddock, rotational grazing management on rangelands has been slow to develop, and the contribution of adaptive management (Briske et al. 2011) and sufficient scale (Teague and Barnes 2017) have been identified as key omissions. We designed an experiment to compare responses of vegetation and cattle in an adaptively managed, multipaddock, rotational system with that of a season-long, continuous system at scales comparable with those of a working ranch. We hypothesized that 1) year-long rest periods in the adaptively managed, rotational pastures would increase the density and productivity of perennial C3 graminoids compared with continuously grazed pastures and 2) adaptive management, supported with detailed monitoring data, would result in similar cattle performance in the rotational as in the continuously grazed pastures. However, we found little supporting evidence for grazing management effects on C3 graminoid abundance or production under either above-average or below-average precipitation conditions during the 5-yr experiment. Furthermore, adaptive rotational grazing resulted in a 12–16% reduction in total cattle weight gain relative to continuous grazing each year. Our work shows that the implementation of adaptive management by a stakeholder group provided with detailed vegetation and animal monitoring data was unable to fully mitigate the adverse consequences of high stock density on animal weight gain. Under adaptive rotational grazing, C3 perennial grass productivity and stocking rate both increased following above-average precipitation. But when adaptive rotational management was directly compared with continuous grazing with the same increase in stocking rate, continuous grazing achieved similar vegetation outcomes with greater cattle weight gains. We suggest that managers in semiarid rangelands strive to maintain cattle at stock densities low enough to allow for maximal cattle growth rates, while still providing spatiotemporal variability in grazing distribution to enhance rangeland heterogeneity and long-term sustainability of forage production.  相似文献   

11.
12.
Wet grasslands support large populations of waders. As these birds are very sensitive to sward height and heterogeneity, grazing management is a key issue to their conservation. On a French coastal marsh consisting of 816 fields of wet grasslands, birds were monitored in spring and grazing regimes were assessed at three periods: year, spring, autumn. Each species was associated with a particular annual grazing index lower than the mean for all grazed fields. During spring, grazing intensity was significantly lower for fields occupied by birds than for those of the entire landscape. Different species of waders showed different preferences to grazing intensity with redshanks and curlews representing two extremes of a gradient going from low to high intensity. In early spring, the more precocious species selected fields with a significantly higher mean and variance in autumn stocking rate than for all grazed fields in previous autumn. These results highlight the need to maintain a variety of grazing regimes if conservation of the waders is to be achieved at the community level. On the basis of our analysis, useful indicators related to thresholds on livestock density and turn-out date can be derived to assess positive side effects of livestock farming systems.  相似文献   

13.
Grazing management has focused largely on promoting vegetation homogeneity through uniform distribution of grazing to minimize area in a pasture that is either heavily disturbed or undisturbed. An alternative management model that couples grazing and fire (i.e., patch burning) to promote heterogeneity argues that grazing and fire interact through a series of positive and negative feedbacks to cause a shifting mosaic of vegetation composition and structure across the landscape. We compared patch burning with traditional homogeneity-based management in tallgrass prairie to determine the influence of the two treatments on the aboveground invertebrate community. Patch burning resulted in a temporal flush of invertebrate biomass in patches transitional between unburned and patches burned in the current year. Total invertebrate mass was about 50% greater in these transitional patches within patch-burned pastures as compared to pastures under traditional, homogeneity-based management. Moreover, the mosaic of patches in patch-burned pastures contained a wider range of invertebrate biomass and greater abundance of some invertebrate orders than did the traditionally managed pastures. Patch burning provides habitat that meets requirements for a broad range of invertebrate species, suggesting the potential for patch burning to benefit other native animal assemblages in the food chain.  相似文献   

14.
Traditional upland livestock grazing is declining worldwide, leading to concerns about possible impacts on biodiversity. Although monitoring of protected areas often focuses on rare species, management changes also affect currently common species and vegetation structure. “Biodiversity” is a concept rather than a simple variable, and monitoring it requires indicators that are widely applicable and appropriate to context. This paper presents a novel knowledge-driven approach to developing a selection of biodiversity indicators that can then be rapidly and objectively measured within rangeland environments. Stakeholder and professional opinion on likely changes in biodiversity following reductions in sheep grazing was elicited using a workshop-based process. Potential variables suitable for use as biodiversity indicators were developed and professional opinion on their usefulness sought. A number of indicators were then tested in a natural experiment field study on the impact of reduced sheep grazing in Scotland. In the field study, red deer abundance appeared to increase where sheep grazing was reduced. It was therefore necessary to use estimates of both sheep and deer abundance as explanatory variables. In agreement with the professionals’ predictions, dwarf shrub abundance and vegetation height were greater where sheep grazing had been reduced, after taking into account differences in deer. In contrast to the professionals’ predictions, the field results showed rough grasses and dead material were less abundant where sheep had been reduced, with deer also having an impact on dead material. The professionals were unsure of the effects of reduced sheep grazing on vegetation mosaic structure; the field results suggested that reduced sheep grazing leads to a reduction in structural heterogeneity, but that deer had the greater impact in this case. Several other predictions showed nonsignificant differences in relation to reduced sheep grazing. The participatory method and some of the field methods presented are cost effective and widely applicable.  相似文献   

15.
The large-scale influence of livestock grazing in the western United States generates a need to integrate landscape management to incorporate both wildlife and livestock. The purpose of this project was to evaluate the effects of four different grazing cells (spring grazing, summer growing-season grazing, fall grazing, and resting) on wintering elk resource selection within the Wall Creek range in southwest Montana. We collected biweekly observations of elk (Cervus elaphus) numbers and distributions across the winter range from 1988 to 2007. Using a matched-case control logistic regression model to estimate selection coefficients, we evaluated the effects of annual green-up conditions, winter conditions, landscape features, and grazing treatment on elk group resource selection within the grazing system. We found that within the grazing system, elk groups preferentially selected for rested pastures over pastures that were grazed during the previous spring (1 May–1 June), summer (1 June–15 July), and fall (15 September–30 September). The strength of selection against the pasture grazed during the summer growing season was strongest, and pastures grazed during the spring and fall were selected for over the pasture grazed during the summer. The number of elk utilizing the grazing system increased in the 19 yr following implementation of the grazing system; however, total elk herd size also increased during this time. We found no evidence that the proportion of the elk herd utilizing the grazing system changed following implementation of the rest–rotation grazing system. Wintering elk group preference for rested pastures suggests rested pastures play an important role in rotation grazing systems by conserving forage for wintering elk. Additionally, rested pastures provide important cover for a host of other wildlife species. We recommend wildlife managers maintain rested pastures within rotation grazing systems existing on ungulate winter range.  相似文献   

16.
Grazing by large mammals alters vegetation physiognomy, consequently changing habitat suitability for small mammal communities. We investigated the response of terrestrial small mammals to grazing by wild and domesticated ungulates at the boundary of a protected area (Telperion Nature Reserve) and surrounding cattle ranches in Mpumalanga, South Africa over two seasons. Fifteen paired grids were set on either side of the boundary fence at which small mammals were trapped in Sherman live traps placed flat on the ground. A total of 11 760 trap nights resulted in the capture of 187 animals belonging to 14 species (11 rodents, two shrews and one elephant shrew). The small mammal communities in grasslands grazed by domesticated or wild ungulates were similar in abundance, species richness, diversity and demographic parameters, likely due to the fact that vegetation structure of the two grazing systems was also similar. We used generalised linear models to show that rock and grass cover were plausible predictors of small mammal abundance in this system. Rock cover showed a positive relationship with small mammal abundance whilst grass cover showed a negative relationship. Our observations suggest that at the scale of our study and with the current stocking densities, wild and domesticated ungulates have similar impacts on the small mammal community.  相似文献   

17.
Patch burning is the deliberate application of fire to a management unit in a heterogeneous manner, resulting in the heterogeneous distribution of grazing animal impact. The application of patch burning typically has been discussed within a framework of imposing heterogeneity on a homogeneous landscape or management unit, yet most landscapes and management units are actually distinguished by an inherent level of heterogeneity. Within landscapes and management units, differing topography and soils interact to create patterns of contrasting patches, also known as topoedaphic sites. Thus, introduction of a heterogeneous disturbance such as patch burning on a landscape or management unit is more accurately described as the imposition of one layer of heterogeneity onto a pre-existing layer of heterogeneity. We examined effects of patch burning on vegetation structure and animal distribution across contrasting topographical sites in sand sagebrush (Artemisia filifolia Torr.) shrubland of the southern Great Plains in North America. Landscapes at our study site were characterized by an inherent amount of heterogeneity in vegetation structure due to variability in topoedaphic sites, and the patch burning treatment superimposed additional heterogeneity that was constrained by topoedaphic characteristics. Shrub-dominated sites were more dependent on patch burning for heterogeneity of vegetation structure than sites dominated by short grasses. Distribution patterns of cattle (Bos taurus) were not significantly different across treatments, though they followed patterns similar to previous studies. We demonstrated that heterogeneity was dependent on topoedaphic patterns and the application of patch burning management for heterogeneity was dependent on the inherent variability of a landscape.  相似文献   

18.
French wet grasslands support important populations of lapwings and other waders. Grazing management is a key issue in the use of grasslands by these birds since they are very sensitive to sward structure (height and heterogeneity). To assess the impact of different grazing regimes on sward structure during spring, sward height was repeatedly measured in a coastal marsh for 2 years. Sward structure was characterised by variables related to height classes and an index of heterogeneity. Grazing regimes were described by stocking rates per period and N fertilisation level. Heterogeneity index was quadratically related to mean sward height both years. Four types of sward structures were characterised through principal component analysis. Co-inertia analysis showed a strong relationship between grazing regimes and sward structure. However, during spring, the relationship between stocking rate and sward structure differed according to year, impact of grazing being greater during drought year. Suitable sward structures were observed for both lapwings and redshanks. Wader habitat management through grazing calls for more attention to be paid to the delayed effects of autumn and winter grazing regimes. Sward heterogeneity emerges as a new characteristic to control, because it may introduce new constraints for livestock production.  相似文献   

19.
Achieving economically optimum livestock production on rangelands can conflict with conservation strategies that require lower stocking rate to maintain wildlife habitat. Combining the spatial and temporal interaction of fire and grazing (pyric–herbivory) is a conservation-based approach to management that increases rangeland biodiversity by creating heterogeneous vegetation structure and composition. However, livestock production under pyric–herbivory has not been reported. In both mixed-grass prairie and tallgrass prairie, we compared livestock production in pastures with traditional fire and grazing management (continuous grazing, with periodic fire on tallgrass prairie and without fire on mixed-grass prairie) and conservation-based management (pyric–herbivory applied through patch burning) at a moderate stocking rate. Stocker cattle weight gain, calf weight gain, and cow body condition score did not differ (P > 0.05) between traditional and conservation-based management at the tallgrass prairie site for the duration of the 8-yr study. At the mixed-grass prairie site, stocker cattle gain did not differ in the first 4 yr, but stocker cattle gained more (P ≤ 0.05) on conservation-based management and remained 27% greater for the duration of the 11-yr study. Moreover, variation among years in cattle performance was less on pastures under conservation management. Traditional management in mixed-grass prairie did not include fire, the process that likely was associated with increased stocker cattle performance under conservation management. We conclude that pyric–herbivory is a conservation-based rangeland management strategy that returns fire to the landscape without reduced stocking rate, deferment, or rest.  相似文献   

20.
Rotational grazing systems (RGS) are often implemented to alleviate undesirable selective grazing by livestock. At both fine and coarse scales, livestock selectively graze individual plants, patches, communities, and landscapes. Smaller pastures, increased stocking density, and rotation allow managers to constrain livestock movement and determine season and frequency of grazing, potentially limiting selectivity and preventing repeated grazing of preferred plants. However, in arid and semi-arid rangelands, forage growth is limited primarily by precipitation rather than defoliation frequency. When soil moisture is adequate, forage is abundant and defoliation levels are typically low, and repeated, intensive defoliation of preferred plants is less likely than in more mesic areas where more consistent precipitation and soil moisture storage allows animals to establish and maintain spatial hierarchies of grazing patterns. Many southwestern rangelands contain diverse vegetation, which provides quality forage during different times of the year. These spatial and temporal patterns of forage distribution may not be amenable to manipulation with RGS. Tracking data show that livestock often alternate among locations within pasture boundaries and can opportunistically exploit areas with higher quality forage when they are available. Higher stock densities combined with higher stocking rates can increase livestock use of less preferred areas, but overall distribution patterns of intensive-rotational and extensive grazing systems are often comparable at similar stocking rates and distances from water. Management that ensures that grazing of riparian areas does not occur during the critical late summer period may be more beneficial than RGS that periodically defers livestock use throughout the grazing season. In arid and semi-arid shrublands, timely adjustments to animal numbers and practices that improve grazing distribution at regional and landscape scales are more likely to be effective in maintaining or improving rangeland health than fencing and RGS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号