共查询到20条相似文献,搜索用时 15 毫秒
1.
《Strength and Conditioning Journal》2008,61(6):623-629
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic, annual grass invading sagebrush steppe rangelands in the western United States. Medusahead invasion has been demonstrated to reduce livestock forage, but otherwise information comparing vegetation characteristics of medusahead-invaded to noninvaded sagebrush steppe communities is limited. This lack of knowledge makes it difficult to determine the cost–benefit ratio of controlling and preventing medusahead invasion. To estimate the impact of medusahead invasion, vegetation characteristics were compared between invaded and noninvaded Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) steppe communities that had similar soils, topography, climate, and management. Noninvaded plant communities had greater cover and density of all native herbaceous functional groups compared to medusahead-invaded communities (P < 0.01). Large perennial grass cover was 15-fold greater in the noninvaded compared to invaded plant communities. Sagebrush cover and density were greater in the noninvaded compared to the medusahead-invaded communities (P < 0.01). Biomass production of all native herbaceous functional groups was higher in noninvaded compared to invaded plant communities (P < 0.02). Perennial and annual forb biomass production was 1.9- and 45-fold more, respectively, in the noninvaded than invaded communities. Species richness and diversity were greater in the noninvaded than invaded plant communities (P < 0.01). The results of this study suggest that medusahead invasion substantially alters vegetation characteristics of sagebrush steppe plant communities, and thereby diminishes wildlife habitat, forage production, and ecosystem functions. Because of the broad negative influence of medusahead invasion, greater efforts should be directed at preventing its continued expansion. 相似文献
2.
3.
《Strength and Conditioning Journal》2007,60(5):515-522
Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities of the Intermountain West have been greatly reduced from their historic range as a result of wildfire, agronomic practices, brush control treatments, and weed invasions. The impact of prescribed fall burning Wyoming big sagebrush has not been well quantified. Treatments were sagebrush removed with burning (burned) and sagebrush present (control). Treatments were applied to 0.4-ha plots at 6 sites. Biomass production, vegetation cover, perennial herbaceous vegetation diversity, soil water content, soil inorganic nitrogen (NO-3, NH+4), total soil nitrogen (N), total soil carbon (C), and soil organic matter (OM) were compared between treatments in the first 2 years postburn. In 2003 and 2004, total (shrub and herbaceous) aboveground annual biomass production was 2.3 and 1.2 times greater, respectively, in the control compared to the burned treatment. In the upper 15 cm of the soil profile, inorganic N concentrations were greater in the burned than control treatment, while soil water, at least in the spring, was greater in the control than burned treatment. Regardless, greater herbaceous aboveground annual production and cover in the burned treatment indicated that resources were more available to herbaceous vegetation in the burned than the control treatment. Exotic annual grasses did not increase with the burn treatment. Our results suggest in some instances that late seral Wyoming big sagebrush plant communities can be prescribed fall burned to increase livestock forage or alter wildlife habitat without exotic annual grass invasion in the first 2 years postburn. However, long-term evaluation at multiple sites across a larger area is needed to better quantify the effects of prescribed fall burning on these communities. Thus, caution is advised because of the value of Wyoming big sagebrush plant communities to wildlife and the threat of invasive plants. 相似文献
4.
《Strength and Conditioning Journal》2020,73(2):309-312
Remotely sensed data products depicting physical and ecological attributes of a landscape are becoming invaluable tools in wildlife and rangeland management. However, if such geospatial tools and data layers are to be used in management, their accuracy and appropriateness for such use needs to be vetted and validated. We assessed accuracy of two National Land Cover Database (NLCD) shrubland products for use in western South Dakota—percent sagebrush and sagebrush height—by comparing them to ground-truthed data. Western South Dakota sagebrush communities are an ecotone between sagebrush (Artemisia spp.) and grassland. This ecotone is typified by shorter- and lower-density sagebrush than interior sagebrush steppe ecosystem. This distinction could make it difficult to remotely detect and map sagebrush in this area. We determined NLCD correlations with ground estimates of sagebrush canopy cover (r = 0.17) and sagebrush height (r = 0.40). The NLCD percent sagebrush accurately predicted sagebrush presence ∼73‒76% of the time once resampled to 100-m pixels and 50-m mean values, respectively. Cohen’s kappa values were estimated to determine if the ground-truthed and remoted-sensed data were in agreement when determining sagebrush presence. Kappa values were 0.26 ± 0.06 and 0.28 ± 0.06 for mean values within 50-m and resampled 100-m pixels, respectively, indicating a “fair” level of agreement between the ground-truthed and remote-sensed data types when determining presence of sagebrush. The NLCD data sufficiently described the presence of sagebrush in South Dakota, which is useful for estimating geographic distributions of sagebrush obligate species, species distribution models in which presence or absence of sagebrush is of interest, or mapping the occurrence of sagebrush in South Dakota. Inaccuracies of the NLCD shrubland products in predicting sagebrush height and sagebrush canopy cover may limit their utility as continuous variables in species distribution models, habitat selection, and suitability models or when assessing rangeland quality in South Dakota. 相似文献
5.
Increased cover of perennial grasses and forbs would increase the wildlife and forage value of many Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities, as well as increase their resistance to weeds. We compared six mechanical treatments in conjunction with seeding a Wyoming big sagebrush community in northern Utah over a 10-yr period. The treatments included disk plow followed by land imprinter, one-way Ely chain, one- and two-way pipe harrow, all applied in fall, and meadow aerator applied in fall and spring. A mixture of native and introduced grasses and forbs was broadcast seeded at 18.3 kg PLS ha? 1 after the disk and before the imprinter and all other treatments. The experiment was installed in three randomized blocks, and density and cover data were collected before treatment in 2001 and 1, 2, 5, and 10 yr after treatment. All treatments initially reduced sagebrush and residual herbaceous cover and increased seeded species cover compared with the untreated control. By 10 yr after treatment, sagebrush cover was 24.5% ± 0.35% on the control, 1.6% ± 0.28% on the disk imprinter treatment, and 11.7% ± 0.79% on all other treatments. At that time, seeded grass cover was 16.5% ± 1.22% on the disk imprinter treatment and an average of 2% ± 0.1% on all other mechanical treatments. Sagebrush seedlings were recruited in all of the mechanical treatments, but least in the disk imprinter treatment. After 10 yr, the untreated control was dominated by decadent sagebrush and rabbitbrush, the disk imprinter treatment was dominated by seeded perennial grasses, and the other mechanical treatments shared dominance of sagebrush and native perennial grasses. Mechanical treatments changed the composition of this community while retaining sagebrush, but greatest understory increases were associated with greatest control of sagebrush and establishment of seeded species by disk imprinting. 相似文献
6.
Emily P. Metier Lisa J. Rew Matthew J. Rinella 《Strength and Conditioning Journal》2018,71(6):705-713
Seeding native plants into degraded grasslands presents major challenges. Often, seeded species fail to establish and areas become/remain dominated by unwanted plants. We combined herbicides and seeding in former coal mining fields dominated by exotic winter annual grasses (downy brome [Bromus tectorum L.] and Japanese brome [Bromus arvensis L.], hereafter “annual bromes”). The main interest was restoring Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis [Beetle & A. Young] S.L. Welsh, hereafter “big sage”), a very difficult species to restore to North American grasslands. We tested the nonselective herbicide glyphosate and the grass-specific herbicide quizalofop. The summer following herbicide applications and seeding, annual brome cover in controls 22% (CI95% 13%, 36%) was significantly greater (P < 0.03) than in glyphosate 11% (CI95% 5%, 25%) and quizalofop 16% (CI95% 7%, 35%) treatments. At Decker mine, glyphosate increased seeded big sage density (P < 0.04) from 0.76 (CI95% 0.27, 2.11) to 3.05 (CI95% 1.42, 6.56) plants ? m-2 the second summer after seeding. Corresponding increases for Spring Creek mine were from 0.11 (CI95% 0.03, 0.43) to 0.43 (CI95% 0.13, 1.40) plants ? m-2 (P < 0.04). These results were consistent across two experiments initiated in different years. In addition to big sage, our study’s seed mixes contained native grasses and forbs, and herbicide treatments tended to promote establishment of these plant groups. In annual brome-dominated areas of the northern Great Plains, conditions amenable to big sage seedling establishment do not appear entirely uncommon, and herbicides can increase establishment. 相似文献
7.
John P. Severson Christian A. Hagen Jeremy D. Maestas David E. Naugle J. Todd Forbes Kerry P. Reese 《Strength and Conditioning Journal》2017,70(1):50-58
Conifer woodlands expanding into sage-steppe (Artemisia spp.) are a threat to sagebrush obligate species including the imperiled greater sage-grouse (Centrocercus urophasianus). Conifer removal is accelerating rapidly despite a lack of empirical evidence to assess outcomes to grouse. Using a before-after-control-impact design, we evaluated short-term effects of conifer removal on nesting habitat use by monitoring 262 sage-grouse nests in the northern Great Basin during 2010–2014. Tree removal made available for nesting an additional 28% of the treatment landscape by expanding habitat an estimated 9603 ha (3201 ha [± 480 SE] annually). Relative probability of nesting in newly restored sites increased by 22% annually, and females were 43% more likely to nest within 1000 m of treatments. From 2011 (pretreatment) to 2014 (3 yr after treatments began), 29% of the marked population (9.5% [± 1.2 SE] annually) had shifted its nesting activities into mountain big sagebrush habitats that were cleared of encroaching conifer. Grouping treatments likely contributed to beneficial outcomes for grouse as individual removal projects averaged just 87 ha in size but cumulatively covered a fifth of the study area. Collaboratively identifying future priority watersheds and implementing treatments across public and private ownerships is vital to effectively restore the sage-steppe ecosystem for nesting sage-grouse. 相似文献
8.
Soil freeze-thaw cycles can result in soil surface crusting, pedestaling, and movement. This study was undertaken to quantify the amount of heaving and soil moisture migration in a silt loam soil from the sagebrush steppe. Soil columns containing silt loam soil with moisture treatments of 26%, 34%, 42%, or 50% water content and initial temperatures of 9o C or 20o C were exposed to ? 7o C for 18 h, which did not completely freeze the soil to full depth. Moisture redistribution amounts of 10% to 20% were observed in treatments above field capacity. Surface saturation was observed after freezing with treatments of 42% and 50% water volume. Soil heaving of up to 0.5 cm was observed after one freezing event. 相似文献
9.
Thomas A. Monaco Allison Jones Mary Pendergast Eric T. Thacker Linden Greenhalgh 《Strength and Conditioning Journal》2018,71(6):695-704
Big sagebrush (Artemisia tridentata Nutt.) plant communities often require management to reduce shrub density and rehabilitate understory vegetation. We studied vegetation responses to a two-way chain harrow treatment and broadcast seeding of 12 herbaceous species at eight Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle & Young) sites. These sites differed in land-use history; five were cultivated for dryland wheat production during the 1950 ? 1980s and then seeded with introduced forage grasses (C-S), while three had not been exposed to this land-use legacy (non C-S). Our objective was to evaluate whether the C-S legacy influences the magnitude of vegetation change following contemporary treatment. Before treatment, C-S sites had lower sagebrush cover, higher dead sagebrush cover, and higher broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) cover than adjacent non C-S sites. Plant community change 3 years after treatment, determined with multivariate ordination analysis of species composition, varied between site histories, and response to treatment was most strongly correlated with reductions in sagebrush cover, increases in perennial grasses, and increases in 10 other herbaceous species—including some undesirable species and four that were seeded in 2010. Five years after treatment, mature sagebrush cover remained reduced for both land-use histories, yet density of sagebrush seedlings and broom snakeweed increased in C-S sites during the second and third years after treatment. In addition, perennial forb cover increased for C-S sites, while perennial grass biomass increased for non C-S sites. Our results emphasize that broad variability in plant community responses to sagebrush reduction and seeding is possible within the same ecological site classification and that legacy effects due to the combination of past cultivation and seeding should be considered when planning restoration projects, including the consideration that seeding may not always be necessary on C-S sites. 相似文献
10.
Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and, therefore, may be more useful indicators of plant community potential and provide more precise information for management. Big sagebrush (Artemisia tridentata Nutt.) occurs across large expanses of the western United States. Common subspecies of big sagebrush have considerable variation in the types of sites they occupy, but information that quantifies differences in their vegetation characteristics is lacking. Consequently, wildlife and land management guidelines frequently do not differentiate between subspecies of big sagebrush. To quantify vegetation characteristics between two common subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Half of the sampled plant communities were Wyoming big sagebrush (A. tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) plant communities, and the other half were mountain big sagebrush (A. tridentata subsp. vaseyana [Rydb.] Beetle) plant communities. In general, mountain big sagebrush plant communities were more diverse and had greater vegetation cover, density, and biomass production than Wyoming big sagebrush plant communities. Sagebrush cover was, on average, 2.4-fold higher in mountain big sagebrush plant communities. Perennial forb density and cover were 3.8- and 5.6-fold greater in mountain compared to Wyoming big sagebrush plant communities. Total herbaceous biomass production was approximately twofold greater in mountain than Wyoming big sagebrush plant communities. The results of this study suggest that management guidelines for grazing, wildlife habitat, and other uses should recognize widespread subspecies as indicators of differences in site potentials. 相似文献
11.
12.
Treatments in big sagebrush (Artemisia tridentata Nutt.) are often implemented to improve habitat conditions for species such as greater sage-grouse (Centrocercus urophasianus). These treatments aim to increase the availability of forbs and invertebrates critical to juvenile and adult sage-grouse during the breeding season. However, information regarding the response of forbs in treated sagebrush are often conflicting, dependent on the type of sagebrush community treated and time after treatment. In addition, there is little information on the response of invertebrates to treatments, particularly herbicide treatments in Wyoming big sagebrush (A.t. ssp. wyomingensis Beetle & Young) communities. We evaluated the response of forbs and invertebrates in Wyoming big sagebrush that had been mowed or aerially treated with tebuthiuron compared with untreated reference areas. We also compared forb and invertebrate dry matter (DM) between treated plots and locations used by brood-rearing females. Forb and invertebrate DM in mowed and tebuthiuron treatments did not differ from untreated plots up to 4 yr after treatment and were equal to or less than locations used by brood-rearing grouse up to 2 yr after treatment. Our findings corroborate best available science that suggest treating Wyoming big sagebrush may not increase food availability for sage-grouse. 相似文献
13.
Bryan T. Hamilton Beverly L. Roeder Margaret A. Horner 《Strength and Conditioning Journal》2019,72(1):13-22
Conifer encroachment in sagebrush ecosystems reduces habitat heterogeneity, niche space, and resource availability, all of which negatively affect many wildlife populations. Sagebrush restoration is recommended as a management action to mitigate conifer encroachment and restore wildlife across millions of hectares in the Great Basin. Despite this recommendation, the effects of conifer encroachment and sagebrush restoration are unknown for most wildlife species. Small nonvolant mammal communities include keystone species, consumers and prey; facilitate energy flow and ecological function; and provide important ecological goods and services. We assessed causal relationships between conifer encroachment and sagebrush restoration (conifer removal and seeding native plants) on small mammal communities over 11 yr using a Before-After-Control–Impact design. Sagebrush habitat supported an additional small mammal species, twice the biomass, and nearly three times higher densities than conifer-encroached habitat. Sagebrush restoration increased shrub cover, decreased tree cover, and density but failed to increase native herbaceous plant density. Restoration caused a large increase in the non-native, invasive annual cheatgrass (Bromus tectorum L.). Counter to prediction, small mammal diversity did not increase in response to sagebrush restoration, but restoration maintained small mammal density in the face of ongoing conifer encroachment. Piñon mice (Peromyscus truei), woodland specialists with highest densities in conifer-encroached habitat, were negatively affected by sagebrush restoration. Increasing cheatgrass due to sagebrush restoration may not negatively impact small mammal diversity, provided cheatgrass density and cover do not progress to a monoculture and native vegetation is maintained. The consequences of conifer encroachment, a long-term, slow-acting impact, far outweigh the impacts of sagebrush restoration, a short-term, high-intensity impact, on small mammal diversity. Given the ecological importance of small mammals, maintenance of small mammal density is a desirable outcome for sagebrush restoration. 相似文献
14.
Kurt T. Smith Jennifer S. Forbey Jeffrey L. Beck 《Strength and Conditioning Journal》2018,71(4):417-423
Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) is the most abundant and widely distributed subspecies of big sagebrush and has been treated through chemical application, mechanical treatments, and prescribed burning in efforts thought to improve habitat conditions for species such as greater sage-grouse (Centrocercus urophasianus) and mule deer (Odocoileus hemionus). Although the response of structural attributes of sagebrush communities to treatments is well understood, there is a need to identify how treatments influence the quality of sagebrush as winter food for wildlife. Our purpose was to identify how mowing and tebuthiuron treatments influenced dietary quality of Wyoming big sagebrush in central Wyoming. Two study areas were mowed in January and February 2014, and tebuthiuron was applied in two study areas in May 2014. We constructed 6 exclosures in each of these four study areas (24 total), which encompassed 30 × 30 m areas of treated and untreated sagebrush within each exclosure. Samples of current annual growth were collected from 18 sagebrush plants from treated and 12 plants from control portions of mowing exclosures during November 2013–2015 and tebuthiuron exclosures during November 2014–2015. Samples were analyzed for crude protein and plant secondary metabolites known to influence dietary selection of sagebrush by sage-grouse and other sagebrush-occurring herbivores. Our results suggest mowing and tebuthiuron treatments may slightly increase crude protein concentrations directly after treatments without immediate changes in plant secondary metabolites. Slight increases in dietary quality of sagebrush following treatments coupled with potential trade-offs with loss of biomass associated with treatments corroborates previous research that treating Wyoming big sagebrush may have little benefit for sage-grouse and other sagebrush-dependent wildlife. Future work should evaluate not only how treatments influence sage-grouse habitat use and reproductive success but also how treatments influence other wildlife species in fragile sagebrush ecosystems. 相似文献
15.
Jonathan D. Bates Kirk W. Davies Justin Bournoville Chad Boyd Rory O’Connor Tony J. Svejcar 《Strength and Conditioning Journal》2019,72(1):28-35
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife. 相似文献
16.
Christo Morris Lesley R. Morris Thomas A. Monaco 《Strength and Conditioning Journal》2019,72(2):237-248
Past seedings of crested wheatgrass (Agropyron cristatum [L.] Gaertn. and A. desertorum [Fisch. ex Link] Schult.) have the potential to persist as stable, near-monospecific stands, thereby necessitating active intervention to initiate greater species diversity and structural complexity of vegetation. However, the success of suppression treatments and native species seedings is limited by rapid recovery of crested wheatgrass and the influx of exotic annual weeds associated with herbicidal control and mechanical soil disturbances. We designed a long-term study to evaluate the efficacy of low-disturbance herbicide and seed-reduction treatments applied together or alone and either once or twice before seeding native species. Consecutive herbicide applications reduced crested wheatgrass density for up to 6 ? 7 yr depending on study site, but seed removal did not reduce crested wheatgrass abundance; however, in some cases combining herbicide application with seed removal significantly increased densities of seeded species relative to herbicide alone, especially for the site with a more northern aspect. Although our low-disturbance treatments avoided the pitfalls of secondary exotic weed influx, we conclude that crested wheatgrass suppression must reduce established density to values much lower than 4 ? 7 plants/m2, a range that has not been obtained by ours or any previous study, in order to diminish its competitive influence on seed native species. In addition, our results indicated that site differences in environmental stress and land-use legacies exacerbate the well-recognized limitations of native species establishment and persistence in the Great Basin region. 相似文献
17.
Grazing by cattle is ubiquitous across the sagebrush steppe; however, little is known about its effects on sagebrush and native bunchgrass structure. Understanding the effects of long-term grazing on sagebrush and bunchgrass structure is important because sagebrush is a keystone species and bunchgrasses are the dominant herbaceous functional group in these communities. To investigate the effects of long-term grazing on sagebrush and bunchgrass structure, we compared nine grazing exclosures with nine adjacent rangelands that were grazed by cattle in southeast Oregon. Grazing was moderate utilization (30 ? 45%) with altering season of use and infrequent rest. Long-term grazing by cattle altered some structural aspects of bunchgrasses and sagebrush. Ungrazed bunchgrasses had larger dead centers in their crowns, as well as greater dead fuel depths below and above the crown level compared with grazed bunchgrasses. This accumulation of dry fuel near the meristematic tissue may increase the probability of fire-induced mortality during a wildfire. Bunchgrasses in the ungrazed treatment had more reproductive stems than those in the long-term grazed treatment. This suggests that seed production of bunchgrasses may be greater in ungrazed areas. Sagebrush height and longest canopy diameter were 15% and 20% greater in the ungrazed compared with the grazed treatment, respectively. However, the bottom of the sagebrush canopy was closer to the ground in the grazed compared with the ungrazed treatment, which may provide better hiding cover for ground-nesting avian species. Sagebrush basal stem diameter, number of stems, amount of dead material in the canopy, canopy gap size, and number of canopy gaps did not differ between ungrazed and grazed treatments. Moderate grazing does not appear to alter the competitive relationship between a generally unpalatable shrub and palatable bunchgrasses. Long-term, moderate grazing appears to have minimal effects to the structure of bunchgrasses and sagebrush, other than reducing the risk of bunchgrass mortality during a fire event. 相似文献
18.
C. Jason Williams Frederick B. Pierson Patrick R. Kormos Osama Z. Al-Hamdan Sayjro K. Nouwakpo Mark A. Weltz 《Strength and Conditioning Journal》2019,72(1):47-68
Land managers across the western United States are faced with selecting and applying tree-removal treatments on pinyon (Pinus spp.) and juniper (Juniperus spp.) woodland-encroached sagebrush (Artemisia spp.) rangelands, but current understanding of long-term vegetation and hydrological responses of sagebrush sites to tree removal is inadequate for guiding management. This study applied a suite of vegetation and soil measures (0.5 ? 990 m2), small-plot rainfall simulations (0.5 m2), and overland flow experiments (9 m2) to quantify the effects of mechanical tree removal (tree cutting and mastication) on vegetation, runoff, and erosion at two mid- to late-succession woodland-encroached sagebrush sites in the Great Basin, United States, 9 yr after treatment. Low amounts of hillslope-scale shrub (3 ? 15%) and grass (7 ? 12%) canopy cover and extensive intercanopy (area between tree canopies) bare ground (69 ? 88% bare, 75% of area) in untreated areas at both sites facilitated high levels of runoff and sediment from high-intensity (102 mm ? h? 1, 45 min) rainfall simulations in interspaces (~ 45 mm runoff, 59 ? 381 g ? m? 2 sediment) between trees and shrubs and from concentrated overland flow experiments (15, 30, and 45 L ? min? 1, 8 min each) in the intercanopy (371 ? 501 L runoff, 2 342 ? 3 015 g sediment). Tree cutting increased hillslope-scale density of sagebrush by 5% and perennial grass cover by twofold at one site while tree cutting and mastication increased hillslope-scale sagebrush density by 36% and 16%, respectively, and perennial grass cover by threefold at a second more-degraded (initially more sparsely vegetated) site over nine growing seasons. Cover of cheatgrass (Bromus tectorum L.) was < 1% at the sites pretreatment and 1 ? 7% 9 yr after treatment. Bare ground remained high across both sites 9 yr after tree removal and was reduced by treatments solely at the more degraded site. Increases in hillslope-scale vegetation following tree removal had limited impact on runoff and erosion for rainfall simulations and concentrated flow experiments at both sites due to persistent high bare ground. The one exception was reduced runoff and erosion within the cut treatments for intercanopy plots with cut-downed-trees. The cut-downed-trees provided ample litter cover and tree debris at the ground surface to reduce the amount and erosive energy of concentrated overland flow. Trends in hillslope-scale vegetation responses to tree removal in this study demonstrate the effectiveness of mechanical treatments to reestablish sagebrush steppe vegetation without increasing cheatgrass for mid- to late-succession woodland-encroached sites along the warm-dry to cool-moist soil temperature ? moisture threshold in the Great Basin. Our results indicate improved hydrologic function through sagebrush steppe vegetation recruitment after mechanical tree removal on mid- to late-succession woodlands can require more than 9 yr. We anticipate intercanopy runoff and erosion rates will decrease over time at both sites as shrub and grass cover continue to increase, but follow-up tree removal will be needed to prevent pinyon and juniper recolonization. The low intercanopy runoff and erosion measured underneath isolated cut-downed-trees in this study clearly demonstrate that tree debris following mechanical treatments can effectively limit microsite-scale runoff and erosion over time where tree debris settles in good contact with the soil surface. 相似文献
19.
Stephen P. Boyte Bruce K. Wylie Donald J. Major 《Strength and Conditioning Journal》2019,72(2):347-359
We mapped yearly (2000–2016) estimates of annual grass percent cover for much of the sagebrush ecosystem of the western United States using remotely sensed, climate, and geophysical data in regression-tree models. Annual grasses senesce and cure by early summer and then become beds of fine fuel that easily ignite and spread fire through rangeland systems. Our annual maps estimate the extent of these fuels and can serve as a tool to assist land managers and scientists in understanding the ecosystem’s response to weather variations, disturbances, and management. Validating the time series of annual maps is important for determining the usefulness of the data. To validate these maps, we compare Bureau of Land Management Assessment Inventory and Monitoring (AIM) data to mapped estimates and use a leave-one-out spatial assessment technique that is effective for validating maps that cover broad geographical extents. We hypothesize that the time series of annual maps exhibits high spatiotemporal variability because precipitation is highly variable in arid and semiarid environments where sagebrush is native, and invasive annual grasses respond to precipitation. The remotely sensed data that help drive our regression-tree model effectively measures annual grasses’ response to precipitation. The mean absolute error (MAE) rate varied depending on the validation data and technique used for comparison. The AIM plot data and our maps had substantial spatial incongruence, but despite this, the MAE rate for the assessment equaled 12.62%. The leave-one-out accuracy assessment had an MAE of 8.43%. We quantified bias, and bias was more substantial at higher percent cover. These annual maps can help management identify actions that may alleviate the current cycle of invasive grasses because it enables the assessment of the variability of annual grass ? percent cover distribution through space and time, as part of dynamic systems rather than static systems. 相似文献
20.
Melissa L. Landeen Stanley G. Kitchen Loreen Allphin Steven L. Petersen 《Strength and Conditioning Journal》2019,72(3):515-522
Current methods for determining plant age of shrub species require destructive sampling and annual growth ring analysis on the primary stem. Although individual plant ages can frequently be determined in this manner, the method is time consuming and of limited value for plants that have lost stem wood from stem splitting and rot. Nondestructive methods for estimating big sagebrush (Artemisia tridentata Nutt.) plant age would be useful in assessing stand age structure and population dynamics at variable spatial scales. The purpose of this study was to test a suite of traits for potential use in estimating mountain big sagebrush (Artemisia tridentata ssp. vaseyana [Rydb.] Beetle) age. We evaluated traits including plant height, crown area, subcanopy litter depth, percent crown mortality, bark furrow depth, bark fiber length, circumference and diameter of plant basal stem, and circumference of secondary and tertiary branches. We measured and harvested basal cross-sections from 163 plants of varying sizes from five locations in central and south-central Utah. Plant age was determined from annual growth rings. Linear regression analyses revealed that stem diameter (r2 = 0.507 P < 0.0001) was the most highly correlated variable with plant age across all sites, followed by stem circumference (r2 = 0.474 P < 0.0001), secondary branch circumference (r2 = 0.360, P < 0.0001), tertiary branch circumference (r2 = 0.405, P < 0.0001), and bark fiber length (r2 = 0.373, P < 0.0001). Results support previous findings that stem girth has value for estimating mountain big sagebrush plant age and that this trait is a better indicator of age than any other tested traits. Although the relationship between stem diameter and plant age was significant, substantial stem size variability associated with plants of the same approximate age indicates that the method is most appropriate when precise age estimates are not required. This technique was developed specifically for mountain big sagebrush, but it is expected that it can be adapted for other sagebrush taxa. 相似文献