首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
竹质异色重组装饰材是以竹束为原料,通过深度匀染、异色竹束重组等关键技术制造而成,具有良好装饰效果的竹质建筑装饰材料。在竹质异色重组装饰材工业化生产技术开发基础上,分析产品制造过程的生产成本,总结降低产品制造成本方法,以期为竹质异色重组装饰材工业化生产过程中的成本控制提供参考。  相似文献   

2.
小径竹重组结构材性能影响因子的研究   总被引:11,自引:1,他引:10  
以南方资源丰富的小径竹为原料研究了小径竹重组结构材制造工艺,重点探讨了重组竹结构材的密度,浸胶后竹束的干燥温度,去青与不去青以及竹种(刚竹、淡竹、慈竹、雷竹)对重组竹结构材物理力学性能的影响,并分析了用自行设计的竹材压轧疏解机对小径竹疏解的原理。为高效利用小径竹提供制造工艺依据。  相似文献   

3.
以木束和竹束为原材料,研究了不同单位压力、木束与竹束混杂比对竹木重组材抗弯性能的影响,结果表明:相同压力条件下,不同木束、竹束比例对重组材抗弯性能有不同程度的影响.在木/竹混杂质量比为1:1时重组材的抗弯性能降低最显著;木/竹混杂质量比为1:0时,重组材的抗弯性能随单位压力的增大而减小;在木/竹混杂质量比为0:1时,重组材的抗弯性能随单位压力的增加而增大;在木/竹混杂比相同的条件下,单位压力对木竹重组材静曲强度的影响较弹性模量大.  相似文献   

4.
目前竹材高温热处理技术的工业化生产大多采用常压高温热处理,与传统的常压热改性处理技术相比,饱和蒸汽热处理技术在处理效率、环保及能耗方面更具优势。在传统竹重组材制造工艺的基础上,提出了压力式饱和蒸汽热处理竹束技术。以竹材为原料,通过开片、碾压疏解等工序制得竹束,采用饱和蒸汽压力罐对竹束进行高温饱和蒸汽热改性处理,再经浸胶、干燥、养生、热压后,制得竹重组材及其系列产品,构建了一种新型高性能竹重组材制备工艺体系。这对于提升竹重组材制造技术,促进竹资源的高效综合利用具有重要现实意义。  相似文献   

5.
根据混杂复合材料理论,探讨将几种不同单元形态的木材:木束、木刨花和木纤维与重组竹的基本单元--竹束,采用均匀混杂方法制备增强型重组竹结构材料的可行性,研究木束-竹束、木刨花-竹束以及木纤维-竹束的混杂比对增强重组竹结构材抗弯性能的影响.结果表明:与重组竹相比,当刨花-竹束以及纤维-竹束混杂比分别为10%、5%时,在垂直加载和水平加载方向上竹木复合重组结构材料的静曲强度和弹性模量综合增强效果最为明显,而随着木束-竹束混杂比增加,木束增强重组竹结构材料的弹性模量和静曲强度呈现先下降再上升的趋势,当混杂比为33%时负增强效应最大.  相似文献   

6.
以重组竹、竹束单板层积材(BLVL)、竹集成材为代表的竹质工程材料受到越来越多的关注和应用。文中采用超声波法、自由横向振动法和力学法分别对上述3种典型竹质工程材料的纵向动态弹性模量(MOE)进行评价比较,结果表明,横向自由振动法能较为快速、准确和无损地评价出竹质工程材料的MOE,MOE的变异系数与其自身铺装结构有关;重组竹、BLVL和竹集成材的一阶共振频率分别为455.73、380.41和487.62 Hz;超声波在竹集成材的纵向上传播速度最快,重组竹其次,BLVL最慢;三点弯曲力学测试发现3种竹质工程材料的断裂模式不同,全顺向的重组竹为竹纤维拉断和界面剪切破坏,纵横组坯的BLVL为横向竹束拉断以及竹/木复合界面分层,而更多体现实竹性能的竹集成材为底层竹材维管束拉断和拔出破坏,其断裂载荷为重组竹> BLVL >竹集成材,而断裂位移为竹集成材> BLVL >重组竹。  相似文献   

7.
以酚醛树脂为胶粘剂,以竹束和木单板为原料,制造出室外用重组竹和重组竹木复合材,探讨了热压温度和压力对板材的弹性模量、静曲强度以及吸水厚度膨胀率的影响规律。结果表明:随着热压温度的提高,重组竹和重组竹木复合材的静曲强度、弹性模量、尺寸稳定性显著增加;在本研究范围内,热压压力对板材力的学强度和吸水厚度膨胀率的影响不显著;重组竹的静曲强度和弹性模量均明显高于重组竹木复合材,但其尺寸稳定性无显著区别;重组竹和重组竹木复合材的优化热压温度与压力分别为170℃和4MPa。  相似文献   

8.
用粗、细2种竹束分别制备重组竹,测试不同竹束形状对重组竹吸水率、吸水厚度膨胀率、吸水宽度膨胀率以及重组竹水平剪切强度的影响。实验结果表明,在10 min浸胶时间下,细竹束的上胶量约为粗竹束上胶量的142.3%;在相同的时间下,粗竹束重组竹的吸水率、吸水厚度膨胀率以及吸水宽度膨胀率为细竹束重组竹的114.0%,131.1%和115.0%;粗竹束制备的重组竹的水平剪切强度小于细竹束重组竹。试验显示,竹束细化后,浸胶更加均匀,越容易压密实,改善了重组竹的胶合性能。  相似文献   

9.
采用竹束浸渍、重组竹材浸渍及直接涂刷三种处理,对比分析同等浓度不同药剂及处理方式对重组竹材的霉腐防治效力。结果表明:华科-108强力杀菌防霉剂和ZJFC-I型水剂防霉剂都具有良好的霉菌抑制效果。而氟酚合剂、硼酚合剂,对试验霉菌具有一定的抑制效果,防治效力中等;3种水性防霉剂采用竹束浸渍处理和竹重组材浸渍处理后,防霉效果差异显著。对竹重组材进行防霉处理的效果显著优于对其制造单元(竹束)进行防霉处理。使用扫描电子显微镜(SEM)和傅立叶红外光谱仪(FTIR)对霉变前后毛竹重组材的解剖结构和化学组成进行观察和分析,结果发现竹重组材未经防霉处理,纤维素、半纤维素、木质素均发生不同程度的降解,纤维素和半纤维素降解程度较大,振动趋势有明显改变,说明竹材易发生霉变。而经过ZJFC-I和华科-108防霉处理后的竹材,降解程度稍弱,说明经过这两种防霉剂处理对三大素的降解具有一定的抑制作用。  相似文献   

10.
重组竹作为家具制造的基材,在木材资源不断减少的今天具有节约资源,绿色环保的优势,并可以作为新中式家具的制作材料来替代传统硬木。但是重组竹在材色和纹理上缺乏传统硬木所具备的视觉美感,因此对重组竹新中式家具的装饰就显得尤为重要,本文从重组竹新中式家具的雕刻、涂饰、镶嵌三个比较主要的装饰工艺方法进行分析和研究,拟得出适合重组竹新中式家具材料特点和造型特点的装饰方法。  相似文献   

11.
重组竹是将竹材重新组织并加以强化成型的一种竹质新材料,是中国拥有自主知识产权、并已实现产业化利用的一种竹基复合材料,具有原材料利用率高、力学性能优异的特点,产品可应用于室内外地板、家具、建筑结构材、装修装潢材,以及风电桨叶等高强度材料领域。目前,中国在重组竹制造技术领域取得重要进展,但也面临着许多制约产品开发与应用的基础研究障碍,亟待解决。文章总结了重组竹材料技术研究取得的重要进展,分析了重组竹材料在产品开发利用中尚需解决的技术问题,以期为高性能重组竹材料的理论研究和实践提供参考。  相似文献   

12.
重组竹已广泛应用于室内高档装饰、园林景观、室外防腐地板等领域,但重组竹的弹性模量比较小,为钢材的1/7~1/5,应用于建筑领域时难以充分发挥其自身高强度的特性。针对重组竹刚度较小的问题,提出一种重组竹板和碳纤维增强聚合物(CFRP)厚板嵌合粘接的新型重组竹复合材料,采用三点弯曲试验和有限元仿真方法,对CFRP 重组竹复合试件的失效模式、荷载 位移关系、应变曲线、胶层界面剥离影响等进行了研究。结果表明:重组竹试件失效模式是跨中位置处拉伸区域竹纤维断裂,且出现若干水平分层破坏,CFRP 重组竹复合试件的失效模式是CFRP与重组竹层间胶层出现大面积剥离;CFRP 重组竹复合试件的变形过程分为线弹性阶段和界面破坏阶段;CFRP可以明显提高重组竹梁的弹性模量和静曲强度,复合试件弹性模量是重组竹试件的2.33~2.94倍,静曲强度是重组竹试件的1.49~1.58倍;胶层界面剥离是CFRP 重组竹复合试件失效的重要因素,胶层界面剥离对复合试件的应变分布和挠度都有较大影响,完全剥离后试件的挠度是未剥离时的3.09倍。  相似文献   

13.
我国重组竹产业发展现状与机遇   总被引:3,自引:2,他引:1  
重组竹是竹材应用领域创新开发的一种全新复合材料,具有原料利用率高、生产效率高和产品附加值高等特点,重组竹的出现拓宽了竹材的应用范围,有力促进了竹材加工产业的转型升级。目前,我国的重组竹产业发展仍然处于初始阶段,地区发展不均衡,在关键技术、标准体系、生产规范等方面亟需攻关与建立。文章概述了重组竹产业的发展现状、存在的问题,分析了重组竹产业发展面临的机遇,指出重组竹产业的发展为竹产业的可持续发展开辟了新方向。  相似文献   

14.
高性能竹基纤维复合材料制造技术   总被引:2,自引:0,他引:2  
针对我国竹材人造板工业发展过程中遇到的竹材青黄界面有效胶合和竹材单板化利用技术难题,中国林业科学研究院木材工业研究所开发了竹材单板化制造技术、纤维原位可控分离技术、酚醛树脂梯级导入技术和竹基纤维复合材料成型技术等多项技术,研制了多功能竹单板疏解机,建立了竹基复合材料制造技术平台,开发风电桨叶基材、全竹集装箱底板、室外园林景观用材、建筑梁柱、家具、火车车厢底板、水泥模板及建筑撑木等8种竹基纤维复合材料,使毛竹等大径竹材的一次利用率从20%~50%提高至90%以上,使丛生竹、小径毛竹、其他散生杂竹等未能工业化利用的竹材得到高效利用。  相似文献   

15.
中国近五年竹材加工利用研究进展及展望   总被引:1,自引:0,他引:1  
对我国近5年(2002—2006)竹材加工利用研究进展, 包括竹材人造板、竹炭、竹醋液、竹纤维等进行了系统归纳和总结; 对我国竹材研究方向给出几点建议, 并对我国竹产业发展趋势做了展望。  相似文献   

16.
温度对重组竹短期受压蠕变性能的影响   总被引:1,自引:0,他引:1  
通过对重组竹受压试件进行短期蠕变试验,研究温度对重组竹受压试件蠕变特性及蠕变规律的影响.针对不同应力水平下温度对重组竹短期受压蠕变的影响,研究了在同一应力水平7.5%下,重组竹在5种不同温度下的24 h顺纹受压蠕变性能;进一步比较了重组竹在应力水平为7.5%,15%,30%且温度分别为25,50,75℃情况下的24 h...  相似文献   

17.
Standard for Bamboo and its International Trend   总被引:1,自引:0,他引:1  
1 INTRODUCTIONNational forestry ecological engineering, as afundamental affair for environmental protectioncontains combating desertification, soil and waterconservation. Two measures might be taken to preventsoil and water losses. One measure is to enlarge theforest area and to stop cutting or to decrease cuttingforest so as to make forest coverage keep rising at astable speed, forest resources should be examined byremote sensing technology. The other is to control thecirculation of wood…  相似文献   

18.
以毛竹和重组竹为研究对象,用绵腐卧孔菌(PV)、密粘褶菌(GT)两种褐腐菌和彩绒革盖菌(CV)、变色栓菌(TV)两种白腐菌进行腐朽试验,比较分析了毛竹和重组竹腐朽前后表面视觉性质及其质量损失差异。结果发现:毛竹和重组竹颜色均发生了显著变化,主要表现为明度(L~*)降低,色度值(C)、红绿轴色品指数(a~*)和黄蓝轴色品指数(b~*)显著增大,其中绵腐卧孔菌对毛竹及重组竹的色差影响最大。重组竹(耐绵腐卧孔菌)能达到Ⅰ级强耐腐水平;毛竹(耐绵腐卧孔菌)和重组竹(耐密粘褶菌和彩绒革盖菌)达到了Ⅱ级耐腐水平;毛竹(耐密粘褶菌、彩绒革盖菌和变色栓菌)和重组竹(耐彩绒革盖菌)为Ⅲ级稍耐腐水平。整体来看,重组竹对白腐菌和褐腐菌的耐腐效果好于毛竹。绵腐卧孔菌虽然对毛竹和重组竹的降解能力最弱,但对其颜色变化的影响却最大。扫描电镜可观察到彩绒革盖菌通过毛竹导管壁上的纹孔进入薄壁细胞、伴胞等,同时通过分泌木质素酶导致其细胞壁降解。  相似文献   

19.
ABSTRACT

Bamboo scrimber is one of the most emerging structural materials for future building applications and it possesses properties comparable to other natural wood-based engineered materials such as glulam, laminated veneer lumber and cross-laminated timber. The goal of this work was to study the decay resistance of bamboo scrimber against white-rot (Trametes versicolor) and brown-rot fungi (Serpula lacrymans). Bamboo scrimber samples were incubated in petri dishes with the wood-decaying fungi and the weight loss after 12 weeks was measured. The surface morphology of fungal-degraded bamboo scrimber was evaluated using optical microscopy. Based on the percentage weight loss, bamboo scrimber could be classified as highly resistant against bio-deterioration by white and brown-rot fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号