首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The sensory properties of wine are influenced by the chemical composition of the grapes used to produce them. Identification of grape and wine chemical markers associated with the attributes perceived by the consumer of the wine will enable better prediction of the potential of a parcel of grapes to produce wine of a certain flavor. This study explores the relationships between Cabernet Sauvignon grape volatile composition and wine volatile profiles with the sensory properties of wines. Twenty grape samples were obtained from nine vineyard sites across three vintages and wines vinified from these parcels using controlled winemaking methods. The volatile composition of the grapes were analyzed by SBSE-GCMS, the wines were analyzed by SPME-GCMS, and these data sets were compared to that obtained from the sensory analysis of the wines. Statistical treatment of the data to account for vintage and region effects allowed underlying relationships to be seen between wine sensory attributes and wine or grape volatile components. The observed associations between grape or wine volatile compounds and wine sensory attributes has revealed target compounds and pathways whose levels may reflect the biochemical effects on grape composition by differing growth conditions during berry development and ripening. The compounds identified in this study may be useful grape or wine markers for potential wine sensory characteristics.  相似文献   

2.
Red wines made from Vitis vinifera L. cv. Tannat grapes are known to possess high contents of tannins and intense color, features that are responsible for the originality of these wines. This work aimed to study the evolution of the pigment composition and CIELAB color parameters as Tannat wines become older, as well as to establish the contribution to wine color of the main pigment families. Tannat wines produced in Uruguay from grapes of the same vineyard in six consecutive vintages (1998-2003) and Tannat grapes of the 2003 harvest were analyzed by means of HPLC-DAD-MS and UV-vis spectrometric techniques. The correlations between the different pigment families and the CIELAB parameters revealed the importance of the variations of the percentage, found in anthocyanins and flavanol-anthocyanin acetaldehyde-mediated condensation products (decrease) and pyranoanthocyanins and direct condensation products (increase), in the modification of the color from purple-red hues to more orange-red ones. The color suffered qualitative rather than quantitative changes, that is, the hue (h*ab) increased, whereas the chroma (C*ab) and lightness (L) did not show a defined trend with time.  相似文献   

3.
The influence of site on grape and wine composition was investigated for Vitis vinifera L. cv. Agiorgitiko in the Nemea appellation area in southern Greece. Three nonirrigated plots were studied during the 1997 and 1998 vintages, which were typically very hot and without summer rainfall. Vines were subjected to different water regimens as a result of the variation of soil water-holding capacity and evaporative demand. Vine water status was determined by means of predawn leaf water potential. Differences in vine water status between sites were highly correlated with the earliness of shoot growth cessation and veraison. Grape composition was monitored during fruit ripening. Water deficit accelerated sugar accumulation and malic acid breakdown in the juice. Early water deficit during the growth period was demonstrated to have beneficial effects on the concentration of anthocyanins and total phenolics in berry skins. A similar pattern was observed for the phenolic content of wines elaborated after vinification of grapes harvested on each plot, in both seasons. Limited water availability seemed to increase glycoconjugates of the main aromatic components of grapes as a quantitative increase in levels of bound volatile compounds of the experimental wines was observed under water deficit in both years. Wines produced from grapes of stressed vineyards were also preferred in tasting trials.  相似文献   

4.
Knowledge about the relation between grape and wine phenolics is of key interest for the wine industry with respect to being able to predict wine quality from analyses of grapes. Prediction of the phenolic composition and color of experimentally produced red wines from the detailed phenolic composition of the corresponding grapes was investigated using a multivariate approach. Grape extracts and wines were produced from 55 different grape samples, covering 8 different Vitis vinifera cultivars: Alicante, Merlot, Syrah, Cinsault, Grenache, Carignan, Cabernet Sauvignon, and Mourvedre. The phenolic composition of the grapes and wines showed that the average ratios between wine and grape phenolics ranged from 0.25 to 7.9 for the different phenolic compounds. Most interestingly, the average ratios were low for anthocyanins (0.31) and tannins (0.32), intermediate for (+)-catechin (0.75) and polymeric pigments (0.98), and high for gallic acid (7.9). Individual wine phenolics in general correlated well with several grape phenolics, indicating that a multivariate approach might be advantageous for prediction of wine phenolics from grape phenolics analysis. However the use of multivariate prediction of individual wine phenolics from the complete grape phenolic composition only improved the prediction of wine polymeric pigments, whereas wine anthocyanins were predicted with the same precision as from the direct relation with grape anthocyanins. Prediction of color attributes of pH normalized experimental wines from the phenolic profiles of grapes was accomplished using a multivariate approach. The correlation between predicted and measured total wine color was high ( r = 0.958) but was very similar to the correlation coefficient obtained for the direct relation between grape anthocyanins and total wine color ( r = 0.961). Color due to copigmentation, color due to anthocyanins, and color intensity were also predicted well.  相似文献   

5.
Changes in the phenolic composition, phenol extractability indices, and mechanical properties occur in grape berries during the ripening process, but the heterogeneity of the grapes harvested at different ripening stages affects the reliability of the results obtained. In this work, these changes were studied in Nebbiolo grapes harvested during five consecutive weeks and then separated according to three density classes. The changes observed in chemical and mechanical parameters through the ripening process are more related to berry density than harvest date. Therefore, the winemaker has to select the flotation density according to the objective quality properties of the wine to be elaborated. On the other hand, the stiffer grapes were associated with a higher accumulation of proanthocyanidins. The harder grapes provided the higher concentration and extractability of flavanols reactive to vanillin, whereas the thicker ones facilitated the extraction of proanthocyanidins.  相似文献   

6.
Benzothiadiazole (BTH) and methyl jasmonate (MeJ) have been described as exogenous elicitors of some plant defense compounds, polyphenols among them. The objective of this study was to determine whether the application of BTH or MeJ to grape clusters at the beginning of the ripening process had any effect on the accumulation of the main flavonoid compounds in grapes (anthocyanins, flavonols, and flavanols) and the technological significance of these treatments in the resulting wines. The results obtained after a 2 year experiment indicated that both treatments increased the anthocyanin, flavonol, and proanthocyanidin content of grapes. The wines obtained from the treated grapes showed higher color intensity and total phenolic content than the wines made from control grapes. The exogenous application of these elicitors, as a complement to fungicide treatments, could be an interesting strategy for vine protection, increasing, at the same time, the phenolic content of the grapes and the resulting wines.  相似文献   

7.
To detect adulteration of wine, it has been proposed that the ratio of acetylated to p-coumaroylated conjugates of nine characteristic anthocyanins can be used to determine whether a wine is derived from Cabernet Sauvignon or hybrid grapes. If the ratio is >3, then a wine is classified as being derived from Cabernet Sauvignon grapes. This test has significant commercial implications as it is being used to decide whether Cabernet Sauvignon-labeled wines are genuine and can be imported into Germany. To assess whether this is a valid approach, 24 wines were analyzed, 4 of which were made from hybrids and 20 from Cabernet Sauvignon, with vintages ranging from 1993 to 2000. Only 13 of the Cabernet Sauvignon wines contained all nine of the "characteristic" anthocyanins, and the ratio of acetylated to p-coumaroylated derivatives varied from 1.2 to 6.5. It is evident that the use of the anthocyanin ratio method is flawed and that examination of the whole anthocyanin profile and/or investigation of the proportion of monoglucoside and acetylated anthocyanins is a better approach to distinguish between hybrid and Cabernet Sauvignon wines.  相似文献   

8.
Ethylidene-bridged Flavan-3-ols in red wine and correlation with wine age   总被引:2,自引:0,他引:2  
Condensed tannins are responsible for astringency and bitterness and participate in the color stability of red wines. During wine making and aging, they undergo chemical changes including, for example, acetaldehyde-induced polymerization. Following this study, the ethylidene-bridged flavan-3-ols were monitored in different vintage wines made from grapes collected in the same vineyard in three wineries in Bordeaux, Pauillac, and Saint Julien. Flavan-3-ol ethylidene bridges were quantified by wine 2,2'-ethylidenediphloroglucinol (EDP) phloroglucinolysis. This method was based upon the analysis of EDP, a product formed after acid-catalyzed cleavage of wine flavan-3-ols in the presence of excess phloroglucinol. The flavan-3-ol ethylidene bridges were then compared to flavan-3-ol contents (phloroglucinolysis), phenolic contents, and color measurements. Low amounts of flavan-3-ol ethylidene bridges (0.8-2.5 mg L(-1)) were quantified in wines. Flavan-3-ol ethylidene bridges represent less than 4% of flavan-3-ol bonds, but the proportion of these linkages relative to native interflavan bonds increased with wine age. This proportion correlated with pigmented polymers.  相似文献   

9.
Effect of red grapes co-winemaking in polyphenols and color of wines   总被引:1,自引:0,他引:1  
The red grapes co-winemaking effect on phenolic fraction and wine color has been studied for the first time, where Monastrell was comacerated and cofermentated with Cabernet Sauvignon and Merlot. Changes in the relative abundance of anthocyanins were observed as well as hyperchromic shifts at 530 and 620 nm; these effects remain constant after aging. Co-winemaking also favored copigmentation, giving way to more stable anthocyanins and facilitating their polymerization. With regard to color evolution, the mixture of Monastrell with Merlot grapes was more appropriate than with Cabernet Sauvignon for aging wines in oak barrels. The extent of copigmentation was more important in young wines than in aged wines. This is mainly due to the self-anthocyanin monomer reactions in the case of young wines, whereas in aged wines copigmentation is mainly due to the reaction between the anthocyanins and other polyphenolic cofactors. Discriminant analysis showed the possibility of differentiating wines according to the aging time and the type of wine, with color parameters (color intensity, OD 620 nm, and OD 520 nm) being the most important discrimination variables in the first case and petunidin-3-glucoside and peonidin-3-glucoside contents in the second case.  相似文献   

10.
(1)H NMR spectroscopy was used to investigate the metabolic differences in wines produced from different grape varieties and different regions. A significant separation among wines from Campbell Early, Cabernet Sauvignon, and Shiraz grapes was observed using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The metabolites contributing to the separation were assigned to be 2,3-butanediol, lactate, acetate, proline, succinate, malate, glycerol, tartarate, glucose, and phenolic compounds by PCA and PLS-DA loading plots. Wines produced from Cabernet Sauvignon grapes harvested in the continental areas of Australia, France, and California were also separated. PLS-DA loading plots revealed that the level of proline in Californian Cabernet Sauvignon wines was higher than that in Australian and French Cabernet Sauvignon, Australian Shiraz, and Korean Campbell Early wines, showing that the chemical composition of the grape berries varies with the variety and growing area. This study highlights the applicability of NMR-based metabolomics with multivariate statistical data sets in determining wine quality and product origin.  相似文献   

11.
Commercial red wines ( Vitis vinifera L. cv. Shiraz) produced during the 2009 vintage underwent winemaker assessment for allocation grade soon after production. The wines were then subjected to phenolic analysis to measure wine color (total anthocyanin, SO(2) nonbleachable pigment, and wine color density) and tannins (concentration, composition, and average degree of polymerization). A positive relationship was found between wine phenolic concentration and projected bottle price. Tannin compositional analysis suggested that there was specifically a relationship between wine grade and skin-derived tannins. These results suggest that maximization of skin tannin concentration and/or proportion is related to an increase in projected wine bottle price.  相似文献   

12.
The aim of this paper was to study how maturity and maceration length affect color, phenolic compounds, polysaccharides, and sensorial quality of Cabernet Sauvignon and Tempranillo wines at three stages of grape ripening. Ripeness increased color extractability, phenolic compounds, and polysaccharide concentrations. Moreover, the proanthocyanidin mean degree of polymerization (mDP) and the percentage of prodelphinidins also increased with maturity, whereas the percentage of galloylation decreased. In general, wines from riper grapes contain higher proportions of skin proanthocyanidins. Color and anthocyanin concentration decreased when the maceration was longer, whereas polysaccharide and proanthocyanidin concentrations did the opposite. It was also detected that the mDP and the percentage of prodelphinidins decreased when the maceration was extended, whereas the percentage of galloylation increased. These data seem to indicate that proanthocyanidin extraction from seeds is clearly increased throughout the maceration time.  相似文献   

13.
The effects of two different vinification techniques, traditional fermentation and carbonic maceration, on the anthocyanin composition and color of young red wines, made with Syrah grapes grown in a warm climate, were compared. Tristimulus colorimetry was applied to study the color of wines during the vinification, and a high-performance liquid chromatography (HPLC) procedure was used for the analysis of anthocyanins. Carbonic maceration led to wines with lower anthocyanin content, mainly monoglucosides, and total phenols. This was related to lighter wines, less saturated, but more colorful (higher chroma C*ab values), and hues hab similar to those of the Syrah wines made by traditional vinification. Thus, the lightness L* had much more influence on the saturation s*uv of the wines obtained by carbonic maceration than the chroma (s*uv = C*uv/L*). From a study of the color-composition relationships using linear and multiple regression, better relationships were found for the wines from traditional vinification, where the chromatic parameters L*, hab, and s*uv could be predicted from the 3-monoglucosides of delphinidin, petunidin, peonidin, and malvidin concentrations (R > 0.9). However, a good prediction of the chroma C*ab from the anthocyanin composition was not possible. On the contrary, C*ab was the best predicted parameter from the anthocyanins monoglucosides (R > 0.9) in the carbonic maceration wines.  相似文献   

14.
Although smoke exposure has been associated with the development of smoke taint in grapes and subsequently in wine, to date there have been no studies that have demonstrated a direct link. In this study, postharvest smoke exposure of grapes was utilized to demonstrate that smoke significantly influences the chemical composition and sensory characteristics of wine and causes an apparent 'smoke taint'. Verdelho grapes were exposed to straw-derived smoke for 1 h and then fermented according to two different winemaking treatments. Control wines were made by fermenting unsmoked grapes. Sensory studies established a perceivable difference between smoked and unsmoked wines; smoked wines were described as exhibiting 'smoky', 'dirty', 'earthy', 'burnt' and 'smoked meat' characteristics. Quantitative analysis, by means of gas chromatography-mass spectrometry, identified guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, eugenol, and furfural in each of the wines made from smoked grapes. However, these compounds were not detected in the unsmoked wines, and their origin is therefore attributed to the application of smoke. Increased ethanol concentrations and browning were also observed in wines made from grapes exposed to smoke.  相似文献   

15.
Aged red wines possess significantly different polyphenolic composition compared with young ones, mainly due not only to formation of polymeric compounds but also because of oxidation, hydrolysis, and other transformations that may occur in native grape phenolics during aging. Representative Greek, single-variety, aged red wines were examined for total phenol, total flavanol, and total anthocyanin content using spectrophotometry, and attempts were made to establish correlations with the antiradical, reducing, and hydroxyl free radical scavenging activity. In addition, HPLC analyses were carried out, to ascertain whether individual polyphenols are actually responsible for the antioxidant effects of aged red wines. It was found that total flavanols are the class of polyphenols that account for hydroxyl free radical scavenging efficacy and to a lesser extent for antiradical and reducing ability, whereas there was a less significant link between the antioxidant properties and the total phenolics and only a weak relationship to total anthocyanin content. The correlation of the antioxidant properties with the principal polyphenols showed that individual compounds are weakly associated with all the antioxidant parameters, suggesting that the expression of antioxidant activity in aged red wines is rather a consequence of synergism between various phenolics, and it is not simply attributed to specific constituents.  相似文献   

16.
The relationships between grapevine (Vitis vinifera) vigor variation and resulting wine anthocyanin concentration and composition and pigmented polymer formation were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. Vine vigor parameters were used to designate vigor zones within two vineyard sites (A and B) to produce research wines (2003 and 2004) and conduct a model extraction experiment (2004 only) to investigate the vine-fruit-wine continuum. Wines and model extracts were analyzed by HPLC and UV-vis spectrophotometry. For the model extractions, there were no differences between sites for pomace weight, whereas juice volume was higher for site A. This was not related to a larger berry size. Site A had a higher anthocyanin concentration (milligrams per liter) in the model extracts than site B specifically for the medium- and low-vigor zones. For anthocyanin composition in the model extraction, site B had a greater proportion of malvidin-3-O-glucoside and less of the remaining anthocyanin glucosides (delphinidin, cyanidin, petunidin, and peonidin) compared to site A. In the wines, there was a vintage effect, with the 2003 wines having a higher anthocyanin concentration (milligrams per liter) than the 2004 wines. This appears to have been primarily due to a greater accumulation of anthocyanins in the fruit. In general, the medium-vigor zone wines had higher anthocyanin concentrations than either the high- or low-vigor zone wines. There was also vintage variation related to anthocyanin composition, with the 2003 wines having a higher proportion of delphinidin and petunidin glucosides and lower malvidin-3-O-glucoside compared to 2004. In both years, there were higher proportions of delphinidin and petunidin glucosides in wines made from low-vigor-zone fruit. Wines made from low-vigor zones showed a greater propensity to form vitisin A as well as pigmented polymers. Low-vigor-zone wines had a approximately 2-fold increase in pigmented polymer concentration (milligrams per liter) over high-vigor-zones wines. There was a strong positive relationship between pigmented polymer concentration, bisulfite bleaching resistant pigments, proanthocyanidin concentration, and color density in wines. Overall, differences found in the wines magnified variation in the fruit.  相似文献   

17.
The contribution of dimethyl sulfide (DMS) to the aroma of Syrah and Grenache Noir wines from the Rhone Valley of France was investigated by sensory analysis, and its levels in these wines were measured. The potential DMS in the corresponding grapes and wines, susceptible to release during wine aging, was evaluated. Free DMS and potential DMS assessed by a heat-alkaline treatment were measured in grape juices and wines by SPME-GC-MS using methods previously reported and slightly modified. A relationship between potential DMS from grapes and the total DMS levels in wine was demonstrated. Furthermore, a linear regression between the ratio of free DMS levels to these total DMS levels in wine and time of storage was found. Free and potential DMS levels in grapes and wines depended on grape variety, vintage, and vine location. DMS imparted a noticeable and complex contribution to the aroma of the wines investigated, depending on the mode of sensory perception used, either before or after glass swirling. It significantly enhanced the fruity notes of the wines, and additional truffle and black olive notes.  相似文献   

18.
The presence of oxygen in red wine leads to the transformation of ethanol into ethanal, which after capturing a proton will react with flavanols to start the process of forming ethyl bridges between flavanols and between flavanols and anthocyanins. Wine pH also conditions the equilibrium between the different anthocyanin structures and may thus affect anthocyanin reactivity. Consequently, the aim of this paper was to study how the pH can affect the changes induced by micro-oxygenation in two wines with different phenolic composition. The differences between micro-oxygenated wines and their controls were, in general, greater when the pH was more acidic. Specifically, the differences between micro-oxygenated wines and their corresponding controls in terms of color intensity, anthocyanin concentration, PVPP index, ethyl-linked pigments, B-type vitisins, polymeric pigments, and ethylidene-bridged flavanols were greater at lower pH. In contrast, the effects of micro-oxygenation when the pH was less acidic were much less evident and sometimes practically nonexistent. These results demonstrate for the first time that the pH of the wine has a great influence on oxygen-induced changes of color and phenolic compounds.  相似文献   

19.
Pulsed electric field (PEF) treatments were applied to increase the polyphenolic content of fresh red wines made from Aglianico and Piedirosso grapes. Prior to the fermentation/maceration step, the grape skins were treated at different PEF intensities (field strengths from 0.5 to 1.5 kV/cm and energy inputs from 1 to 50 kJ/kg), with their permeabilization being characterized by electrical impedance measurements. Furthermore, the release kinetics of the total polyphenols and anthocyanins were characterized during the maceration stage by spectroscopic and Folin-Ciocalteu colorimetric methods, respectively. Finally, the fresh wine, obtained after pressing, was characterized for total acidity, pH, reducing sugar, color intensity, total polyphenols, anthocyanins content, antioxidant activity, and volatile compound composition. PEF treatment on Aglianico grapes induced a significantly higher release of polyphenols (+20%) and anthocyanins (+75%), thus improving the color intensity (+20%) and the antioxidant activity of the wine (+20%) while preserving the other organoleptic characteristics. In contrast, there was only a minor impact on the polyphenolic release kinetics of Piedirosso grapes, despite the significant degree of cell membrane permeabilization.  相似文献   

20.
Biosynthesis of the sesquiterpene rotundone in Vespolina grapes during berry ripening was investigated over two consecutive seasons, revealing that the compound accumulates from veraison to harvest and reaches relatively high concentrations (up to 5.44 μg/kg). Rotundone levels up to 1.91 μg/kg were also found in clones of Gruener Veltliner, a white grape variety known to give 'peppery' wines. These concentrations are higher than those reported for Syrah grapes and are similar to the levels found in some plants. Rotundone was shown to accumulate almost exclusively in berry exocarp, suggesting that skin contact during winemaking could be used to modulate the peppery character of red wine. However, rotundone yield after the winemaking process was relatively low. Indeed, only 10% of the rotundone present in grapes was extracted during fermentation, and only 6% was recovered in bottled wine. The results presented in this work provide key knowledge for manipulation of the peppery character of wine in order to optimize the intensity of this characteristic wine aroma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号