首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
均匀设计法优选大孔树脂纯化七叶莲总皂苷工艺研究   总被引:2,自引:0,他引:2  
以总皂苷比吸附量和解吸率为指标,通过静态和动态吸附解吸附试验,从9种树脂中筛选出AB-8型大孔吸附树脂;以总皂苷收率和总皂苷纯度为指标,通过单因素试验考察了最佳洗脱剂浓度,并利用均匀设计法对大孔树脂富集纯化的工艺进行了优化.结果表明:以70%乙醇为洗脱剂,以总皂苷收率为指标,优选的工艺参数为:上样质量浓度0.976g/L、上样流速2.2mL/min、洗脱剂用量3.0BV(1BV=80mL,下同)、洗脱流速3.6mL/min,其总皂苷收率62.17%,总皂苷纯度41.22%;以总皂苷纯度为指标,优化的工艺参数为:上样质量浓度0.976g/L、上样流速2.8mL/min、洗脱剂用量0.6BV、洗脱流速0.8mL/min,其总皂苷收率41.25%,总皂苷纯度49.79%.  相似文献   

2.
以皱皮柑果皮为材料,筛选出对皱皮柑果皮黄酮吸附和解吸性能好的大孔树脂,并探讨大孔树脂纯化皱皮柑果皮黄酮的工艺条件。结果表明:弱极性的AB-8大孔树脂对皱皮柑果皮黄酮的吸附和解吸效果较好。AB-8大孔树脂纯化皱皮柑果皮黄酮的最佳工艺条件为:以50%乙醇作为洗脱剂,洗脱剂流速1.5 BV/h,洗脱剂用量为3倍柱床体积。纯化后皱皮柑果皮黄酮纯度可达到15.45%。  相似文献   

3.
通过对4种大孔吸附树脂吸附率及解吸率的测定,确定最佳型号树脂;通过静态和动态吸附解吸动力学研究,确定大孔树脂吸附法分离竹叶黄酮的最佳工艺条件。结果表明,AB-8型大孔树脂吸附量大,易于洗脱,纯化分离效果好。获得最佳分离纯化工艺参数为:上柱溶液pH为5.0,以1.0mL/min的吸附流速上样,用4倍床体积的60%乙醇以1.5mL/min洗脱速率洗脱。该工艺生产的竹叶黄酮纯度达到54.16%。  相似文献   

4.
试验研究了大孔吸附树脂对白蜡虫粗多糖脱色效果的影响和脱色前后多糖抗氧化活性的变化。通过静态吸附法确定大孔吸附树脂NKA-9较适合白蜡虫粗多糖脱色,动态吸附法确定白蜡虫多糖脱色条件为30℃下10 mg·mL-1多糖溶液(pH值8.0)以1 BV·h-1流速上样1 BV后,以5 BV水洗脱,脱色率为71.4%、脱蛋白率51.9%、多糖收率为60%。体外细胞抗氧化结果表明:脱色前多糖溶液仅在1 000μg·mL-1浓度时能提升过氧化氢损伤人神经母细胞瘤细胞的存活率,而脱色后多糖溶液在10 1 000μg·mL-1范围内均能提升模型细胞存活率,其中,1 000μg·mL-1的脱色白蜡虫多糖与模型组的差异显著(P0.01),结果表明,脱色后多糖抗氧化能力增加。  相似文献   

5.
以蓝莓果提取液为原料,研究了12种大孔树脂对花色苷的静态吸附与解吸效果,对比了5种对花色苷分离效果较优树脂的静态等温吸附曲线,优化了最优树脂分离纯化蓝莓花色苷的工艺技术参数。研究结果表明XDA-7最适用于蓝莓花色苷的分离纯化,最佳吸附工艺是:室温条件下,蓝莓提取液pH值3.0、质量浓度0.94 g/L、流速30 mL/h,最大吸附量15.41 g/L(湿树脂);最佳洗脱工艺是:室温条件下,80%甲醇、pH值3.0、流速60 mL/h、洗脱剂量75 mL,解吸率达92.65%。在该工艺参数下,经XDA-7树脂纯化冷冻干燥所得产品为紫黑色粉末,花色苷纯度由2.20%提高到24.54%,花色苷得率为70.2%,产品色价为121。  相似文献   

6.
通过静态吸附试验选择对栀子黄色素吸附效果较佳的大孔吸附树脂,然后通过动态吸附试验考察上样流速、上样浓度、洗脱剂对大孔吸附树脂分离纯化栀子黄色素的影响。结果表明,LSA-10大孔吸附树脂能高效分离纯化栀子黄色素。分离纯化条件为:上样液体积与树脂质量的比值为5∶1(mL∶g),上样流速为6mL/min,上样浓度为7mg/mL,先用水洗脱杂质和部分的栀子苷,再用浓度为20%乙醇洗脱栀子苷,最后用浓度为80%的乙醇洗脱栀子黄色素。在此条件下,得到色价为337.5,OD值为0.37的栀子黄色素产品。LSA-10大孔吸附树脂适合于高效分离纯化栀子黄色素。  相似文献   

7.
亚临界水提取协同大孔树脂纯化杨树芽总黄酮   总被引:4,自引:0,他引:4  
采用亚临界水提取-大孔树脂纯化联用技术对杨树芽中总黄酮进行提取、纯化,以提取温度、液料比和提取时间为考察因素,以总黄酮的得率为考察指标,采用正交试验优化亚临界水对杨树芽总黄酮的提取工艺;从4种大孔吸附树脂中筛选出对总黄酮有最佳分离纯化效果的一种树脂,研究其对总黄酮静态和动态吸咐以及解吸效果。结果表明,5 MPa下亚临界水提取杨树芽总黄酮的最佳工艺条件为:提取温度180℃、提取时间10 min、液料比30∶1(mL∶g),总黄酮的粗品提取得率为11.83%,纯度为13.16%。通过静态吸附试验筛选出最有效的HP-20树脂分离纯化杨树芽总黄酮,通过动态吸附试验确定应用HP-20树脂吸附分离杨树芽总黄酮的最佳工艺条件为:上样质量浓度为4 g/L,流速为60 mL/h,pH值为2~3,此时吸附量为42.69 g/L洗脱剂乙醇的体积分数为90%,解吸率为93.91%,经纯化后总黄酮的纯度为49.28%。  相似文献   

8.
大孔吸附树脂分离纯化山楂叶总黄酮的研究   总被引:13,自引:3,他引:10  
比较了6种大孔吸附树脂ADS-5、ADS-8、ADS-17、NKA-9、D-101和AB-8对山楂叶总黄酮的吸附及脱附性能。在研究静态吸附的基础上,筛选出效果较好的树脂进行动态实验研究。实验结果表明:最佳分离纯化山楂叶总黄酮的树脂为D-101。该树脂室温下对山楂叶总黄酮动态吸附-脱附较优的工艺参数为:上柱液pH值4.5~5.5;上柱速度2 BV/h,溶液处理量6 BV/次;洗脱剂为70%乙醇,脱附剂的流速1 BV/h,脱附剂用量2 BV/次。  相似文献   

9.
研究结果表明,采用大孔吸附树脂分离提取液中的松茸多糖是可行的。X-5树脂是良好的吸附树脂,对松茸多糖的吸附率可达30.83mg/g;质量分数50%丙酮浓度以0.6mL/min进行洗脱时,洗脱率达81%;使松茸多糖的含量提高15%左右。该产品颜色较浅,吸潮性较低,既可方便开发成药品使用,也可作为高纯产品制备的原料。吸附树脂用于松茸多糖的分离,省去了传统溶剂萃取法的烦琐工艺,仅吸附-脱附一步工艺即可提高多糖含量,成本低、操作简便、易于工业化生产。  相似文献   

10.
油茶中茶皂素的膜分离-大孔树脂联用技术的研究   总被引:1,自引:0,他引:1  
采用陶瓷膜与大孔树脂吸附技术联用分离纯化油茶饼粕提取液中的茶皂素。将油茶饼粕提取液先过陶瓷膜,以膜通量、油茶皂素转移率与除杂率为主要指标进行优化选择,再将陶瓷膜透过液进行大孔树脂吸附,以茶皂素的收率、纯度为考察指标进行工艺优化。结果表明:优化的纯化工艺为油茶饼粕提取液过0.05μm的陶瓷膜,料液质量分数为1%,操作压力为0.15 MPa;陶瓷膜透过液上AB-8大孔树脂柱,先以水洗至无色,再以0.2%NaOH溶液洗至流出液颜色较淡,水洗至中性,再以60%乙醇洗脱,60%乙醇部分为茶皂素部位,总茶皂素质量分数大于95%。采用膜分离-大孔树脂联用技术得到的茶皂素不仅纯度高、颜色淡,且该技术生产成本低,污染小,可以成为工业上生产茶皂素产品的一种新技术。  相似文献   

11.
大孔树脂对印楝素A吸附纯化的研究   总被引:3,自引:0,他引:3  
通过比较5种大孔吸附树脂对印楝素A的吸附率和解吸率,成功地筛选出比较理想的树脂。研究结果表明:XAD-1180树脂对印楝素A有较好的吸附和解吸效果。并对其动态吸附、解吸性能进行了考察,发现较佳的吸附条件为:印楝素A质量浓度2.23 mg/mL(溶剂为30%甲醇-水溶液,以下同),流速1 BV/h,饱和吸附量4.5~5 BV;解吸条件为:以50%、60%、70%的甲醇-水溶液梯度洗脱。一次提纯产品的纯度为85.14%,经过二次提纯的纯度可达93.18%。纯化产物经HPLC-MS进一步确认为印楝素A。  相似文献   

12.
为探索获得较为纯化的木麻黄总黄酮的便捷有效方法,研究了利用大孔吸附树脂分离纯化木麻黄总黄酮的工艺。结果表明:选择D101大孔吸附树脂的最佳工艺条件为吸附液料比20∶1(黄酮粗提液∶大孔吸附树脂,mL.g-1);吸附液pH为2;解吸液pH为11;最佳静置吸附时间为90 min;乙醇洗脱体积分数为80%;洗脱液料比为20∶1(80%乙醇溶液∶大孔吸附树脂,mL.g-1)。分离到的总黄酮对青枯菌具有明显的抑制作用。同时也证明了气质联用不适于鉴定黄酮类大分子物质。  相似文献   

13.
Arabinogalactan (AG) obtained from Larix gmelinii R. waS purified with the method of macroporous resin adsorption. Effects of various parameters on the adsorption, including adsorption time and temperature, the concentration and the dosage of raw AG the reused numbers of resin, were investigated. The effect of purification was tested through the removal rate of impurity and the contents of AG and impurity. The optimal condition was determined as follows: adsorbed at 30℃ for 2 h with the concentration of raw AG 〈0.1 g·mL^-1 and its dosage 〈 7 mL, the dose of resin was 3 g and reused for 4 times. On the basis of these, macroporous resin column was used for AG purification. The result showed that the AG yield could reach 68.28% with sugar content of 95.02%. The analysis of IR and UV showed that the effect of macroporous resin characteristics on the purification of AG was significant. The obtained product had the same functional groups with standard sample.  相似文献   

14.
比较了4种大孔吸附树脂的吸附和解析能力,确定生产最适合的树脂;分析了温度、pH值、洗脱剂浓度对树脂吸附的影响,确定最有利于产业化的工艺参数;通过不同压力、截留分子量比较超滤结果,选择最优化的超滤工艺参数。试验结果表明:在4种树脂中,D101树脂具有最佳的吸附性能;采用D101大孔树脂和6000道尔顿分子量的超滤膜纯化技术对野生蓝莓花青素纯化效果最佳,花青素纯度可达35%以上。  相似文献   

15.
茶多酚、茶氨酸联合分离提取的研究   总被引:6,自引:1,他引:5  
以绿茶为原料,先采用ZJL大孔离子交换树脂从茶叶的浸提液中提取茶氨酸和脱除咖啡因,再用ZJX大孔吸附树脂提取茶多酚.通过对树脂的静态、动态吸附性能的实验研究,确定了茶多酚、茶氨酸联合分离提取的工艺.研究结果表明:该工艺能很好地脱除咖啡因,提取的茶氨酸纯度达85.43%,提取率为0.94%;提取的茶多酚纯度达95.62%,提取率为12.35%,且茶多酚中的咖啡因含量低于0.8%.  相似文献   

16.
大孔吸附树脂对杜仲叶中绿原酸、总黄酮的分离研究   总被引:17,自引:1,他引:17  
通过对静态吸附容量和洗脱效果的选择,从10种大孔吸附树脂中确定出最适于杜仲叶中绿原酸、总黄酮分离的XDA-5树脂。研究了用该树脂吸附分离杜仲叶中绿原酸和总黄酮的方法,得出以下结论:1)杜仲叶绿原酸和总黄酮的最佳分离工艺为:上柱液pH值为2-3,静态吸附时间8h,绿原酸最佳洗脱剂为10%~15%乙醇溶液,黄酮洗脱剂为50%-70%乙醇溶液,流速为每分钟流出液体积相当于吸附剂体积的8%;2)10%~15%乙醇洗脱液经真空浓缩后,其固形物得率为4.85%,绿原酸含量为36.65%;3)50%~70%乙醇洗脱液经真空浓缩后,其固形物得率为4.98%,总黄酮含量为28.34%。  相似文献   

17.
试验比较了3种大孔树脂对滑菇多糖的纯化效果,并研究了纯化效果最好的大孔树脂的纯化工艺。试验结果表明,AB-8大孔树脂对滑菇子实体多糖分离纯化的效果最好,而且AB-8型树脂对滑菇多糖纯化工艺为,吸附时间3h,pH值5.0,样品浓度1.5mg/mL,洗脱剂为70%乙醇溶液,解吸时间4h,洗脱速率2mL/min,在此工艺条件下纯化效果最好,即:吸附率为86.67%,解吸率为71.38%,纯化的滑菇多糖产品中多糖含量为78.64%,是滑菇多糖粗品的1.3倍。  相似文献   

18.
通过静态吸附试验比较7种树脂对常春藤皂苷C的吸附与解吸,筛选出效果最佳树脂,通过动态吸附试验对最佳树脂的上样p H、上样体积、洗脱液浓度、洗脱体积、洗脱流速进行优化。结果表明:HPD-100树脂对常春藤皂苷C的吸附与解吸性能最好,HPD-100树脂对常春藤皂苷C纯化的最佳条件为:上样体积为6BV,洗脱液乙醇浓度为80%,洗脱体积为7 BV,洗脱流速为1 BV/h。  相似文献   

19.
固化单宁大孔吸附树脂的研制   总被引:2,自引:0,他引:2  
刘建  张力平  陈建 《林产工业》2006,33(1):26-28
利用Mannich反应将黑荆树单宁固定在基体树脂表面,成功制备出一种新型固化单宁大孔吸附树脂,并通过正交试验得出适宜的合成条件;研究表明该树脂对苯酚有较好的吸附效果,且具有很好的重复使用性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号