首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
不同湿润比下滴灌土壤入渗特性模拟试验研究   总被引:2,自引:0,他引:2  
为了研究滴头流量和设计湿润比对土壤水分运移规律及湿润体特性的影响,前期利用粘壤土进行试验研究,然后依据非饱和土壤水动力学理论和滴灌条件下土壤水分运移特征,建立了土壤水分运动模型,利用HYDRUS-3D对不同湿润比下滴灌土壤入渗模型进行求解。通过所建模型,对11个观测点的模拟结果与实测结果进行了对比,得出灌水结束时各观测点模拟与实测含水率的相对误差均小于10%,实测与模拟湿润比的相对误差为4.75%~11.78%。利用所建模型对不同情景下湿润体运移规律进行了模拟,获得了湿润体特征变化规律:滴头流量主要影响水平湿润锋的运移距离,而设计湿润比对垂直湿润锋运移距离的影响较大;滴头流量相同时,设计湿润比越大,湿润体内平均含水率越大,高含水区(含水率0.410 cm~3·cm~(-3))半径也越大;设计湿润比相同时,湿润体内含水率高于0.410 cm~3·cm~(-3)的湿润半径随流量增大而增大。  相似文献   

2.
压力水头与土壤容重对微润灌溉水分入渗的影响   总被引:3,自引:0,他引:3  
为探究微润灌溉条件下水分在不同压力水头、不同容重土壤中的入渗情况,通过室内土箱模拟试验,分别设置h=2.0、1.5、1.0 m的压力水头,土壤容重γ分别为1.20、1.30、1.40 g·cm~(-3),测定累计入渗量、湿润锋及土壤含水率3个指标。结果发现,水分累计入渗量与压力水头为正相关关系,与土壤容重为负相关关系;微润管在空气和地埋出流情况下的流量与压力水头均为线性增函数关系,相同压力下,微润管的空气出流量明显大于地埋流量,微润灌溉系统更适宜采用地下埋管方式;湿润锋是以微润管为中心的近似圆形,水平运移距离与垂直向下运移距离均大于垂直向上运移距离,重力对微润灌条件下水分运移有一定的作用,但该作用随着土壤容重的增加逐渐减小;湿润锋运移距离与时间的关系近似为幂函数关系,入渗指数约为0.5;土壤容重越大,水分在土壤中的入渗速率越小,土壤对水分的蓄持能力越弱;经计算,微润灌溉的灌水均匀性符合要求。  相似文献   

3.
微咸水矿化度对重度盐碱土壤入渗特征的影响   总被引:2,自引:0,他引:2  
通过微咸水室内一维垂直入渗试验,分析了淡水以及4种不同矿化度(2,3,4,5 g·L~(-1))微咸水对重度盐碱土壤累积入渗量、湿润锋运移深度、土壤含水率、入渗历时、入渗速率的影响。结果表明:累积入渗量、湿润锋运移深度、土壤含水率随微咸水矿化度的增加呈现增大的趋势,但与淡水相比,2,3,4,5 g·L~(-1)微咸水的累积入渗量、湿润锋运移深度随入渗时间的变化差异较小;同一土层,土壤含水率大小比较:淡水5 g·L~(-1)3 g·L~(-1)2 g·L~(-1)4 g·L~(-1);在微咸水灌溉条件下,累积入渗量与湿润锋运移深度呈线性关系。采用Kostiakov模型,Philip模型和Green-Ampt模型模拟微咸水入渗过程,结果显示,Kostiakov模型可以更好地描述重度盐碱土入渗率与入渗时间的关系。  相似文献   

4.
为探讨滴头流量及灌水量对微咸水灌溉条件下覆砂土壤入渗规律及水盐分布的影响,开展室内土槽试验研究了微咸水灌溉下相同灌水量时3种滴头流量(0.85、1.70、3.40 L·h-1)及相同滴头流量下3种灌水量(5.88、6.60、10.00 L)对压砂土壤湿润锋迁移以及灌溉后土壤水盐分布特征,以期为压砂地合理利用微咸水提供理论依据。结果表明:滴头流量越大,湿润锋在水平和垂直方向上运移距离越大,湿润锋水平和垂直入渗距离与入渗时间存在幂函数关系。供试土壤在0.85 L·h-1和3.40 L·h-1滴头流量下湿润体稳定的垂直/水平的比值为1.1,而1.70 L·h-1滴头流量下其比值为0.9。覆砂条件下高含水率及低盐分区出现在距滴头较远的区域,并随着滴头流量增加逐渐向滴头靠近;随灌水量增加该区域范围不断扩大,土壤水分及盐分分布模式则越接近无覆砂条件模式。因此,砂层覆盖改变了微咸水滴灌条件下土壤水分、盐分的分布规律。  相似文献   

5.
文中为探索一种新型渗灌灌水器(多孔砼灌水器)在红壤内水分运动规律,研究灌水器不同埋深对入渗效果的影响情况。通过土箱试验研究不同埋深条件下透水砼渗灌入渗特性、湿润锋推移过程,并采用模型进行拟合。结果表明,透水砼渗灌入渗能力随着灌水器埋深的增加而增强,湿润体的形状也由径向转为垂向半椭球型,入渗体体积亦随埋深的增大而变大。结论证明,湿润锋的运移距离与灌水器埋深之间符合幂函数关系(NSE>0.98);模拟值与实测值对比分析认为,Philip模型和Kostiakov模型对累积入渗量的模拟精度均为较高水平,表证模型精度的NSE>0.99、RMSE和ME均低于1,且接近于0;HYDRUS-2D对湿润锋变化和湿润体内含水量模拟可靠性较好,模拟精度受到埋深和入渗时间的影响。  相似文献   

6.
微咸水不同入渗水量土壤水盐运移特征研究   总被引:7,自引:0,他引:7  
通过室内微咸水积水入渗土壤水盐运移模拟试验,分析了不同灌水量下湿润锋、土壤含水量、土壤含盐量、盐分浓度及Na 、Cl-浓度等的变化特征。研究结果表明,入渗水量与湿润锋呈线性关系,脱盐深度与湿润深度的比值近似为0.342。此外研究结果也显示上层土壤盐分浓度与入渗水矿化度密切相关,因此灌水量大小不仅影响湿润范围,而且直接决定上层土壤盐分含量。  相似文献   

7.
模拟垄沟灌溉土壤水分入渗特性试验研究   总被引:1,自引:0,他引:1  
采用土箱进行模拟垄沟灌溉入渗试验,探索垄沟灌溉条件下土壤水分的入渗特性.研究结果表明:垄沟灌溉入渗时,湿润锋水平方向与垂直方向的运移距离与入渗时间呈幂函数正相关,其垂向运移距离明显大干一般沟灌;灌水时沟中与垄坡剖面的含水率迅速增加,再分布过程中在水平向水势梯度的作用下垄上剖面的含水率也不断增加,适当减小垄宽可以减少灌溉...  相似文献   

8.
滴灌条件下侧柏林地根区土壤水分运动规律研究   总被引:3,自引:0,他引:3  
在山地造林试验区,选择了5种滴头流量,研究了侧柏林地根区土壤滴灌条件下地表积水区半径、湿润锋水平扩散半径、湿润锋垂直入渗深度、湿润体大小等表征滴灌水分入渗的特征值。分析试验数据表明:地表积水区半径、湿润锋水平扩散半径与灌水延续时间的关系可用对数函数描述;湿润锋垂直入渗深度与灌水延续时间之间的关系可用幂函数描述,树木根系是影响湿润锋垂直入渗的因素之一。在灌水过程中,湿润锋水平扩散速度总大于垂直入渗速度,湿润体为平卧的椭球体。  相似文献   

9.
深层坑渗灌田间单点入渗湿润锋分布特性及拟合模型研究   总被引:2,自引:0,他引:2  
为了了解深层坑渗灌灌水后湿润锋的分布规律,通过大田原状土上的入渗试验,研究了不同灌水量和不同灌水器管径对不同深度湿润锋水平直径的影响。结果表明:在质地较粗的原状土壤条件下,水平湿润直径的最大值一般出现在深度约30~50 cm之间的土层,灌水器管径200 mm和灌水量30 L/次所达到的灌水效果比较好。此外,建立了具有明确物理意义的深层坑渗灌的单灌水器拟合模型。经过初步评价认为:该模型计算误差在10%以内,计算精度较高,是一种符合深层坑渗灌湿润锋分布规律的函数形式。  相似文献   

10.
针对Hydrus-2D软件在红壤区涌泉根灌土壤水分运移模拟的适用性问题,依据非饱和土壤水动力学理论,并结合红壤区涌泉根灌土壤水分运动特征建立了涌泉根灌土壤水分的入渗模型,利用Hydrus-2D软件对模型进行求解,并对湿润锋运移距离以及土壤含水率的模拟值和实测值进行了对比验证。结果表明:在灌水结束时,Hydrus-2D软件对竖直向下方向湿润锋的模拟值和实测值之间相对误差为5.21%,水平方向湿润锋的模拟值和实测值之间相对误差为-7.28%,且湿润锋模拟值和实测值的相关系数(R2)均大于0.980,RMSE均在1.300 cm以内,F检验P值也均大于0.05;在灌水结束时,距离灌水器不同距离处土壤含水率剖面分布的模拟值和实测值基本一致,均表现为随着土层深度的增加而先增大后减小,在距离灌水器不同位置处,Hydrus-2D软件对剖面土壤含水率的模拟值和实测值之间的相对误差均在±10%以内,且土壤含水率的模拟值和实测值相关系数(R2)均大于0.990,RMSE在0.030 cm3·cm-3以内,F检验P值也均大于0.05。说明模拟值和实测值具有较好的一致性,模拟结果可为红壤区涌泉根灌系统的合理设计及运行提供依据。  相似文献   

11.
在新疆林业科学院枣树示范基地进行了原状土的树下单点源滴灌试验,研究砂壤土在不同滴头流量条件下(滴头流量分别为8、12、16 L·h~(-1))地表滴灌湿润体特征值的变化规律。结果表明:1停止灌溉时湿润锋呈平卧半椭球体分布,随着滴头流量的增加湿润锋的分布范围逐渐增大,停止灌溉后12 h内各滴头流量下土壤中的水分运移均存在再分布过程,水分再分布后湿润锋呈直立半椭球体分布,湿润体的形状大小受到滴头流量及灌溉总量的影响,湿润锋水平、垂直运移距离与入渗时间存在显著的幂函数关系,决定系数(R~2)均大于0.95;2滴灌初期湿润锋在水平、垂直方向上的运移速率随着滴头流量的增加而增大,随着灌水历时的延长逐渐降低,滴头流量越大入渗距离比也就越大,并且随着灌溉时间的推移入渗距离比值逐渐减小,三种滴头流量下入渗距离比由最初的2~2.27逐渐减小到0.8~0.97;3随着滴头流量的增大湿润体的体积不断增大,湿润体含水量也随之增大,距离滴头越近含水量等值线越密,外围含水量等值线较稀疏,滴头正下方约40 cm处土壤含水量增加值达到最大,再分布后含水量等值线变为稀疏,水平扩散半径增加值较小,垂直方向再分布距离较大。  相似文献   

12.
以6 a生灵武长枣为研究对象,设置微孔渗灌不同埋设深度D10(10 cm)、D20(20 cm)、D30(30 cm)和铺设半径R30(30 cm)、R40(40 cm)、R50(50 cm)的2因素3水平试验,分析了微孔渗灌不同环形布设方式对灵武长枣土壤水分分布、产量及水分利用效率的影响。结果表明:随着微孔渗灌埋深的增加,土壤含水率最大分布范围和湿润锋均向下移动,土壤含水率垂直方向最大分布范围可达到10~55 cm。随着微孔渗灌铺设半径的增大,土壤含水率最大分布范围和湿润锋均向外移动,并且各处理的最大湿润区域土壤含水率值均在20%以上。R40D20处理下枣树的枣吊长度、每吊开花数、每吊坐果数、坐果率、单果重、单株结果数、产量、水分利用效率均最大,分别为31.24 cm、66朵、39个、59.70%、19.20 g、444个、7 666.82 kg·hm~(-2)、2.83 kg·m~(-3),并且均与其他处理存在显著差异(p0.05)。因此,微孔渗灌埋深为20 cm、铺设半径为40 cm是灵武长枣最佳的铺设方式。  相似文献   

13.
将土壤供水头压力控制为负值,测定了垂直入渗、毛管上升和水平入渗3种情况下的土壤吸水过程.发现随供水吸力的增加,垂直入渗、毛管上升和水平入渗过程中湿润峰前进速度和入渗速度的相对差异变小.将入渗速率等于潜在蒸发速率时的湿润厚度定义为临界湿润厚度,计算了潜在蒸散宰为5 mm/d时不同负水头下壤土的临界湿润厚度;确认了垂直、毛管和水平入渗下湿润峰位置与入渗量的关系,将湿润蜂位置-累计入渗量曲线的斜率,印巴湿润土体内入渗水分所占的容积百分数定义为湿润系数,提供了所测壤土的湿润系数-负水头曲线;建立了负水头供水过程中土壤含水量空间分布模型;观察到湿润锋含水量与供水吸力闸的依赖关系.  相似文献   

14.
依据土壤水动力学理论,基于室内一维土柱入渗试验,选用稻壳、玉米秸秆、河沙3种材料作为添加物,分别将添加物以不同掺量与土壤均匀混合对苏打盐碱土进行入渗试验,从累计入渗量、入渗速率、湿润锋运移距离等方面研究苏打盐碱土在不同添加物及不同掺量下水分的入渗特性.结果表明:对照组土壤入渗量为3 mm·d-1,混掺1%稻壳、玉米秸秆...  相似文献   

15.
为研究添加生物炭条件下微咸水矿化度对盐碱土水盐运移的影响,采用一维垂直土柱入渗试验,研究了微咸水灌溉并施用生物炭对盐碱土水盐运移特征及其对Philip和一维代数入渗模型参数的影响,并对入渗模型的适用性进行了评价。本研究设置淡水对照CK(0 g·L-1)及4种微咸水矿化度水平(2、3、4、5 g·L-1)与施用玉米秸秆生物炭(5 t·hm-2)组合试验方案。结果表明:使用微咸水灌溉或施用生物炭均会增加土壤水分入渗速率及土壤含水率,提高土壤保水能力,且微咸水和生物炭协同作用下效果更好。灌溉微咸水并施用生物炭降低了土壤含盐量,在0~30 cm深度内的平均含盐量比初始含盐量降低了34.75%~74.00%,具有良好的盐分淋洗效果。Philip入渗模型能够较好模拟微咸水和生物炭协同作用下的土壤水分入渗情况,灌溉微咸水或施用生物炭会使吸渗率S增加,且两者结合使用时S增幅更大;由代数模型计算而得的土壤各层理论含水率值与实测值之间的平均绝对误差与均方根误差均小于2.2%,表现出一维代数模型较好的适用性。综上所述,使用微咸水灌溉并配施生物...  相似文献   

16.
脱硫石膏对苏打盐碱土水盐入渗过程的影响   总被引:2,自引:0,他引:2  
为研究脱硫石膏对苏打盐碱土水盐入渗过程的影响,2020年6月进行了一项室内土柱入渗试验,供试土壤离子组成主要为Na2 CO3和NaHCO3、电导率为1.89 mS·cm-1、钠吸附比为10.01、碱化度为40.20%,设置了5个脱硫石膏施用水平(施用量分别为土重的0.0%,0.5%,1.0%,1.5%,2.0%),并利...  相似文献   

17.
基于HYDRUS-1D的不同质地土壤入渗过程数值模拟   总被引:1,自引:0,他引:1  
基于HYDRUS-1D软件,对不同土质(淤泥、粉砂壤土、砂质粘壤土)的灌溉方案进行了系统的数值实验,模拟灌溉结束时及灌溉结束24 h之后的土壤剖面含水量和土壤湿润锋的变化情况。结果表明:在不产生径流的情况下,灌溉结束24 h后土壤的含水量分布和湿润深度只与土壤种类和灌溉量有关,与灌溉速度无关;对透水性较好的土质,灌溉水分重分布明显,以粉砂壤土灌溉速率0.7 cm·h~(-1)和灌溉时间3 h为例,灌溉结束时和灌溉24 h后土壤湿润深度分别为9.2 cm和20.6 cm,有55.3%的灌溉水参加了水分重分布;土壤湿润深度与灌溉量之间存在线性关系,拟合直线的斜率介于5.15(淤泥)和5.95(砂质黏壤土)之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号