首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of different polysaccharides on the rotational (D(rot)) and translational diffusion (D(trans)) coefficients of small molecules in concentrated systems (sucrose solutions) was investigated. Dextran (1 or 10% w/w) with different molecular masses (from 10(4) to 2 x 10(6) Da), gum arabic, or pullulan was added to solutions of sucrose (57.5% w/w). Viscosity measurements of the diffusion medium studied (sucrose and sucrose plus polysaccharide) were made using a Rheometric Scientific viscometer in a temperature range from 20 to -10 degrees C. The rotational mobility of nitroxide radicals (Tempol) dispersed in the concentrated systems was measured by electron spin resonance. The translational diffusion coefficient of fluorescein was determined by the fluorescence recovery after photobleaching method. The studied temperature range for the latter two techniques was from 20 to -16 degrees C. For these conditions of concentration and temperature, there was no ice formation in the samples. No effect of the molecular mass of dextran on D(rot) and D(trans) was observed when solutions with the same dry matter content were compared. Only pullulan and gum arabic, at 10%, had a significant effect on D(trans)( )()of fluorescein. Temperature and total dry matter content were observed to be the most important factors controlling D(rot) and D(trans) in these concentrated systems.  相似文献   

2.
The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.  相似文献   

3.
Diffusion-ordered spectroscopy (DOSY)-pulsed field gradient (PGF) nuclear magnetic resonance (NMR) spectroscopy was used to measure self-diffusion coefficients of aroma molecules in model fruit preparations. The impact of the sucrose content on aroma diffusion was specifically investigated, and the relationship with viscosity, water activity, and dry matter parameters was evidenced. DOSY-PGF NMR spectroscopy was found to be a relevant and accurate technique to follow self-diffusion of aroma compounds at low concentrations in a complex food matrix and to obtain information on diffusion of the sucrose and of the water molecules. We showed that aroma self-diffusion was strongly decreased in fruit preparation because of the high sucrose content, which induces the formation of a network through hydrogen bonds with water. Self-diffusion coefficients were determined for aroma molecules of different natures, and values are related to the physicochemical properties of the molecule.  相似文献   

4.
Seven cane brown sugars (four from La Réunion, two from Mauritius, and one from France) were investigated for their polyphenol content and volatile composition in relation to their free radical scavenging capacity determined by ABTS and DPPH assays. The thin layer coated on the sugar crystal was extracted by Soxhlet extractor with dichloromethane. The volatile compounds of brown sugars were studied by GC-MS, and 43 compounds were identified. The total phenolic content of brown sugars was determined according to the Folin-Ciocalteu method. Phenolic compounds were quantified in the brown sugar extracts by LC-UV-ESI-MS. Brown sugar aqueous solutions exhibited weak free radical scavenging activity in the DPPH assay and higher antioxidant activity in the ABTS assay at relatively high concentration. The brown sugar extracts showed interesting free radical scavenging properties despite the low concentration of phenolic and volatile compounds. Sugar is a common foodstuff traditionally used for its sweetening properties, which might be accompanied by antioxidant properties arising from molecules (polyphenols, Maillard products) other than sucrose of the cane brown sugars.  相似文献   

5.
6.
The effect of lambda-carrageenan addition level (0.1, 0.25, 0.4, and 0.5% w/w) and viscosity on the release of systematic series of aroma compounds (aldehydes, esters, ketones, and alcohols) was studied in thickened viscous solutions containing lambda-carrageenan and 10 wt % of sucrose. Air-liquid partition coefficients K (37 degrees C) of a total of 43 aroma compounds were determined in pure water and in the lambda-carrageenan solutions by static headspace gas chromatography. Mass transfer of the aroma compounds in water and in the thickened lambda-carrageenan solutions which had a wide viscosity range was assessed by dynamic headspace gas chromatography. K (37 degrees C) increased as the carbon chain increased within each homologous series. Esters exhibited the highest volatility, followed by aldehydes, ketones, and alcohols. Under equilibrium, no overall effect of lambda-carrageenan was found, except with the most hydrophobic compounds. Analysis of flavor release under nonequilibrium conditions revealed a suppressing effect of lambda-carrageenan on the release rates of aroma compounds, and the extent of decrease in release rates was dependent on the physicochemical characteristics of the aroma compounds, with the largest effect for the most volatile compounds. However, none of the effects was of a magnitude similar to the obtained changes in the macroscopic viscosity, and the suppressing effects are therefore attributable to the thickener and not the physical properties of the increasingly viscous systems.  相似文献   

7.
The volatile content of the effluent from the retronasal aroma simulator (RAS) was compared with that of human breath using mass spectroscopy (MS-Nose). The ratios of volatile compounds from the RAS were closely related to those from the panelists' breath with the correlation coefficients ranging from 0.97 to 0.99 from model food systems. A greater sensitivity using the RAS was achieved because higher concentrations of volatiles in the MS-Nose were produced from the RAS than from the breath. In analyzing the effects on volatility of RAS parameters including airflow rate, temperature, saliva ratio, and blending speed, airflow rate had the greatest effect. The correlation coefficients for the real food systems studied ranged from 0.83 to 0.99. The RAS gives a good approximation of time-averaged flavor release in the mouth as defined by breath-by-breath measurements.  相似文献   

8.
The aim of this work was to study the influence of process parameters and the starter culture on the characteristics of wheat sourdough by using response surface methodology. Influence of fermentation temperature (16–32°C), ash content of flour (0.6–1.8%), and fermentation time (6–20 hr) were considered as independent factors and their effects were studied in sourdough fermented with Lactobacillus plantarum, L. brevis, Saccharomyces cerevisiae, or with a combination of yeast and lactic acid bacteria. Formation of acidity, free amino acids, and volatile compounds were considered the main responses. A possibility to enhance formation of potential flavor compounds and precursors without excessive acidity formation in wheat sourdoughs was established. The total amount of amino acids increased by 25–50%, depending on the strain and fermentation conditions. The total amount of volatile compounds increased seven‐ to 100‐fold, depending on the strain and fermentation conditions. Sourdough started with S. cerevisiae was an effective way to optimize the amount of volatile compounds without excessive acidity formation in appropriate processing conditions. Ash content of flour and fermentation time were the most significant factors to modify metabolic activity of wheat sourdoughs. Frequent interactions between the studied factors were observed on the formation of acidity, amino acids, and volatile compounds with most of the strains studied. Possibility to improve current industrial fermentation processes and control flavor attributes of breads by using optimized sourdough was established.  相似文献   

9.
The effects of pectin and viscosity on the release of a systematic series of aldehydes (alkanals, methyl-alkanals, alkenals, and alkandienals) were studied in a food model system of low sucrose content (10% w/w). The viscosity was varied by adding different amounts of Ca(2+) (0, 13.5, and 27 mg/g pectin) to the model system of constant pectin concentration (0.4% w/w). Air-liquid partition coefficients, K (37 degrees C), of the aroma compounds were determined in aqueous and pectin-thickened solutions. Diffusivities of the aroma compounds in water and three pectin-thickened solutions were estimated from release rate constants that were obtained via timed collection of volatiles in the gas phase and quantifications by dynamic headspace-gas chromatography. The partition coefficients increased as the carbon chain increased within each homologous series. Overall, no significant difference was found between partition coefficients of aldehydes in water and in pectin solutions except for 2-methyl-propanal and butanal that showed higher K values when pectin was present. Furthermore, the diffusional properties of the model system with a constant pectin level (0.4% w/w) remained constant when the viscosity was increased from 0.001 to 150 Pa s. It was concluded that neither pectin nor alterations in macroscopic viscosity as such influenced the release of aldehydes from the pectin-thickened food model system.  相似文献   

10.
Interactions of volatile aroma compounds with protein in aqueous solutions, especially whey proteins, have received significant attention in recent years. This work attempts to improve our understanding of the mass transfer in multiphasic systems, such as emulsions at the lipid-water interface, and to reveal the role of beta-lactoglobulin in the release rate of solutes. For this purpose the rotating diffusion cell has been used. From a practical point of view it enables evaluation of the transfer through the aqueous phase, through the oil and the interfacial transfer. The effect of beta-lactoglobulin, medium pH, and solute concentration has been investigated. Benzaldehyde and 2-nonanone have been studied, and miglyol has been chosen as an oil phase. It has been demonstrated that mass transfer has a rate-limiting step, which depends on physicochemical parameters such as hydrophobicity of the volatile, diffusion and partition coefficients, and rheological properties of the aqueous phase.  相似文献   

11.
In 2006–2007 small radish was cultivated in a pot experiment. Foliar applications were applied twice with solutions of the following compounds: 1) control (water); 2) urea; 3) urea+molybdenum (Mo), 4) urea+Mo+benzyladenine (BA); 5) urea+Mo+BA+sucrose; 6) urea+Mo+BA+sucrose+salicylic acid (SA), 7) BA; 8) SA; and 9) sucrose. The above solutions contained following concentrations of compounds: urea 20 g dm?3, sucrose 10 g dm?3, Mo 1 mg dm?3, BA 5 mg dm?3 and SA 10 mg dm?3. In comparison with the control, spraying plants with the solution of urea+Mo+BA+sucrose and SA only caused an increase in leaf mass of one plant. Foliar applications did not have any effect on the yield of edible roots. When compared with the control, the use of sucrose resulted in a decreased content of nitrate (V) in leaves, while the application of urea+Mo+BA+sucrose led to elevated content of nitrate (V) in roots. In case of spraying plants with solutions containing urea (combinations no. 2–6) there was a tendency to increase ammonium (NH4 +) and nitrogen (N)-total content in leaves and roots, and increase in N uptake by leaves and by the whole plant but not by the radish roots. In combinations 7–9 we noted a decline in the level of ascorbic acid, and in combinations 2–6 there was a decrease in the content of soluble sugars in roots. In comparison with the control, an increase was observed in combinations 2 and 3, while in combinations 7–9 a decrease in the content of free amino acids in roots was observed. None of the combinations with foliar application caused any significant changes in the content of assimilative pigments in radish leaves and concentration of nitrate (III), dry matter in leaves and roots, the content of phenolic compounds, content of potassium (K), magnesium (Mg), calcium (Ca) extracted with 2% acetic acid in roots as well as free radical activity of radish roots.  相似文献   

12.
The influence of sucrose (0-40 wt %) on the thermal denaturation and functionality of whey protein isolate (WPI) solutions has been studied. The effect of sucrose on the heat denaturation of 0.2 wt % WPI solutions (pH 7.0) was measured using differential scanning calorimetry. Sucrose increased the temperature at which protein denaturation occurred, for example, by 6-8 degrees C for 40 wt % sucrose. The dynamic shear rheology of 10 wt % WPI solutions (pH 7.0, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C and then cooled to 30 degrees C. Sucrose increased the gelation temperature and the final rigidity of the cooled gels. The degree of flocculation in 10 wt % oil-in-water emulsions stabilized by 1 wt % WPI (pH 7.0, 100 mM NaCl) was measured using a light scattering technique after they were heated at fixed temperatures from 30 to 90 degrees C for 15 min and then cooled to 30 degrees C. Sucrose increased the temperature at which maximum flocculation was observed and increased the extent of droplet flocculation. These results are interpreted in terms of the influence of sucrose on the thermal unfolding and aggregation of protein molecules.  相似文献   

13.
The influence of xanthan concentration (0, 0.02, 0.1, 0.4, and 0.8% w/w) and bulk viscosity on the release of 20 aroma compounds of different chemical classes (5 aldehydes, 4 esters, 5 ketones, 3 alcohols, and 3 terpenes) was evaluated in xanthan-thickened food model systems having different viscosities. Interactions between flavor compounds and xanthan were assessed by measuring air-liquid partition coefficients, K, of aroma compounds in pure water and in the xanthan solutions by static headspace gas chromatography. Mass transfer of aroma compounds was estimated by dynamic headspace gas chromatography. Notably, limonene and some of the esters and aldehydes exhibited decreased K values in the presence of xanthan, indicating that the release of these volatile aroma compounds was reduced due to interaction with the xanthan matrix. The degree of interaction depended on the physicochemical characteristics of the aroma compounds. A similar tendency was observed at nonequilibrium with the decreases in release rates being most pronounced for limonene, followed by the esters and aldehydes, with no effect for ketones and an apparent "salting out" effect for alcohols. The reduction in flavor release by xanthan was thus dependent on the physicochemical properties of the aroma compounds and was apparently a result of the aroma-xanthan interactions and not influenced by the viscosity of the system itself.  相似文献   

14.
The sorption in a model system of aroma compounds of enological interest (mixture of the eight derivatives from guaiacol, 4-ethylphenol, and whiskylactone) onto wood was investigated to assess the influence of wood on the concentration of these volatiles during the aging of wine. To evaluate the influence of the solubility of aroma compounds in sorption phenomena, this parameter was determined for each volatile compound in model wine at 10 and 25 degrees C. The solubility is significantly higher in the model wine than in water and remains constant in the range of temperatures studied, except for guaiacol and vanillin. Kinetic and equilibrium sorptions were investigated. Sorption kinetics showed that the sorption equilibrium for all aroma compounds was reached after 6-7 days. From the study of the individual sorption isotherms, two distinct kinds of sorption behavior were observed depending on the presence or not of an ethylenic para substituent conjugated to the phenyl ring. K(ww) partition coefficients between the wood and the model wine were determined, which exhibited an unusual positive variation with temperature.  相似文献   

15.
During the maturation of snake fruit (Salacca edulis Reinw) Pondoh, the contents of sucrose, glucose, fructose, and volatile compounds changed drastically. The glucose, fructose, and volatile compounds contents showed their maximum levels at the end of maturation; however, the sucrose content decreased. During maturation, the flesh firmness tended to increase; however, at the end of maturation (6 months), the flesh became soft. The major volatile aroma in solvent-assisted flavor evaporation (SAFE) and solvent extracts were identified to be methyl esters of butanoic acids, 2-methylbutanoic acids, hexanoic acids, pentanoic acids, and the corresponding carboxylic acids. Furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) was also identified as a minor aroma constituent in the SAFE residue. The methyl esters were found to increase dramatically during stages 4-6 (5-6 months after the pollination) to exceed the amounts of carboxylic acids, whereas the acid amount increased gradually until stage 5 (5.5 months after the pollination) to reach the maximum at stage 6 (6 months after the pollination).  相似文献   

16.
土壤磷扩散的影响因素研究   总被引:6,自引:0,他引:6       下载免费PDF全文
对3种不同质地土壤磷扩散特征以及影响因素进行了试验研究。结果表明,随着土壤含水率的增加,土壤磷的扩散系数明显增加,土壤磷的扩散系数与土壤含水率的关系呈显著的幂函数相关;随土壤质地加重,土壤磷扩散系数增大;温度升高,土壤磷扩散系数增大,土壤磷扩散系数的温度效应可用磷扩散系数的温度系数定量表示;随着土壤施磷量的增大,土壤的磷扩散系数明显增加;土壤容重对磷扩散的影响与土壤的质地有关。对于质地较重的土壤,随着土壤容重的增加,磷扩散系数有降低的趋势;而对于质地轻的沙土,磷扩散系数有增加的趋势。  相似文献   

17.
为考察微波辐射处理对浓香型白酒中挥发性物质的影响,本试验采用气相色谱-质谱联用技术(GC-MS)对不同微波辐射条件下白酒样品中挥发性物质成分进行检测分析.结果表明,新酿优级酒在微波辐射温度45℃,微波辐射时间80 min,微波辐射功率500 W条件下,其挥发性物质的种类及比例与四年中级酒最接近;与新酿优级酒相比,最佳微...  相似文献   

18.
Headspace solid-phase microextraction (HS-SPME) was used to isolate the volatile compounds, which are formed during peroxidation of fatty acids in vegetable oils. Isolated compounds were characterized by GC-MS and quantified using GC with FID detection. Four fibers for HS-SPME method development were tested, and the divinylbenzene/carboxene/PDMS fiber was selected as providing the best detection of analyzed compounds. Extraction curves, limits of detection, repeatability, and linearity were investigated for 14 aldehydes, ketones, hydrocarbons, and alcohols being products of fatty acids autoxidation. Limits of detection for 11 of these were below 1 microg/L. For quantitative purposes, to minimize the influence of temperature on hydroperoxide formation and the changes in the volatiles profile of the extracts, sampling was performed at 20 degrees C. For compound characterization by GC-MS, sampling temperature of 50 degrees C was applied. The developed method was applied to the analysis of refined and cold-pressed rapeseed oil stored at 60 degrees C for 10 days, and for 10 different vegetable oils of various degree of peroxidation. All samples were subjected to sensory analysis. The results of PCA sensory analysis were related to the amount of volatile compounds isolated by SPME method. In cases where the amount of compounds was highest, the samples were perceived as the worst, whereas those with low levels of volatile compounds were the most desired ones according to sensory evaluation. The relation was observed for both total volatiles, quantified C5-C9 aldehydes, and 14 compounds selected in method development. SPME revealed to be a rapid and sensitive method for the extraction and quantitation of trace volatile compounds from plant oils even at ambient temperature.  相似文献   

19.
The removal of As(III) from aqueous solutions at different concentrations, pH and temperatures by haematite has been carried out successfully. The maximum removal was found to be 96 % at concentration 13.34 μmol L?1, temperature 20 °C and pH 7.0. The process of uptake follows first-order adsorption rate expression and obeys the Langmuir's model of adsorption. The removal of As(III) by haematite is also partially diffusion controlled and mass transfer coefficients, diffusion coefficients and thermodynamic parameters have been determined to explain the results.  相似文献   

20.
Sorption and diffusion of the herbicide pyridate and its metabolite CL9673 were measured in reconstituted cuticular waxes isolated from Chenopodium album L. and Hordeum vulgare L. (cultivar Igri) leaves. The compounds have the same basic chemical structure, except that pyridate is characterized by a C8-alkyl chain bound via a thioester to the ionizable hydroxyl group of CL9673. Sorption of the weak acid CL9673 from aqueous solutions into cuticular waxes was pH-dependent, and the apparent wax/water partition coefficients decreased with increasing pH. Wax/water partition coefficients of pyridate were not dependent on pH, and they were about 4 orders of magnitude higher as compared to the nondissociated species of CL9673. Diffusion coefficients measured in reconstituted cuticular wax for CL9673 fitted established models predicting diffusion coefficients in relation to molar volumes. However, this was not the case with pyridate, which was characterized by a self-accelerating effect leading to diffusion coefficients, which were up to 2 orders of magnitude higher than predicted from the molar volume. This is a remarkable result since pyridate represents a compound combining the properties of an active ingredient and of a plasticizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号