首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine the speed of sound (SOS) in equine articular cartilage and investigate the influence of age, site in the joint, and cartilage degeneration on the SOS. SAMPLE POPULATION: Cartilage samples from 38 metacarpophalangeal joints of 38 horses (age range, 5 months to 22 years). PROCEDURE: Osteochondral plugs were collected from 2 articular sites of the proximal phalanx after the degenerative state was characterized by use of the cartilage degeneration index (CDI) technique. The SOS was calculated (ratio of needle-probe cartilage thickness to time of flight of the ultrasound pulse), and relationships between SOS value and age, site, and cartilage degeneration were evaluated. An analytical model of cartilage indentation was used to evaluate the effect of variation in true SOS on the determination of cartilage thickness and dynamic modulus with the ultrasound indentation technique. RESULTS: The mean SOS for all samples was 1,696 +/- 126 m/s. Age, site, and cartilage degeneration had no significant influence on the SOS in cartilage. The analytical model revealed that use of the mean SOS of 1,696 m/s was associated with maximum errors of 17.5% on cartilage thickness and 70% on dynamic modulus in an SOS range that covered 95% of the individual measurements. CONCLUSIONS AND CLINICAL RELEVANCE: In equine articular cartilage, use of mean SOS of 1,696 m/s in ultrasound indentation measurements introduces some inaccuracy on cartilage thickness determinations, but the dynamic modulus of cartilage can be estimated with acceptable accuracy in horses regardless of age, site in the joint, or stage of cartilage degeneration.  相似文献   

2.
Biochemical heterogeneity of cartilage within a joint is well known in mature individuals. It has recently been reported that heterogeneity for proteoglycan content and chondrocyte metabolism in sheep develops postnatally under the influence of loading. No data exist on the collagen network in general or on the specific situation in the horse. The objective of this study was to investigate the alterations in equine articular cartilage biochemistry that occur from birth up to age one year, testing the hypothesis that the molecular composition of equine cartilage matrix is uniform at birth and biochemical heterogeneity is formed postnatally. Water content, DNA content, glycosaminoglycan content (GAG) and biochemical characteristics of the collagen network (collagen content, hydroxylysine content and hydroxylysylpyridinoline [HP] crosslinks) were measured in immature articular cartilage of neonatal (n = 16), 5-month-old foals (n = 16) and yearlings (n = 16) at 2 predefined differently loaded sites within the metacarpophalangeal joint. Statistical differences between sites were analysed by ANOVA (P<0.01), and age correlation was tested by Pearson's product moment correlation analysis (P<0.01). In neonatal cartilage no significant site differences were found for any of the measured biochemical parameters. This revealed that the horse has a biochemically uniform joint (i.e. the cartilage) at birth. In the 5-month-old foals and yearlings, significant site differences, comparable to those in the mature horse, were found for DNA, GAG, collagen content and hydroxylysine content. This indicates that functional adaptation of articular cartilage to weight bearing for these biochemical parameters takes place during the first months postpartum. Water content and HP crosslinks showed no difference between the 2 sites from neonatal horses, 5-month-old animals and yearlings. At both sites water, DNA and GAG decreased during maturation while collagen content, hydroxylysine content and HP crosslinks increased. We propose that a foal is born with a uniform biochemical composition of cartilage in which the functional adaptation to weight bearing takes place early in life. This adaptation results in biochemical and therefore biomechanical heterogeneity and is thought to be essential to resist the different loading conditions to which articular cartilage is subjected during later life. As collagen turnover is extremely low at mature age, an undisturbed functional adaptation of the collagen network of articular cartilage at a young age may be of significant importance for future strength and resistance to injury.  相似文献   

3.
In order to assess the influence of strenuous exercise on collagen characteristics of articular cartilage, the response of the collagen network was studied in seven 2-year-old Thoroughbreds subjected to strenuous exercise compared to 7 nontrained individuals. After 13 weeks, the animals were subjected to euthanasia, fetlock joints of the forelimbs were scored macroscopically after Indian Ink staining, and articular cartilage from different locations of the articular surface of the proximal first phalanx was sampled and analysed for water content, collagen content, hydroxylysine content and amount of hydroxylysylpyridinoline (HP) crosslinks. Gross lesions were significantly more severe in the exercised than in the nonexercised group. In the control animals, the characteristic site-specific differences in collagen parameters were found as described earlier, but in the strenuously exercised animals this physiological biochemical heterogeneity had disappeared. In the exercised animals, an increase in water content and a sharp decrease in HP crosslinking was found that was correlated with the presence of wear lines. It is concluded that the strenuous exercise provoked significant alterations in the characteristics of the collagen network of the articular cartilage of the fetlock joint which were suggestive of microdamage and loosening of the collagen network. The collagen component of cartilage, in contrast to the proteoglycan component, is known to have a very limited capacity for repair and remodelling due to an extremely low turnover rate. Therefore, alterations within the articular collagen network might be expected to play an important role in the pathophysiology of degenerative joint disorders.  相似文献   

4.
The aim of this study was to evaluate topographical differences in the biochemical composition of the extracellular matrix of articular cartilage of the normal equine fetlock joint. Water content, DNA content, glycosaminoglycan (GAG) content and a number of characteristics of the collagen network (total collagen content, levels of hydroxylysine- (Hyl) and the crosslink hydroxylysylpyridinoline, (HP) of articular cartilage in the proximal 1st phalanx (P1), distal 3rd metacarpal bone (MC), and proximal sesamoid bones (PSB) were determined in the left and right fetlock joint of 6 mature horses (age 5-9 years). Twenty-eight sites were sampled per joint, which included the clinically important areas often associated with pathology. Biochemical differences were evaluated between sampling sites and related with the predisposition for osteochondral injury and type of loading. Significant regional differences in the composition of the extracellular matrix existed within the joint. Furthermore, left and right joints exhibited biochemical differences. Typical topographic distribution patterns were observed for each parameter. In P1 the dorsal and palmar articular margin showed a significantly lower GAG content than the more centrally located sites. Collagen content and HP crosslinks were higher at the joint margins than in the central area. Also, in the MC, GAG content was significantly lower at the (dorsal) articular margin compared with the central area. Consistent with findings in P1, collagen and HP crosslinks were significantly lower in the central area compared to the (dorsal) articular margin. Biochemical and biomechanical heterogeneity of articular cartilage is supposed to reflect the different functional demands made at different sites. In the present study, GAG content was highest in the constantly loaded central areas of the joint surfaces. In contrast, collagen content and HP crosslinks were higher in areas intermittently subjected to peak loading which suggests that the response to a certain type of loading of the various components of the extracellular matrix of articular cartilage are different. The differences in biochemical characteristics between the various sites may help to explain the site specificity of osteochondral lesions commonly found in the equine fetlock joint. Finally, these findings emphasise that the choice of sampling sites may profoundly influence the outcome of biochemical studies of articular cartilage.  相似文献   

5.
6.
Articular cartilage explants from 3 horses were maintained in tissue culture to test the effects of a polysulfated glycosaminoglycan on proteoglycan biosynthesis. Cultures were exposed to concentrations of 0, 50, or 200 micrograms of the drug/ml for either 2 days or 6 days, and labeled with 35S, before measuring the content of sulfated proteoglycan in the culture media and in extracts of cartilage. In a second experiment, the explants were incubated with the isotope and subsequently exposed to the same concentrations of the polysulfated glycosaminoglycan for 4 days. Subsequently, the amount of remaining labeled proteoglycan was determined. Gel filtration chromatography was used to compare the hydrodynamic size of proteoglycans from the cartilage explants in each experiment. Polysulfated glycosaminoglycan caused a dose-dependent depression of sulfated proteoglycan synthesis, which was statistically significant after 6 days of exposure. Radioactive proteoglycan content in explants was similar in the experiment involving isotopic labeling prior to exposure to the drug. Proteoglycan monomer size was similar in all treatment groups. It was concluded that polysulfated glycosaminoglycan caused a modest depression in proteoglycan synthesis, had little effect on endogenous proteoglycan degradation, and did not influence the size of sulfated proteoglycans synthesized by normal equine chondrocytes in explant culture.  相似文献   

7.
The objective of this study was to document the development of biochemical heterogeneity from birth to maturity in equine articular cartilage, and to test the hypothesis that the amount of exercise during early life may influence this process. Neonatal foals showed no biochemical heterogeneity whatsoever, in contrast to a clear biochemical heterogeneity in mature horses. The process of formation of site differences was almost completed in exercised foals age 5 months, but was delayed in those deprived of exercise. For some collagen-related parameters, this delay was not compensated for after an additional 6 month period of moderate exercise. It is concluded that the functional adaptation of articular cartilage, as reflected in the formation of biochemical heterogeneity in the horse, occurs for the most part during the first 5 months postpartum. A certain level of exercise seems essential for this process and withholding exercise in early life, may result in a delay in the adaptation of the cartilage.  相似文献   

8.
Reasons for performing study: There is ample evidence on topographical heterogeneity of the principal biochemical components of articular cartilage over the surface of the joint and the influence of loading thereon, but no information on depth‐related zonal variation in horses. Objectives: To study depth‐related zonal variation in proteoglycan (PG) and collagen content in equine articular cartilage. Methods: Two techniques (safranin‐O densitometry and Fourier transform infrared spectroscopy) were applied to sections of articular cartilage from the proximal phalangeal bone of the metacarpophalangeal joint of 18‐month‐old Thoroughbreds that had been raised at pasture from age 0–18 months without (PASTEX) and with (CONDEX) additional exercise. Two sites were investigated: site 1 at the joint margin that is unloaded at rest or at slow gaits, but subjected to high‐intensity loading during athletic activity; and site 2, a continuously, but less intensively, loaded site in the centre of the joint. Results: Proteoglycan values increased from the surface to the deep layers of the cartilage, collagen content showed a reverse pattern. PG content was significantly higher at site 2 in both PASTEX and CONDEX animals without an effect of exercise. In the PASTEX animals collagen content was significantly higher at site 1, but in the CONDEX group the situation was reversed, due to a significant exercise effect on site 1, leading to a reduced collagen content. Conclusions: Collagen and PG content gradients agree with findings in other species. The observations on PG levels suggest that the exercise level was not strenuous. The collagen results in the PASTEX group confirmed earlier findings, the lower levels at site 1 in the CONDEX group being possibly due to an advancement of the physiological maturation process of collagen remodelling. Potential relevance: This study confirms earlier observations that even moderate variations in exercise level in early age may have significant effects on the collagen network of articular cartilage.  相似文献   

9.
OBJECTIVE: To develop an antibody that specifically recognizes collagenase-cleaved type-II collagen in equine articular cartilage. SAMPLE POPULATION: Cartilage specimens from horses euthanatized for problems unrelated to the musculoskeletal system. PROCEDURE: A peptide was synthesized representing the carboxy- (C-) terminus (neoepitope) of the equine type-II collagen fragment created by mammalian collagenases. This peptide was used to produce a polyclonal antibody, characterized by western analysis for reactivity to native and collagenase-cleaved equine collagens. The antibody was evaluated as an antineoepitope antibody by ELISA, using peptides +/- an amino acid at the C-terminus of the immunizing peptide. Collagen cleavage was assayed from equine articular cartilage cultured with interleukin-1 (IL-1), +/- a synthetic MMP inhibitor, BAY 12-9566. Cartilage specimens from osteoarthritic and nonarthritic joints were compared for antibody staining. RESULTS: An antibody, 234CEQ, recognized only collagenase-generated 3/4-length fragments of equine type-II collagen. This was a true antineoepitope antibody, as altering the C-terminus of the immunizing peptide significantly decreased competition for binding in an inhibition ELISA. The IL-1-induced release of type-II collagen fragments from articular cartilage was prevented with the MMP inhibitor. Cartilage from an osteoarthritic joint of a horse had increased staining with the 234CEQ antibody, compared with normal articular cartilage. CONCLUSIONS AND CLINICAL RELEVANCE: We generated an antineoepitope antibody recognizing collagenase-cleaved type-II collagen of horses. This antibody detects increases in type-II collagen cleavage in diseased equine articular cartilage. The 234CEQ antibody has the potential to aid in the early diagnosis of arthritis and to monitor treatment responses.  相似文献   

10.
This study compared the effect of sodium heparin and gentamicin sulphate on equine articular cartilage (AC) explants in order to investigate the possible use of sodium heparin in the treatment of infectious arthritis. Six concentrations of sodium heparin and gentamicin sulphate were tested. The supernatant and explant digest were assayed for glycosaminoglycan (GAG) content with the dimethyl-methylene blue assay and the per cent loss of GAG was calculated. A significant (P< 0.001) increase in percentage GAG loss was noted for the sodium heparin groups when compared to the control, whilst no significant increase was found among the treatment groups (P =0.782). For gentamicin, no significant difference in percentage GAG loss was found between the control and three of the five treatment groups (P =0.667). The percentage GAG loss in the sodium heparin treated AC explants was greater than for any of the gentamicin-treated AC explants. It can be concluded that sodium heparin sulphate stimulates an increase in GAG release from equine articular cartilage explants, though no firm conclusions can be drawn on its use in treating equine infectious arthritis. Copyright Harcourt Publishers Ltd.  相似文献   

11.
12.
OBJECTIVE: To determine whether enrofloxacin has detrimental, dose-dependent effects on equine articular cartilage in vitro. ANIMALS: Cartilage explants were developed from 6 healthy horses between 0 and 96 months old. PROCEDURE: Patellar cartilage explants were incubated in 5 concentrations of enrofloxacin (2 microg/ml, 10 microg/ml, 1,000 microg/ml, 10,000 microg/ml, and 50,000 microg/ml) for 72 hours. Proteoglycan synthesis (Na35SO4 incorporation for 24 hours), proteoglycan degradation (Na35SO4 release for 72 hours), endogenous proteoglycan content (dimethylmethlene blue assay), and total protein content were determined. Cartilage explants were evaluated by use of histomorphologic and histomorphometric techniques (toluidine blue stain) for cytologic and matrix characteristics. Quantitative data were analyzed with a one-way ANOVA to compare results among various enrofloxacin concentration groups and the control group. A general linear model was used to determine whether age had an effect. RESULT: Proteoglycan synthesis was excellent in control specimens and in specimens incubated in low concentrations of enrofloxacin (2 microg/ml and 10 microg/ml). High concentrations of enrofloxacin (> 1,000 microg/ml) effectively eliminated proteoglycan synthesis regardless of horse age. Proteoglycan degradation at low concentrations (2 microg/ml and 10 microg/ml) was not different than control. High concentrations of enrofloxacin (> 1,000 microg/ml) caused significant degradation. Different concentrations of enrofloxacin did not affect endogenous proteoglycan. High concentrations of enrofloxacin were associated with a significant increase in number of pyknotic nuclei. CONCLUSION: Concentrations of enrofloxacin that might be achieved following systemic administration did not suppress chondrocyte metabolism in vitro. High concentrations of enrofloxacin (> 1,000 microg/ml) were toxic to chondrocytes.  相似文献   

13.
The mechanisms and completeness of equine articular cartilage repair were studied in ten horses over a nine month period. Large (15 mm square) and small (5 mm square) full-thickness lesions were made in weight bearing and nonweight bearing areas of the radiocarpal, middle carpal and femoropatellar joints. The horses were euthanized in groups of two 1, 2.5, 4, 5 and 9 months later. Gross pathology, microradiography, and histopathology were used to evaluate qualitative aspects of articular repair. Computer assisted microdensitometry of safranin-O stained cartilage sections was used to quantitate cartilage matrix proteoglycan levels. Structural repair had occurred in most small defects at the end of nine months by a combination of matrix flow and extrinsic repair mechanisms. Elaboration of matrix proteoglycans was not complete at this time. Statistically better healing occurred in small weight bearing lesions, compared to large or nonweight bearing lesions. Synovial and perichondrial pannus interfered with healing of osteochondral defects that were adjacent to the cranial rim of the third carpal bone. Clinical and experimental experience suggests that these lesions are unlikely to heal, whereas similar lesions in the radiocarpal and femoropatellar joints had satisfactory outcomes. Observations made in this study support the use of early postoperative ambulation, passive flexion of operated joints, and recuperative periods of up to a year for large cartilage defects.  相似文献   

14.
The effects of the corticosteroid 6-alpha-methylprednisolone acetate on normal equine articular cartilage were evaluated, using the middle carpal joint in 4 clinically normal young horses. One middle carpal joint of each horse was injected 3 times with 100 mg of 6-alpha-methylprednisolone acetate, at 14-day intervals. The opposite middle carpal joint (control) was injected with 2.5 ml of lactated Ringer solution at the same intervals. Effects were studied until 8 weeks after the first injection. Evaluation included clinical and radiographic examination, and gross, microscopic, and biochemical evaluation of joint tissues. Horses remained clinically normal during the study, and significant radiographic changes were not observed. Safranin-0 matrix staining intensity and uronic acid content were significantly (P less than 0.05) lower and hydroxyproline content was significantly (P less than 0.05) higher in articular cartilage of corticosteroid-injected joints vs control joints.  相似文献   

15.
OBJECTIVE: To investigate the effects of enrofloxacin and magnesium deficiency on explants of equine articular cartilage. SAMPLE POPULATION: Articular cartilage explants and cultured chondrocytes obtained from adult and neonatal horses. PROCEDURE: Full-thickness explants and cultured chondrocytes were incubated in complete or magnesium-deficient media containing enrofloxacin at concentrations of 0, 1, 5, 25, 100, and 500 microg/ml. Incorporation and release of sulfate 35S over 24 hours were used to assess glycosaminoglycan (GAG) synthesis and degradation. An assay that measured binding of dimethylmethylene blue dye was used to compare total GAG content between groups. Northern blots of RNA from cultured chondrocytes were probed with equine cDNA of aggrecan, type-II collagen, biglycan, decorin, link protein, matrix metalloproteinases 1, 3, and 13, and tissue inhibitor of metalloproteinase 1. RESULTS: A dose-dependent suppression of 35S incorporation was observed. In cartilage of neonates, 35S incorporation was substantially decreased at enrofloxacin concentrations of 25 mg/ml. In cartilage of adult horses, 35S incorporation was decreased only at enrofloxacin concentrations of > or =100 microg/ml. Magnesium deficiency caused suppression of 35S incorporation. Enrofloxacin or magnesium deficiency did not affect GAG degradation or endogenous GAG content. Specific effects of enrofloxacin on steady-state mRNA for the various genes were not observed. CONCLUSION AND CLINICAL RELEVANCE: Enrofloxacin may have a detrimental effect on cartilage metabolism in horses, especially in neonates.  相似文献   

16.
The effect of intra-articular polysulfated glycosaminoglycan (PSG) on repair of chemical and physical articular cartilage injuries was evaluated in 8 horses. In each horse, a partial- and a full-thickness articular cartilage defect was made on the distal articular surface of the radial carpal bone. In the contralateral middle carpal joint, a chemical articular cartilage injury was induced by injecting 50 mg of Na monoiodoacetate (MIA). Four of the 8 horses were not treated (controls), and 4 horses were treated by intra-articular injection of 250 mg of PSG into both middle carpal joints once a week for 5 treatments starting 1 week after cartilage injury. Horses were maintained for 8 weeks. There was less joint circumference enlargement in PSG-treated horses in MIA-injected and physical defect carpi, compared with that in controls. In MIA-injected joints, there was less articular cartilage fibrillation and erosion, less chondrocyte death, and greater safranin-O staining for glycosaminoglycans in PSG-treated horses. Evaluation of joints in which physical defects were made revealed no differences between control and PSG-injected joints. None of the partial-thickness defects had healed. Full-thickness defects were repaired with fibrous tissue (which was more vascular and cellular in PSG-injected joints) and occasionally small amounts of fibrocartilage. Seemingly, PSG had chondroprotective properties in a model of chemically induced articular cartilage damage, whereas PSG had no obvious effect in a physical articular cartilage-defect model.  相似文献   

17.
REASONS FOR PERFORMING STUDY: The equine fetlock joint has the largest number of traumatic and degenerative lesions of all joints of the appendicular skeleton. OBJECTIVE: To gain insight into the distribution of cartilage degeneration across the articular surface in relation to age in order better to understand the dynamic nature and progression of osteoarthritis (OA). HYPOTHESIS: That there would be a specific age-related distribution pattern of cartilage degeneration in the equine metacarpophalangeal joint. METHODS: The proximal articular cartilage surfaces of the first phalanges (P1) of 73 slaughter horses (age range 0.4-23 years) with different stages of osteoarthritis were scored semiquantitatively on a 0 to 5 scale and also assessed quantitatively using the cartilage degeneration index (CDI(P1)), which ranges from 0 to 100%. Furthermore, CDI values were determined for special areas of interest; medial dorsal surface (CDI(mds)), lateral dorsal surface (CDI(lds)), medial central fovea (CDI(mcf)) and lateral central fovea (CDI(lcf)). Correlations were calculated for CDI(P1) values and CDI values at the specific areas of interest with macroscopic scores and with age. RESULTS: There was a high correlation between the semiquantitative macroscopic score and the quantitative CDI(P1) values (r = 0.92; P < 0.001). A macroscopic score of 0 (i.e. no obvious cartilage degeneration) corresponded with a CDI(P1) mean +/- s.e. value of 25 +/- 2.8% and a macroscopic score of 5 (i.e. severe cartilage degeneration in localised areas) with a mean +/- s.e. value of 38.1 +/- 7.9%. There was a moderate but highly significant correlation between the CDI(P1) value and the age of the horses (r = 0.41; P < 0.001). Highest CDI values were calculated for the medial dorsal surface (from 10.6 +/- 2.8% at macroscopic Grade 0 to 63.1 +/- 8.4% at Grade 5). At the lateral dorsal surface, these values were 5.9 +/- 1.4% and 47.2 +/- 10.4%, respectively. The CDI(mcf) and CDI(lcf) were significantly lower (P < 0.05) than the CDI(mds) and CDI(lds) at all grades. The CDI(mcf) ranged from 1.0 +/- 2.9% at Grade 0 to 43.7 +/- 9.1% at Grade 5; laterally, these values were 1.5 +/- 2.6% and 15.2 +/- 6.2%, respectively. CONCLUSIONS: CDI grading increased from lateral to medial and from central to dorsal. This specific distribution pattern confirms the heterogeneous nature of the OA process and strongly supports an important role for biomechanical loading, superimposed on age-related changes, in the spread of the disorder over the joint. POTENTIAL RELEVANCE: Knowledge of the development of OA across the articular surface is essential for understanding the dynamic nature and progression of the disease and can form a basis for improvements in diagnostic and therapeutic approaches to degenerative joint disease.  相似文献   

18.
19.
OBJECTIVE: To evaluate the effects of dimethyl sulfoxide (DMSO) on equine articular cartilage matrix metabolism. STUDY DESIGN: Using a cartilage explant culture system, proteoglycan (PG) synthesis, PG release, lactate metabolism, chondrocyte viability, and metabolism recovery were determined after cartilage exposure to DMSO. SAMPLE POPULATION: Cartilage harvested from metacarpophalangeal and metatarsophalangeal joints of 12 horses (age range, 1 to 10 years). METHODS: Explants were exposed to concentrations of DMSO (1% to 20%) for variable times (3 to 72 hours). PG synthesis and release were determined by a radiolabel incorporation assay and dimethylmethylene blue (DMMB) dye assay, respectively. Lactate released into culture media was measured, and chondrocyte viability was assessed using the Formizan Conversion Assay and a paravital staining protocol. Metabolism recovery was assessed in explants that were allowed to recover in maintenance media after exposure to DMSO. RESULTS: PG synthesis and lactate metabolism were inhibited in a dose- and time-dependent manner after exposure to DMSO concentrations > or = 5%; there was no significant alteration in PG release. No change in chondrocyte viability was detected after incubation with DMSO. PG synthesis and lactate metabolism returned to baseline rates when allowed a recovery period after exposure to DMSO. CONCLUSIONS: DMSO concentrations > or = 5% suppress equine articular cartilage matrix metabolism. Suppression of PG synthesis and lactate metabolism is reversible and does not appear to be the result of chondrocyte death. CLINICAL RELEVANCE: Equine clinicians adding DMSO to intraarticular lavage solutions should be aware that DMSO may have deleterious effects on equine articular cartilage matrix metabolism.  相似文献   

20.
The effect of human recombinant insulin-like growth factor 1 (rhIGF-1) on proteoglycan (PG) metabolism of full thickness equine articular cartilage explants was investigated. PG synthesis was stimulated at all ages, but higher concentrations of rhIGF-1 were required for maximal stimulation of adult cartilage. There were no changes in the hydrodynamic size, electrophoretic heterogeneity or composition of proteoglycans isolated from rhIGF-1-stimulated cartilage. rhIGF-1 reduced the rate of turnover of both newly synthesized and endogenous proteoglycans in all ages of cartilage investigated. The structure of proteoglycan fragments retained within the matrix and those released into the culture medium was unaffected by IGF-1 stimulation, suggesting that this peptide is a key regulator of the proteoglycan composition of equine articular cartilage extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号