首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The processes governing the (im)mobilization of Al, Fe and dissolved organic matter (DOM) in podzols are still subject to debate. In this study we investigated the mechanisms of (im)mobilization of Al, Fe and organic matter in the upper and lower B horizons of two podzols from the Netherlands that are in different stages of development. We equilibrated batches of soil material from each horizon with DOM solutions obtained from the Oh horizon of the corresponding soil profiles. We determined the amount of (im)mobilized Al, Fe and DOM after addition of Al and Fe at pH 4.0 and 4.5 and initial dissolved organic carbon (DOC) concentrations of 10 mg C litre?1 or 30 mg C litre?1, respectively. At the combination of pH and DOC concentrations most realistic for the field situation, organic matter was retained in all horizons, the most being retained in the lower B horizon of the well‐developed soil and the least in the upper B horizon of the younger profile. Organic matter solubility seemed to be controlled mainly by precipitation as organo‐metal complexes and/or by adsorption on freshly precipitated solid Al‐ and Fe‐phases. In the lower B horizons, at pH 4.5, solubility of Al and Fe appeared to be controlled mainly by the equilibrium with secondary solid Al‐ and Fe‐phases. In the upper B horizons, the solubility of Al was controlled by adsorption processes, while Fe still precipitated as inorganic complexes as well as organic complexes in spite of the prevailing more acidic pH. Combined with a previous study of eluvial horizons from the same profiles, the results confirm the important role of organic matter in the transport of Al and Fe to create illuvial B horizons initially and subsequently deepening and differentiating them into Bh and Bs horizons.  相似文献   

2.
3.
Field and laboratory studies combined with destructive and nondestructive analytical methods were used to characterize dissolved organic matter (DOM) in acid forest soils. DOM is produced in significant amounts in the forest canopy and in the forest floor. A major part of the organic solutes are lignocellulose-degradation products being strongly microbially altered in the course of ligninolysis. The release of lignin-derived moieties into the soil solution is controlled by their degree of biooxidation. Microorganisms contribute also directly to the organic solutes through the release of microbial metabolites. DOM released from the forest floor passes the upper mineral soil almost conservatively, whereas in the subsoil most DOM is removed from solution. Immobilization of DOM is mainly due to sorption on Fe and Al oxides. The highly oxidized lignin-derived moieties are preferentially removed from the soil solution whereas the saccharides are relatively enriched. We conclude that DOM in the forest soil output to the hydrosphere is a result of (1) the release of microbially degraded lignocellulose compounds and of microbial metabolites into the forest floor solution and (2) selective sorptive removal of the lignin-derived constituents in the subsoil.  相似文献   

4.
Retention and release of dissolved organic matter in Podzol B horizons   总被引:1,自引:0,他引:1  
The main objectives were to study the effects of pH on the retention and release of organic matter in acid soil, and to determine the main differences in results obtained from batch experiments and experiments in columns. We took soil material from the B horizons of a Podzol at Skånes Värsjö (southern Sweden). In batch experiments, soil was equilibrated with solutions varying in pH and concentration of dissolved organic C. In Bh samples, the release of dissolved C gradually increased with increase in pH. In the Bs1 material there was a minimum at pH 4.1, and in the Bs2 soil the minimum occurred at pH 4.6. The ability to retain added dissolved C increased in the order Bh < Bs1 < Bs2. The column experiment was run for 160 days under unsaturated flow conditions. Columns were packed with Bh, Bh + Bs1 or Bh + Bs1 + Bs2 samples to calculate mass balances for each horizon. Solutions either without any dissolved organic C or ones containing 49 mg C dm?3 with pH of 4.0 or 3.6 were used to leach columns. The pH of input solutions only little affected the concentration of dissolved C in the effluent. Relative proportions of hydrophobic substances decreased with increasing column length and decreasing pH. For input solutions containing dissolved C, near steady state was achieved for both the Bs1 and Bs2 horizons with approximately 25% dissolved organic matter retention. Thus, no maximum sorption capacity for dissolved C could be defined for these horizons. This behaviour could not have been predicted by batch data, showing that column experiments provide useful additional information on interactions between organic compounds and solid soil material.  相似文献   

5.
The composition of soil organic matter (SOM) is influenced by land use and fertilization. We studied changes in the SOM in a long-term field experiment on a sandy Podzoluvisol. The control plot and four combinations of manurial treatments of the experiment were selected: one with mineral fertilizer only and three combinations of organic manure with mineral fertilizer: cattle manure + NPK, cattle manure + PK and straw + NPK. The SOM was extracted by sodium pyrophosphate solution (pH = 10) and hot water (100°C). The extracts were analysed by Fourier-Transform Infrared (FT-IR) spectroscopy and gel permeation chromatography (GPC). The FT-IR spectra from sodium pyrophosphate extracts indicate that composition of SOM is indeed influenced by different fertilization. The C=O band at 1710 cm–1 in the samples of the plots fertilized with cattle manure has the highest absorption intensity, whereas the material from the plot fertilized with straw + NPK has the least intense. The GPC analyses of the extracts showed that adding cattle manure + NPK increased the molecular size of SOM in comparison with the control plot. The analysis of hot-water extracts with FT-IR showed no significant differences in functional groups, but GPC chromatograms distinguished features in molecular size distribution. Fertilization with cattle manure increased the molecular size of the SOM in comparison with the control, but the differences in content of carboxylic groups and molecular weight were detected in sodium pyrophosphate extracts only.  相似文献   

6.
Weathering of soil minerals is a key determinant of ground and surface water quality and is also important in pedogenic and rhizosphere processes. The relative importance of biotic and abiotic studies in mineral weathering, however, is poorly understood. We investigated the impact of Picea abies seedlings, an ectomycorrhizal fungus and humic acid on the solubilization of aluminium (Al), iron (Fe) and silicon (Si) in an E horizon forest soil over 10 months. Elemental budgets were constructed based upon losses in drainage water, accumulation in plants and changes in the pools of exchangeable ions. Plants and mycorrhizas or both had a significant effect on the total amounts of Al, Fe and Si mobilized from the soil. Significantly larger amounts of Al and Fe were recovered in plants than those lost in drainage water, whereas the opposite trend was true for Si. The continual addition of dissolved organic matter to the soil in the form of humic acid had an effect only on mobilization of Fe, which increased due to larger plant uptake and an increase in the exchangeable pool. The mobilization of Fe and Si were positively correlated with hyphal length, soil respiration and concentrations of oxalate in the soil solution, and mobilization of Al was strongly correlated with plant weight. Scanning electron microscopy revealed that most fungal hyphae were associated with mineral surfaces with little occupation of cracks and micropores within mineral grains. Evidently ectomycorrhizas have important impacts on mineral dissolution and the chemistry of forest soils.  相似文献   

7.
We have sought to understand the molecular mechanisms by which dissolved organic matter (DOM) forms and soil organic matter (SOM) degrades in upland peaty gley soil under grass. Pyrolysis mass spectrometry (Py-MS) and pyrolysis gas chromatography mass spectrometry (Py-GC/MS) were applied to characterize the DOM collected from lysimeters and its parent SOM. The macromolecular organic matter in the litter and fermentation (Lf) horizon of the soil consists primarily of little decomposed lignocellulose from grass, whereas the humus (Oh) horizon is characterized by an accumulation of selectively decomposed lignocellulose material, microbial metabolites and bound fatty acids. The mineral horizon produced a relative enrichment of furan structures derived from microbial reworking of plant polysaccharides but virtually no lignin signals. A series of exceptional long chain C43 to C53 fatty acids with odd over even predominance, probably derived from mycobacteria, were also identified in the Oh horizon. Side-chain oxidation and shortening, increase of carboxyl functionality and selective removal of syringyl (S) > guaiacyl (G) > p-hydroxyphenyl (P) lignin units were the main reactions when lignin degraded. Compared with SOM, the DOM shows a large accumulation of more oxidized lignin and aromatic structures, especially those containing carboxylic and dicarboxylic acid functionalities and with shorter side-chain length. The polysaccharide-type compounds in the DOM were more modified (greater abundance of furan structures in pyrolysis products), and had significantly lower molecular weight and more diverse polymeric structures than did those in soils. Increased temperature and rainfall appeared to result in greater relative abundance of lignin degradation products and aromatic compounds in DOM.  相似文献   

8.

Purpose

Microbial decomposition of soil organic matter (SOM) is generally believed to be heterogeneous, resulting in the preferential loss of labile compounds such as carbohydrates and proteins and the accumulation of recalcitrant compounds such as lipids and lignin. However, these fractions are difficult to measure directly in soils. We examined patterns in the biomolecular composition of SOM and hot-water-extractable organic matter (HWEOM) by using a molecular mixing model (MMM) to estimate the content of carbohydrates, protein, lipids, and lignin.

Materials and methods

Organic-horizon soils from Spodosols at the Hubbard Brook Experimental Forest in NH, USA were analyzed for this study. The MMM uses data from elemental analysis (C, H, and N) and 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning to estimate the percentage of total C in the various classes of biomolecules.

Results and discussion

Carbohydrate content decreased from about 50 % of the C in recent litter to approximately 35 % in the bottom of the humus layer. Lipids accounted for about 18 % of C in recent litter and increased to 40 % in the lower humus layers. The HWEOM fraction of SOM was dominated by carbohydrates (40–70 % of C). Carbohydrates and lipids in HWEOM exhibited depth patterns that were the opposite of the SOM. The results from the MMM confirmed the selective decomposition of carbohydrates and the relative accumulation of lipids during humus formation. The depth patterns in HWEOM suggest that the solubility of carbohydrates increases during decomposition, while the solubility of the lipid fraction decreases. The MMM was able to reproduce the spectral properties of SOM and HWEOM very accurately, although there were some discrepancies between the predicted and measured H/C and O/C ratios.

Conclusions

The MMM approach is an accurate and cost-effective alternative to wet-chemical methods. Together, carbohydrates and proteins account for up to 85 % of the C in HWEOM, indicating that the HWEOM fraction represents a labile source of C for microbes. Humification resulted in a decrease in carbohydrate content and an increase in lipids in SOM, consistent with investigations carried out in diverse soil environments.  相似文献   

9.
The macromorphology, micromorphology and chemical nature of illuvial material in podzol B horizons and subsoils can be explained by contributions from two different migrating species: (a) a positively-charged mixed Al2O3-Fe2O3-SiO2-H2O sol incorporating minor amounts of adsorbed organic matter and silicate clay, and (b) negatively charged organic sols and solutions, carrying minor amounts of Al, Fe and clay. These species can also be generated within B horizons of high root activity. An alternative theory, that requires allophane to be formed in situ in the B horizon by microbial decomposition of precipitated organic complexes, fails to predict the observed distribution of allophane.  相似文献   

10.
Summary Loss-on-ignition (LOI) and the organic C content have been used to estimate soil organic matter. Organic matter is often estimated from organic C by applying a factor of 1.724. Several authors have examined the relationship between LOI, used as an estimate of organic matter, and C by simple linear regressions. In the present study, this approach was examined in relation to two sets of data. LOI overestimates organic matter in soils with significant proportions of clay minerals because of bound water, and correcting for bound water gives some LOI: C ratios of less than 1. It is concluded that differences in the nature of the organic matter in different soils and horizons make the simple regression approach unsuitable. More attention needs to be paid to studies of the nature of the organic matter.  相似文献   

11.
Abstract. The aluminium (Al), iron (Fe) and Dissolved Organic Carbon (DOC) contents of the soil solution were monitored in two upland grassland and afforested podzol soils in Mid-Wales. Al organo-metallic complexes predominated in the O horizon leachates of the grassland soil, whereas inorganic monomeric Al forms dominated in the lower mineral horizons. Dissolved organic matter determines the chemistry, solubility, and transport of Al and Fe in the O horizon, and these are under strong biological control. The distributions of organic-Al, Fe and DOC within the soil profile were consistent with traditional podzolization theory. Observed increases in the molar ratios of Al:DOC in solution in the lower soil horizons may be responsible for the small solubility of Al organo-metallic complexes in those horizons. Afforestation increased the concentrations of organic-Al and Fe in the soil solution as compared with the concentrations observed for the grassland soil. Clearcutting further significantly mobilized Al and Fe from the upper soil horizon, primarily by increasing the DOC concentration in the soil water.  相似文献   

12.

Purpose

Windthrows and fires are major natural disturbances in forest ecosystems, which can affect organic matter in the surface and the mineral layer of forest soil. The main aim of this study was to evaluate the changes occurring in the structure and properties of humic acid (HA) in the lands where windthrows and wildfires occurred.

Materials and methods

In November 2004, the forest in the area of 12,000 ha in the Tatra National Park, Slovakia, was seriously damaged by northern wind gusts exceeding 200 km/h. In July 2005, a wildfire broke out in a 220 ha of wind-damaged area. The HAs have been isolated from four research plots: (a) the area where the fallen trees were removed (EXT); (b) an area after windstorm covered by wood from struck trees (NEX), left for spontaneous succession; (c) an area after extracted timber, damaged by the surface wildfire (FIR); and (d) a reference intact spruce forest area (REF). Changes in the chemical structure of the HAs isolated from the research plots were determined on the basis of elemental analysis and UV-Vis, EPR, IR, and 13C NMR spectroscopy.

Results and discussion

All used analytical methods showed a decrease in the humification degree of the humic acids extracted from the soils where the spruce forest has been affected by a wildfire and a windthrow. In the case of the control sample HA (REF), the calculated atomic H/C and O/C ratios and the degree of aromaticity (α) calculated from the 13C NMR spectra were higher, indicating higher aromaticity of HA from the REF area. The more complex and developed structure of REF HA was confirmed by the higher value of E1%6 and the lower E4/E6 ratio obtained using UV-Vis spectroscopy. Also, the higher g-parameters determined from the EPR spectra of the stable radicals present in HA confirmed the lower aromaticity on the plots that have been subjected to the calamities. The 13C NMR spectra and the elemental analysis show that the structure of the HA extracted from the NEX plot is the closest to the REF.

Conclusions

The results of the systematic research showed significant changes in the structure of HA taken from spruce forest soils that were subjected to windstorms and fires. An enrichment of the HAs in aliphatic carbon and so a lower humification degree of the organic matter in the areas calamity-affected were observed. The results clearly indicate that the HAs extracted from the disturbed plots of the spruce forest are not as stable as those extracted taken from the control plot.
  相似文献   

13.
This study tested the hypothesis that, like dissolved organic nitrogen (N), dissolved organic phosphorus (P) and sulphur (S) are more mobile in soil than is organic carbon (C). To do so, I compared the sorption of organic P and S to subsoil materials with that of organic C. Soil samples were equilibrated with water‐soluble organic matter from the forest floor at pH 4 and in the equilibrium solutions organic C, P, and S, and their distributions between the hydrophilic and hydrophobic fraction were determined. Sorption of C within the organic matter did not differ from that of P and S. However, the hydrophilic fraction contained the vast majority of P and S and sorbed far less than the hydrophobic fraction. So the overall retention of organic P and S was smaller than that of organic C. This result suggested that dissolved organic matter is more important in the loss of plant nutrients than in the release of C from soil.  相似文献   

14.
In previous parts of this study, transformations of organic matter in mineral A and B horizons from a set of soils of temperate regions were characterised by Curie-point pyrolysis-mass spectrometry (Py/MS) and elucidated in terms of changes in the biopolymer composition. These changes were associated with the processes of eutrophic humification, illuviation and hydromorphism. Within the set (23 profiles from Scotland, chosen as representative of soil groups of the temperate zone) some 13 podzols and humic gleysols displayed raw humus surface horizons above their mineral A horizons.

The L, F and H layers of these organic horizons, where they were morphologically distinct, were successfully differentiated in terms of their biopolymer composition by Py/MS. These differences were of degree rather than kind. The principal components analysis of 50 ion intensities from the mass spectra demonstrated a single dominant factor of composition. The corresponding reconstructed factor spectrum showed, in the sense L→F→H, the loss of lignin and polysaccharide products derived from raw plant material and the increase of residual or humified structures characterized by homologous alkene and higher benzene pyrolysis products. Peat was found to be similar to the L and F material. The successful observation of these chemical differences by a rapidly applied method is contrasted with alternative indices of organic composition, C%, N%, C/N, and also with pH, none of which showed any significant differences between the L, F and H horizons.

The retarded process of humification which occurs in these horizons compares closely in terms of Py/MS with that occurring in anaerobic mineral soils and differs from the more rapid eutrophic humification in aerobic soils. The products resemble those from geochemical sediments.  相似文献   


15.
The phosphate adsorption capacity (Pmax) of samples from various horizons of five Danish podzolized soils were investigated before and after organic matter removal. Removal of organic matter had no direct influence on Pmax suggesting that organic matter did not compete with phosphate for adsorption sites. In the soils investigated aluminium and iron oxides were the main phosphate adsorbents. Thus, more than 96% of the variation in Pmax could be accounted for by poorly crystalline aluminium and iron oxides (extractable by oxalate) and by well-crystallized iron oxides (taken as the difference between dithionite-citrate-bicarbonate-extractable iron and oxalate-extractable iron). Organic matter affected phosphate adsorption indirectly by inhibiting aluminium oxide crystallization. The resulting poorly crystalline oxides had high Pmax. In contrast, the influence of organic matter on the crystallinity of the iron oxides, and therefore on their capacity to adsorb phosphate, seemed limited.  相似文献   

16.
Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized in the soils during previous incubation periods ranging from 1.5 to 8 years.Air drying and rewetting every 30th day over an incubation period of 260–500 days caused an increase in the evolution of labeled CO2 ranging from 16 to 121 per cent as compared to controls kept moist continuously. The effect of the treatment was least in the soil which had been incubated with the labeled material for the longest time.Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after addition was in some cases 4–10 times larger than the evolution from the controls. During the continued incubation the evolution decreased almost to the level of the controls, indicating that the effect was related to the increased biological activity in the soils during decomposition of the added material.Three additions of organic material during the period of incubation resulted totally in an increase over the controls ranging from 36 to 146 per cent.  相似文献   

17.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   

18.
To understand how soil color is influenced by soil components at the farm scale, we evaluated spatial variation in soil color and related soil properties in Japanese paddy fields. After harvest of rice, 246 surface soil samples were collected in 10-m grids from five contiguous irrigated paddy fields, each with an area of about 0.5 ha. The samples were analyzed to determine color parameters (L*, a*, and b*), and contents of total C, total N, Fe oxides, sand, and loss-on-ignition. The results obtained were modeled and mapped geostatistically. All color parameters indicated strong spatial dependence with long ranges (>85 m). In contrast, total C and N showed short ranges (about 40 m). The contents of Fe oxides, sand, and loss-on-ignition showed intermediate ranges (50–85 m). The ranges of these properties and their distribution patterns suggested that the contents of total C and N were influenced by long-term application of manure and that sand content was influenced by topography and past land consolidation. Further soil color analysis after removal of organic matter or silt plus clay particles revealed that soil organic matter, texture, and Fe oxides affected soil color parameters in a complex manner. Prediction of total C from soil darkness was hindered by the presence of silt plus clay particles containing Fe oxides. On the other hand, citrate-dithionite extractable Fe was estimated accurately from the b* value (yellowness), which can be useful for predicting the occurrence of akiochi (autumn decline) disease of rice at the farm scale.  相似文献   

19.

Purpose

Fire in mountainous areas can lead to increased variability of their soil organic matter (SOM) due to spatial inhomogeneity and pre-fire fuel distribution. Here, we elucidated if this was the case in our study area and how this affected the reliability of solid-state 13C NMR spectroscopy applied for the study of the medium-term impact of fire on SOM

Materials and methods

The study occurred in the Sierra de Aznalcóllar, Southern Spain, which experienced their last intense fire 7 years before sampling. In a first approach (method 1), the corners and the center of a randomly chosen square with a side length of 15 m were sampled and analyzed separately. For comparison, composite samples (method 2) were obtained from three soils. We characterized material from unburnt, burnt, and double burnt regions. Data describing the physical and chemical properties of the soils together with the NMR spectroscopic characterization were analyzed using ANOVA.

Results and discussion

Both sampling methods yielded comparable results with comparable standard errors. No major differences between the fire-affected and unburnt soils were observed with respect to physical and chemical properties and C and N contents, but solid-state 13C NMR spectroscopy indicated a small but significant elevation of aromaticity in the soils with fire history.

Conclusions

The analysis showed that sampling with reduced replicates (method 1) can still lead to representative NMR data. The more complex sampling of comparing three composite samples (method 2) did not decrease the standard error. Our results also indicate that in the study area typical properties of the soil and its SOM induced by former burnings will not persist beyond a few decades.
  相似文献   

20.
The quality of dissolved organic matter (DOM) is highly variable and little information is available on the relation of DOM quality to the structure and composition of its parent soil organic matter (SOM). The effect of increasing N inputs to forest soils on the structure and composition of both SOM and DOM also remains largely unclear. Here we studied the release of DOM, its specific UV absorption and two humification indices (HIX) derived from fluorescence spectra from Oa material of 15 North- and Central-European Norway spruce (Picea abies (L.) Karst.) stands. The Oa material was incubated aerobically at 15 °C and water holding capacity over a period of 10 months and extracted monthly with an artificial throughfall solution. Soil respiration was determined weekly. The influence of mineral N inputs on composition of DOM and on respiration rates was investigated on periodically NH4NO3-treated Oa samples of eight selected sites. Release of dissolved organic carbon (DOC) from untreated Oa material samples ranged from 0.0 to 58.6 μg C day−1 g C−1 and increased with increasing C-to-N ratio. One HIX and UV absorption of DOM were negatively correlated to the degree of oxidation of lignin-derived compounds and positively to the C-to-N ratio and – HIX only – to the aromatic C content of SOM. Mineral N addition had no distinct effect on respiration rates. In six of eight samples the N-treatment caused an increase in specific UV absorption or one HIX of DOM. However, these effects were not statistically significant. Addition of mineral N did not affect the rates of DOM release. Our results show that properties of SOM largely determine the amount and quality of DOM in forest floors. Changes of DOM quality due to mineral N additions are likely, but we cannot confirm significant changes of DOM release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号