首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle.  相似文献   

2.
Bulk carbonaceous chondrites display a deficit of approximately 100 parts per million (ppm) in 144Sm with respect to other meteorites and terrestrial standards, leading to a decrease in their 142Nd/144Nd ratios by approximately 11 ppm. The data require that samarium and neodymium isotopes produced by the p process associated with photodisintegration reactions in supernovae were heterogeneously distributed in the solar nebula. Other samarium and neodymium isotopes produced by rapid neutron capture (r process) in supernovae and by slow neutron capture (s process) in red giants were homogeneously distributed. The supernovae sources supplying the p- and r-process nuclides to the solar nebula were thus disconnected or only weakly connected.  相似文献   

3.
Oxygen isotopic composition of our solar system is believed to have resulted from mixing of two isotopically distinct nebular reservoirs, 16O-rich and (17,18)O-rich relative to Earth. The nature and composition of the (17,18)O-rich reservoir are poorly constrained. We report an in situ discovery of a chemically and isotopically unique material distributed ubiquitously in fine-grained matrix of a primitive carbonaceous chondrite Acfer 094. This material formed by oxidation of Fe,Ni-metal and sulfides by water either in the solar nebula or on a planetesimal. Oxygen isotopic composition of this material indicates that the water was highly enriched in 17O and 18O (delta(17,18)O(SMOW) = +180 per thousand per mil), providing the first evidence for an extremely (17,18)O-rich reservoir in the early solar system.  相似文献   

4.
High-precision 60Fe-60Ni isotope data show that most meteorites originating from differentiated planetesimals that accreted within 1 million years of the solar system's formation have 60Ni/58Ni ratios that are approximately 25 parts per million lower than samples from Earth, Mars, and chondrite parent bodies. This difference indicates that the oldest solar system planetesimals formed in the absence of 60Fe. Evidence for live 60Fe in younger objects suggests that 60Fe was injected into the protoplanetary disk approximately 1 million years after solar system formation, when 26Al was already homogeneously distributed. Decoupling the first appearance of 26Al and 60Fe constrains the environment where the Sun's formation could have taken place, indicating that it occurred in a dense stellar cluster in association with numerous massive stars.  相似文献   

5.
The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.  相似文献   

6.
Records of now-extinct short-lived nuclides in meteorites provide information about the formation and evolution of the solar system. We have found excess 10B that we attribute to the decay of short-lived 10Be (half-life 1.5 million years) in hibonite grains from the Murchison meteorite. The grains show no evidence of decay of two other short-lived nuclides-26Al (half-life 700,000 years) and 41Ca (half-life 100,000 years)-that may be present in early solar system solids. One plausible source of the observed 10Be is energetic particle irradiation of material in the solar nebula. An effective irradiation dose of approximately 2 x 10(18) protons per square centimeter with a kinetic energy of >/=10 megaelectronvolts per atomic mass unit can explain our measurements. The presence of 10Be, coupled with the absence of 41Ca and 26Al, may rule out energetic particle irradiation as the primary source of 41Ca and 26Al present in some early solar system solids and strengthens the case of a stellar source for 41Ca and 26Al.  相似文献   

7.
The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.  相似文献   

8.
In the current paradigm, Oort cloud comets formed in the giant planets' region of the solar nebula, where temperatures and other conditions varied greatly. The measured compositions of four such comets (Halley, Hyakutake, Hale-Bopp, and Lee) are consistent with formation from interstellar ices in the cold nebular region beyond Uranus. The composition of comet C/1999 S4 (LINEAR) differs greatly, which suggests that its ices condensed from processed nebular gas, probably in the Jupiter-Saturn region. Its unusual organic composition may require reevaluation of the prebiotic organic material delivered to the young Earth by comets.  相似文献   

9.
Results from the Pioneer Venus sounder probe neutral mass spectrometer indicate that there is no difference in the isotopic ratios of carbon and oxygen between Venus and Earth to within +/- 5 percent. The mixing ratio of nitrogen is 3.5(+3)(-2) percent with an isotopic ratio within 20 percent of that of Earth. The ratio of argon-36 to argon-40 is 85 percent, and the ratio of argon-38 to argon-36 is 20 percent. The mixing ratios of argon-36 and argon-40 are approximately 40 and 50 parts per million, respectively, with an error of about a factor of 2 (mainly toward a lesser amount) resulting from uncertainty in the response of the ion pump to rare gases. Hydrogen chloride cannot account for more than a few percent of the 36 mass peak, and therefore the large excess of primordial argon is a reasonable conclusion. The ratio of neon-20 to argon-36 of 0.5 +/- 0.3 is definitely terrestrial in character rather than solar. These results indicate that there is a large excess of all primordial noble gases on Venus relative to Earth. There appears to be a considerably higher abundance of sulfur compounds below 20 kilometers than in or above the main cloud layer. The 32 and 60 mass peaks show a sharp increase below 22 kilometers, indicating the possible production of sulfur and carbon oxysulfide (COS) at the expense of sulfur dioxide.  相似文献   

10.
Isotopic variability in barium, neodymium, and samarium in carbonaceous chondrites reflects the distinct stellar nucleosynthetic contributions to the early solar system. We used 148Nd/144Nd to correct for the observed s-process deficiency, which produced a chondrite 146Sm-142Nd isochron consistent with previous estimates of the initial solar system abundance of 146Sm and a 142Nd/144Nd at average chondrite Sm/Nd ratio that is lower than that measured in terrestrial rocks by 21 +/- 3 parts per million. This result strengthens the conclusion that the deficiency in 142Nd in chondrites relative to terrestrial rocks reflects 146Sm decayand earlyplanetary differentiation processes.  相似文献   

11.
Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extrasolar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory has detected emission lines from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface, hinting at a water ice reservoir equivalent to several thousand Earth oceans in mass. The water's ortho-to-para ratio falls well below that of solar system comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.  相似文献   

12.
Chondrulelike objects in short-period comet 81P/Wild 2   总被引:1,自引:0,他引:1  
The Stardust spacecraft returned cometary samples that contain crystalline material, but the origin of the material is not yet well understood. We found four crystalline particles from comet 81P/Wild 2 that were apparently formed by flash-melting at a high temperature and are texturally, mineralogically, and compositionally similar to chondrules. Chondrules are submillimeter particles that dominate chondrites and are believed to have formed in the inner solar nebula. The comet particles show oxygen isotope compositions similar to chondrules in carbonaceous chondrites that compose the middle-to-outer asteroid belt. The presence of the chondrulelike objects in the comet suggests that chondrules have been transported out to the cold outer solar nebula and spread widely over the early solar system.  相似文献   

13.
The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.  相似文献   

14.
A search was made for 26Mg (26Mg*) from the decay of 26Al (half-life = 0.73 million years) in Al-rich objects from unequilibrated ordinary chondrites. Two Ca-Al-rich inclusions (CAIs) and two Al-rich chondrules (not CAIs) were found that contained 26Al when they formed. Internal isochrons for the CAIs yielded an initial 26Al/27Al ratio [(26Al/27Al)0] of 5 x 10(-5), indistinguishable from most CAIs in carbonaceous chondrites. This result shows that CAIs with this level of 26Al are present throughout the classes of chondrites and strengthens the notion that 26Al was widespread in the early solar system. The two Al-rich chondrules have lower 26Mg*, corresponding to a (26Al/27Al)0 ratio of approximately 9 x 10(-6). Five other Al-rich chondrules contain no resolvable 26Mg*. If chondrules and CAIs formed from an isotopically homogeneous reservoir, then the chondrules with 26Al must have formed or been last altered approximately2 million years after CAIs formed; the 26Mg*-free chondrules formed >1 to 3 million years later still. Because 26Mg*-containing and 26Mg*-free chondrules are both found in Chainpur, which was not heated to more than approximately400°C, it follows that parent body metamorphism cannot explain the absence of 26Mg* in some of these chondrules. Rather, its absence indicates that the lifetime of the solar nebula over which CAIs and chondrules formed extended over approximately5 million years.  相似文献   

15.
A mass imbalance exists in Earth for Nb, Ta, and possibly Ti: continental crust and depleted mantle both have subchondritic Nb/Ta, Nb/La, and Ti/Zr, which requires the existence of an additional reservoir with superchondritic ratios, such as refractory eclogite produced by slab melting. Trace element compositions of minerals in xenolithic eclogites derived from cratonic lithospheric mantle show that rutile dominates the budget of Nb and Ta in the eclogites and imparts a superchondritic Nb/Ta, Nb/La, and Ti/Zr to the whole rocks. About 1 to 6 percent by weight of eclogite is required to solve the mass imbalance in the silicate Earth, and this reservoir must have an Nb concentration >/= 2 parts per million, Nb/La >/= 1.2, and Nb/Ta between 19 and 37-values that overlap those of the xenolithic eclogites. As the mass of eclogite in the continental lithosphere is significantly lower than this, much of this material may reside in the lower mantle, perhaps as deep as the core-mantle boundary.  相似文献   

16.
To evaluate the isotopic composition of the solar nebula from which the planets formed, the relation between isotopes measured in the solar wind and on the Sun's surface needs to be known. The Genesis Discovery mission returned independent samples of three types of solar wind produced by different solar processes that provide a check on possible isotopic variations, or fractionation, between the solar-wind and solar-surface material. At a high level of precision, we observed no significant inter-regime differences in 20Ne/22Ne or 36Ar/38Ar values. For 20Ne/22Ne, the difference between low- and high-speed wind components is 0.24 +/- 0.37%; for 36Ar/38Ar, it is 0.11 +/- 0.26%. Our measured 36Ar/38Ar ratio in the solar wind of 5.501 +/- 0.005 is 3.42 +/- 0.09% higher than that of the terrestrial atmosphere, which may reflect atmospheric losses early in Earth's history.  相似文献   

17.
Optical and scanning electron microscopy of a chondrule-free clast in the unequilibrated L3 chondrite Khohar revealed a spherical object consisting of an aggregate of small ( approximately 2- micrometer diameter), Ni-poor (0.5 to 2.89 weight percent) metal particles and fine-grained graphite (<1-micrometer diameter). The graphite has large D and 15N excesses (deltaD approximately 1500 per mil and delta15N approximately 1300 per mil) with two isotopically distinct signatures: N rich with a high D/H ratio and N poor with a high 15N/14N ratio. These excesses are the largest D and 15N excesses observed in situ in a well-characterized phase in a meteorite. The isotopic characteristics are suggestive of an interstellar origin, probably by ion-molecule reactions at low temperature in the interstellar molecular cloud from which the solar system formed. The structure and nonchondritic composition of the metal particles suggest they did not form under equilibrium conditions in the solar nebula.  相似文献   

18.
Diamonds with delta(13)C values of -2 per mil and less than 50 parts per million (by mass) nitrogen have been isolated from the Abee enstatite chondrite by the same procedure used for concentrating Cdelta, the putative interstellar diamond found ubiquitously in primitive meteorites and characterized by delta(13)C values of -32 to -38 per mil, nitrogen concentrations of 2,000 to 12,500 parts per million, and delta(15)N values of -340 per mil. Because the Abee diamonds have typical solar system isotopic compositions for carbon, nitrogen, and xenon, they are presumably nebular in origin rather than presolar. Their discovery in an unshocked meteorite eliminates the possibility of origins normally invoked to account for diamonds in ureilites and iron meteorites and suggests a low-pressure synthesis. The diamond crystals are approximately 100 nanometers in size, are of an unusual lath shape, and represent approximately 100 parts per million of Abee by mass.  相似文献   

19.
Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments to which they were exposed. We found that icy grains originating in the outer disk, where temperatures were less than 30 kelvin, experienced ultraviolet irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural by-products of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.  相似文献   

20.
Sulfides from four achondrite meteorite groups are enriched in 33S (up to 0.040 per mil) as compared with primitive chondrites and terrestrial standards. Stellar nucleosynthesis and cosmic ray spallation are ruled out as causes of the anomaly, but photochemical reactions in the early solar nebula could produce the isotopic composition. The large 33S excess present in oldhamite from the Norton County aubrite (0.161 per mil) suggests that refractory sulfide minerals condensed from a nebular gas with an enhanced carbon-oxygen ratio, but otherwise solar composition is the carrier. The presence of a mass-independent sulfur effect in meteorites argues for a similar process that could account for oxygen isotopic anomalies observed in refractory inclusions in primitive chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号