首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twelve ruminally cannulated Jersey steers (BW = 534 kg) were used in an incomplete Latin square design experiment with a 2 x 2 factorial arrangement of treatments to determine the effects of wet corn gluten feed (WCGF) and total DMI level on diet digestibility and ruminal passage rate. Treatments consisted of diets formulated to contain (DM basis) steam-flaked corn, 20% coarsely ground alfalfa hay, and either 0 or 40% WCGF offered once daily for ad libitum consumption or limited to 1.6% of BW (DM basis). Two consecutive 24-d periods were used, each consisting of 18 d for adaptation, 4 d for collection, and a 2-d in situ period. Rumens of all steers were evacuated once daily at 0, 4, 8, and 12 h after feeding. Chromic oxide (10 g/[steer*d]) was fed as a digestibility marker, and steers were pulse-dosed with Yb-labeled alfalfa hay to measure ruminal particulate passage rate. Dacron bags containing 5 g of steam-flaked corn, WCGF, or ground (2-mm screen) alfalfa hay were placed into the rumens of all steers and removed after 3, 6, 12, or 48 h. Wet corn gluten feed increased percent apparent total-tract digestion of OM (P < 0.01), NDF (P < 0.01), and starch (P < 0.03), decreased (P < 0.01) ruminal total VFA concentration, increased (P < 0.01) ruminal NH3 concentration, and increased (P < 0.01) ruminal pH. Wet corn gluten feed also increased (P < 0.01) ruminal passage rate of Yb. Limit feeding decreased (P < 0.01) percent apparent total-tract digestion of both OM and NDF, ruminal total VFA concentration (P < 0.01), and ruminal fill (P < 0.01), but increased (P < 0.01) ruminal NH3 concentration. Apparent total-tract digestion of starch was not affected (P = 0.70) by level of DMI. A DMI level x hour interaction (P < 0.01) occurred for ruminal pH. Limit feeding increased ruminal pH before and 12 h after feeding, but decreased ruminal pH 4 h after feeding compared with diets offered ad libitum. A diet x DMI level interaction (P < 0.02) occurred for in situ degradation of alfalfa hay, with dietary addition of WCGF increasing (P < 0.02) the extent of in situ alfalfa hay degradation in steers fed for ad libitum consumption. This study suggests that WCGF increases OM and NDF digestion, and that limit feeding diets once daily might depress OM and NDF digestion, possibly due to decreased stability of the ruminal environment.  相似文献   

2.
The effects of source and level of dietary NDF on intake, ruminal digestion in situ, ruminal fermentation, and total tract digestion were evaluated in Hereford steers using a replicated 5 x 5 Latin square design. Diets contained 62 to 64% TDN and included 1) 80% control concentrate (contained pelleted ground grains) and 20% timothy hay (traditional diet), 2) 80% control concentrate and 20% alfalfa cubes, 3) 90% control concentrate and 10% cubes, 4) a completely pelleted diet using corn cobs as the primary NDF source, and 5) 80% textured (rolled instead of ground grains) concentrate and 20% hay. Dry matter intake differed (P less than .05) between the traditional and cube diets due to limited acceptance of alfalfa cubes. Increased (P less than .05) ruminal osmolality, total VFA, and NH3 N and lower (P less than .01) ruminal pH in steers fed corn cob and cube diets relative to steers fed the traditional diet were due to preferential consumption of concentrate over supplemental roughage and the resultant rapid fermentation of concentrates. Potentially degradable DM in the traditional diet exceeded (P less than .06) all other diets, resulting in the increased (P less than .10) extent of DM disappearance despite a slower (P less than .05) rate of DM disappearance. Rate of NDF disappearance and all in situ starch disappearance parameters were similar between the traditional, corn cob, and cube diets. All ruminal digestion parameters involving NDF disappearance were similar between hay diets and between cube diets, whereas rate and extent of starch disappearance differed (P less than .05) between hay diets. Although formulation of diets with different sources of dietary NDF did not affect total tract digestion of nutrients, nutrient availability and ruminal fermentation were altered due to dietary differences in sources of dietary NDF and preferential selection of feedstuffs by steers.  相似文献   

3.
In four feeding trials with beef steers, corn silage (CS), alfalfa hay (AH), and alfalfa silage (AS) were compared as roughage sources in dry-rolled (DRC); dry whole (DWC); ground, high-moisture (GHMC); and whole, high-moisture corn (WHMC) fattening diets. In processed corn diets (DRC and GHMC), steers fed CS had lower DMI (P less than .05) and feed:gain ratios (P less than .10) than steers fed AS as the roughage source. In a separate trial, greater gains (P less than .10) and lower feed:gain ratios (P less than .05) were found during the initial feeding period, which included the adaptation phase, for steers fed CS vs steers fed AH as the roughage source. Over the entire feeding period, lower (corn type x roughage source interaction, P less than .05) feed:gain ratios were found in GHMC diets when CS was fed as the roughage source; feed:gain ratios were similar in steers fed DRC diets containing either CS or AH. Over the entire feeding period, similar performance was found among steers fed the various roughage sources in DWC diets; however, with WHMC diets, steers fed AS as the roughage source had lower feed:gain ratios than did steers fed AH (P less than .05) or CS (P greater than .10). In the processed corn diets, high correlations were found between diet NDF digestibility and gain (r = .80), intake (r = .68), and feed:gain ratios (r = -.66); similar trends were found in WHMC diets but not in DWC diets. These results suggest that the ideal roughage source to complement finishing diets may depend on corn processing method and feeding period (adaptation vs finishing).  相似文献   

4.
Nine crossbred beef steers (344 +/- 26 kg) fitted with ruminal cannulas were used in a randomized complete block design to evaluate the effects of feeding frequency and feed intake fluctuation on total tract digestion, digesta kinetics, and ruminal fermentation profiles in limit-fed steers. In Period 1, steers were allotted randomly to one of four dietary treatments: 1) feed offered once daily at 0800; 2) feed offered once daily at 0800 with a 10% fluctuation in day-to-day feed intake; 3) feed offered twice daily at 0800 and 1700; and 4) feed offered twice daily at 0800 and 1700 with a 10% fluctuation in a day-to-day feed intake. In Period 2, steers were reallocated across treatments. The 90% concentrate diet was fed at 90% of the ad-libitum consumption by each steer. Chromium-EDTA and Yb-labeled steam-flaked corn were intraruminally infused at 0800 on d 1 and 3 and Co-EDTA and Er-labeled steam-flaked corn were infused on d 2 and 4 of the 4-d collection period. Ruminal samples were collected at 0, 3, 6, 9, 12, 15, 18, and 24 h after the 0800 feeding, and total feces were collected for 4 d. Total tract digestibilities of OM, N, and starch were lowest (fluctuation x frequency, P < .05) when feed was offered twice daily with a 10% fluctuation in intake. Ruminal fluid volume and passage rate were not affected (P > .10) by feeding frequency or intake fluctuation. A frequency x fluctuation x sampling time interaction occurred (P < .01) for ruminal pH. Steers fed a constant amount of feed once daily had higher (P < .05) ruminal pH at 0, 3, 18, and 24 h than steers fed once daily with a 10% fluctuation in feed intake. Total VFA concentration was greater (P < .01) at 9 h after the 0800 feeding when feed was offered once vs twice daily. Feeding twice daily increased (P < .05) the molar proportion of acetate and decreased (P < .05) the molar proportion of propionate. Increasing feeding frequency resulted in a more stable ruminal environment; however, the increased acetate:propionate ratio with twice-daily feeding might result in lower efficiency of energy utilization by limit-fed steers.  相似文献   

5.
Two finishing trials, one laboratory trial and one metabolism trial were conducted with the following objectives: 1) to determine the associative effects of feeding high-moisture corn (HMC) with either dry-rolled grain sorghum (DRGS) or dry-rolled corn (DRC) and 2) to evaluate HMC when harvested at different moisture levels, stored in different structures, or fed as whole or rolled HMC. In Trial 1, yearling steers (BW, 328 kg) were fed diets containing mixtures of HMC and DRGS. As level (0, 33, 100%, as percentage of grain DM) of DRGS increased, ADG (P less than .03) and gain/feed (P less than .001) decreased linearly; gain/feed tended to be affected quadratically (P = .14). In Trial 2, yearling steers (BW, 382 kg) fed HMC, stored whole in an upright, oxygen-limiting silo and rolled coarsely before feeding, gained faster (1.46 vs 1.36 kg/d) and more efficiently (.142 vs. .131 gain/feed) than steers fed whole HMC (P less than .01). In Trial 3, as length of storage of bunker HMC increased, in vitro rate of starch digestion and soluble N content increased (20.4 and 36.8%, respectively) and grain pH decreased (10.9%). In Trial 4, steers fed HMC or a mixture of 75% HMC with 25% DRGS had similar ruminal pH throughout a grain adaptation period, but total ruminal VFA were greater (P less than .005) for steers fed HMC alone. These data are interpreted to suggest that feeding a mixture of HMC, ground and stored in a bunker or silo bag, with DRGS will result in a 3.2% associative effect. However, no associative effects were measured when a mixture of HMC, stored whole and fed whole or rolled, and DRC were fed.  相似文献   

6.
Seven trials were conducted to determine the effects of increasing amounts of silage (corn, wheat or sorghum) on forage intake, gastrointestinal tract fill, fecal output and ruminal flow and degradation of forage by cattle grazing wheat pasture or bermudagrass. In each of 3 yr, 24 steers grazed a common wheat or bermudagrass pasture and were randomly allocated to four treatments (0, .35, .70 or 1.05 kg silage DM.100 kg body weight-1.d-1). Intake and ruminal flow of forage were measured by feeding a single pulse dose of Yb-labeled forage followed by collection of fecal samples for 4 to 5 d and fitting Yb concentrations to a one-compartment, age-dependent model. Ruminal digestion kinetics of wheat forage were estimated in situ using eight ruminally cannulated steers fed 0 or .55 kg sorghum silage DM.100 kg body weight-1.d-1. Supplemental silage decreased wheat forage (P less than .10) and bermudagrass (P less than .01) intake linearly. However, total forage intake of bermudagrass plus silage increased linearly (P less than .05). Each kilogram of added silage DM decreased DM intake of wheat forage by .66 +/- .25 and of bermudagrass by .63 +/- .17 kg. Flow and turnover of wheat forage or bermudagrass were not altered (P greater than .15) by supplemental silage. Silage consumption increased extent of ruminal degradation of wheat forage DM (P less than .05; 63.1 vs 52.5%), indicating a positive associative effect of silage on wheat forage utilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A 2(3) factorial arrangement of treatments was used to study main effects and interactions between particle size of prairie hay (chopped vs ground), two levels of feed intake (60 and 90% of ad libitum) and ruminal degradability of protein sources [dry corn gluten feed (DCGF) vs dry distillers grains (DDG)] on ruminal and total tract digestion in eight ruminal- and duodenal-cannulated steers. Steers were fed every 2 h to approach steady-state feeding conditions. Steers fed ground hay diets digested higher (P less than .05) percentages of total digestible organic matter (OM) and neutral detergent fiber (NDF) in the rumen and had lower (P less than .05) nonammonia-nonbacterial N (NANBN) flows to the duodenum than did those fed chopped hay, probably because greater surface area of ground hay allowed more extensive ruminal fermentation. Protein source X intake interactions were noted for ruminal OM and NDF digestion when expressed as percentages of total digestion. At low intakes, steers fed DCGF had higher (P less than .05) percentages of total digestible OM and NDF disappearing in the rumen than did those fed DDG. Steers fed DCGF had lower total N, NANBN and total amino acid (AA) flows at the duodenum than did those fed DDG, indicating that less DCGF protein escaped ruminal degradation. Steers fed DDG had greater (P less than .05) total tract NDF digestion, suggesting that escape protein from DDG may stimulate hindgut fermentation and thereby affect site and extent of nutrient digestion. Regression analysis indicated that extent of ruminal fermentation and efficiency of microbial growth in vivo are associated with ruminal rates of passage within individual animals. When steers were fed at high-intake levels (1.6% of body weight), ruminal dilution rates were not increased (P less than .05) due to forage particle size or level of intake treatments, accounting, in part, for the lack of expected treatment differences in efficiency of bacterial growth and duodenal N flow, and for the low number of interactions between main effects.  相似文献   

8.
Five trials were conducted to evaluate the energy value of corn wet milling by-products in finishing diets. In trials 1 (45 finishing lambs, 34 kg) and 2 (70 digestion wethers, 32 kg), Rambouillet X Suffolk lambs fed corn gained faster (P less than .10), more efficiently (P less than .10) and had higher (P less than .01) digestibilities of neutral and acid detergent fiber (NDF, ADF) and starch than lambs fed dry corn gluten feed (DCGF). Lambs fed wet corn gluten feed (WCGF) consumed less feed (trial 1, P less than .05; trial 2, P less than .01), were more efficient (P less than .01) NDF and ADF digestibilities than lambs fed DCGF. Starch, NDF and ADF digestion were higher (P less than .01) for lambs fed WCGF vs wet corn bran (WCB). Lambs fed WCGF gained faster (P less than .10) and consumed more (trial 1, P = .12; trial 2, P less than .10) feed than lambs fed WCB. Dried corn bran increased (trial 1, P less than .05; trial 2, P less than .01) intake and increased (P less than .01) dry matter digestion (DMD) compared with WCB. In trial 3, rates of in vitro dry matter and NDF disappearance were similar among by-product feeds. In trial 4 (50 individually fed Shorthorn-Hereford-Angus steers, 316 kg), steers fed WCGF tended to consume more (P = .14) feed than steers fed DCGF. Corn gluten feed (CGF) replacing 0 to 46% corn decreased gain (linear, P less than .05) and DMD (linear, P less than .10), while starch digestion was highest for 23% CGF (quadratic, P less than .01). A level X CGF type interaction (P = .15) occurred for efficiency due to the lower gain of steers fed 46% DCGF. The efficiency of CGF utilization was 97% that of corn when WCGF replaced 23 or 46% corn or DCGF replaced 23% corn. Dry CGF replacing 46% corn had 87% the value of corn. In trial 5 (186 Hereford-Angus cattle, 310 kg), DCGF replacing 25 and 50% corn had 97 to 100% the efficiency of corn, while intake and gain were not affected. Dry CGF replacing 25 and 50% corn silage increased (linear, P less than .05) intake 11.3% and gain 13.8%. In ruminants, CGF is highly digestible and feed efficiency is similar to corn when WCGF is fed up to 50% of the grain component or when DCGF is fed up to 25% of the grain component.  相似文献   

9.
A 5 x 5 Latin square design was used to determine the effects of restricted and ad libitum intake of diets containing wheat middlings on the site and extent of digestion compared to ad libitum intake of a corn-based diet and ad libitum intake of chopped alfalfa hay. Five ruminally and duodenally cannulated Angus steers (519 +/- 41.5 kg BW) were used to compare five dietary treatments. The five treatments were as follows: ad libitum access to a corn-based finishing diet (control), the control diet with 25 percentage units of the corn and soybean meal replaced with wheat middlings offered ad libitum (WM), the WM diet restricted to 75% of predicted ad libitum intake (RWM), the RWM diet with wheat middlings replaced with ammoniated wheat middlings (RNWM), and ad libitum access to a chopped alfalfa hay diet. Although RWM steers were fed to consume 75% of ad libitum intake, RWM steers consumed 15.5% less DM than WM. Steers fed ad libitum hay consumed 28.6, 31.7, and 37.2% less (P < 0.01) DM, OM, and nitrogen than RWM steers. No differences in apparent or true ruminal digestibility were observed among steers fed the control vs WM, WM vs RWM, RWM vs RNWM, or RWM vs hay diets. However, the steers fed the hay diet had 32.5, 33.4, and 36.9% lower (P < 0.01) apparent total tract digestibilities of DM, OM, and N than those fed the RWM diet. Average ruminal pH was lower (P < 0.01) for control steers than those fed the WM diet and for those fed RWM compared to the hay diet. The acetate:propionate ratio was higher for cattle fed hay vs the RWM diet. Microbial DM and OM flow to the small intestine was higher (P < 0.02) for steers fed the RWM diet than those fed the hay diet. In addition, bacterial N flow to the small intestine was higher (P < 0.01) for cattle receiving the RWM diet than the hay diet. Feeding diets containing 25 percentage units of wheat middlings at 75% ad libitum intake had no effect on ruminal digestibility.  相似文献   

10.
Feedlot performance was studied in a 262-d trial using 126 crossbred beef steers (182 kg initial BW) to determine whether source of dietary roughage influences performance and carcass characteristics by steers fed growing (112 d) and finishing (150 d) diets with various flake densities (FD) of steam-processed sorghum grain. A 3 x 3 arrangement of treatments (two pens of seven steers each) was used, with dietary roughages being chopped alfalfa hay or 50:50 mixtures (equal NDF basis) of cotton-seed hulls or chopped wheat straw with alfalfa hay; sorghum grain was steam-flaked to densities of 386, 322, and 257 g/L (SF30, SF25, and SF20, reflecting bushel weight in pounds). The effects of these same FD on nutrient digestibilities were determined in three experiments with 24 crossbred steers fed finishing diets containing each of the roughage sources. No interactions between FD and roughage type were detected in any performance or carcass measurements (P > .10). Intake of DM decreased linearly (P < .05) in response to decreased FD. Daily rate and efficiency of gain were not altered (P >.10) by FD. Decreasing FD decreased linearly (P < .05) dressing percentage and fat thickness, but not other carcass measurements. Dietary roughage did not affect (P >.10) daily gains or carcass measurements, but DM intake was lower and feed efficiencies were superior (P < .05) when alfalfa hay was the sole source of roughage. Cottonseed hulls and wheat straw were relatively less valuable in the low roughage finishing diets than in higher roughage growing diets. Digestibilities of starch increased linearly as FD was decreased (P = .02) when steers were fed diets containing wheat straw, but not for alfalfa hay or cottonseed hull diets. Digestibilities of DM did not vary with changes in FD; however, changes in CP, NDF, and ADF digestibilities due to FD seemed to differ among experiments. In conclusion, performance and carcass measurement responses by growing-finishing steers to differences in sorghum grain FD were not related to source of dietary roughage, but diets with alfalfa hay as the only source of roughage were most efficient. Decreasing FD of sorghum grain below 386 g/L (30 lb/bu) was not advantageous in improving performance or carcass merit by growing-finishing steers.  相似文献   

11.
Two trials were conducted to determine the influence of realimentation diet energy, protein, B-vitamin (BV) and Lactobacillus acidophilus (LAC) content on recovery of rumen activity and feed consumption in beef steers. In trial 1, ruminal-fistulated steers were fasted and refed 1) prairie hay, 2) 10% protein (LCP), 3) 12.5% protein (MCP), 4) LCP + BV or 5) LCP + LAC. In trial 2, calves were fasted and refed 1) 60% cottonseed hulls-40% alfalfa dehy (high roughage), 2) LCP, 3) 15% protein (HCP), 4) LCP + BV or 5) LCP + LAC. Rumen fermentative capacity declined 74% (P less than .05) during feed and water deprivation, but returned to control levels by d 7 of realimentation. On d 3 of realimentation, steers fed the LCP and MCP diets had molar proportions of ruminal butyrate in excess of 35%. Steers fed the hay, LAC and BV diets did not have a high butyrate fermentation. In trial 2, calves lost about 15% of their body weight during feed and water deprivation. Calves fed the high roughage diet appeared to return to prefast feed and energy intakes more slowly than steers fed the medium roughage diets. Results of this study indicate that rumen fermentative capacity is a factor limiting feed intake in fasted calves for 7 to 14 after the reintroduction of feed and water.  相似文献   

12.
Lambs (29 +/- 2.5 kg) were fed three diets at various intakes to determine whether diet composition or level of intake was reflected in changes in diet digestibility or ruminal fluid characteristics. In Exp. 1, a 90% concentrated, pelleted diet or a whole shelled corn diet with a pelleted protein supplement was fed at three levels of intake: ad libitum and 92.5 and 85% of ad libitum (n = 15). Exp. 2 compared the 90% concentrate diet with diets in which the energy density was diluted to 55 or 72.5% concentrate by including alfalfa hay as a possible method of restricting energy intake (n = 6). Lambs were adapted to diets for 13 d; feces were collected for 6 d and ruminal fluid was collected 0, 3, and 6 h after feeding on the day following fecal collection. Restricting intake in Exp. 1 did not affect DM digestibility or digestibility of CP or starch. Digestibility of ADF was increased (P less than .10) by restricting intake. Ruminal fluid pH, ammonia concentration and VFA concentrations were affected little by either restricted intake level. Digestibility of DM was 4% higher (P less than .001) and starch 5% higher (P less than .001) for the whole shelled corn diet than for the pelleted, high-concentrate diet. Ruminal pH of lambs fed the whole shelled corn diet was higher and fluctuated less than the ruminal pH of lambs fed the high-concentrate, pelleted diet. In Exp. 2, diet digestibility was reduced (P less than .01) and ruminal pH was increased (P less than .002) by addition of hay. Restricted feeding of lambs did not seem to increase diet digestibility or alter ruminal conditions.  相似文献   

13.
Effects of zinc sulfate (0 vs 1,142 ppm supplemental zinc from zinc sulfate) and feeding frequency (1 x vs 12x daily) on ruminal protozoa numbers, fermentation patterns and amino acid passage were investigated using four ruminally and abomasally cannulated mature Jersey steers in a 4 x 4 Latin square experiment. Steers (530 kg) were fed a 50:50 roughage:concentrate diet at 1.5 times their NEm requirement. Experimental periods were 14 d in duration; ruminal, abomasal and fecal samples were collected at 6-h intervals during the last 3 d of each period. Protozoa numbers tended to be lowest (1.82 x 10(6)/ml) in steers fed zinc 1 x and tended to be highest (3.83 x 10(6)/ml) in steers fed zinc 12 x daily (P less than .10). Frequent feeding decreased ruminal pH .24 units and increased total VFA 20.7%, ammonia 22.7% and ruminal digestion of dietary amino acids (AA) 61.6% (P less than .05). Zinc supplementation decreased ruminal digestion of dietary AA 35.8% (P less than .05) and the abomasal passage of bacterial OM and AA 21.2% (P less than .05) and increased ruminal output of amino acids as a percentage of intake 15.1% (P less than .05). Although it increased escape of dietary AA, zinc sulfate decreased postruminal passage of bacterial AA and resulted in a net negative effect on total postruminal AA passage as a percentage of intake. The effects of zinc on ruminal AA digestion may be more closely related to an interaction of zinc with dietary CP rather than to an effect of Zn on ruminal microbial populations.  相似文献   

14.
Two experiments were conducted to evaluate alkaline hydrogen peroxide-treated wheat straw (AHPWS) in cattle growing (Exp. 1) and finishing (Exp. 2) diets. In Exp. 1, 162 crossbred steers (257 kg) were fed 66% roughage diets in an 84-d growth trial to compare AHPWS to corn silage (CS) and to evaluate different supplemental CP sources and levels. A completely randomized design with a 3 x 3 factorial arrangement of treatments was used. Factors were roughage source (CS, a 1:1 mixture of CS:AHPWS [MIX] and AHPWS) and CP treatment (13 and 11% CP with supplemental CP provided by soybean meal [13-SBM] and [11-SBM] and 11% CP with a combination of urea, corn gluten meal, and fish meal [UGF]). Lasalocid was fed at the rate of 200 mg per steer daily. Steers fed AHPWS had decreased (P less than .01) DMI compared with steers fed MIX and CS. This may be due to increased dietary Na from residual Na in AHPWS. With each incremental increase in AHPWS, ADG and gain/feed decreased (P less than .01). Dry matter intakes (kg/d), ADG (kg), and gain/feed for CS, MIX, and AHPWS were 8.0, 1.56, and .19; 8.2, 1.33, and .16; and 7.5, 1.08, and .14, respectively. Decreased performance by steers fed AHPWS may be due, in part, to a negative interaction between the lasalocid and dietary minerals. There were no differences in performance due to CP supplementation. In Exp. 2, AHPWS was compared to alfalfa hay (AH) and CS at 10 and 20% of dietary DM (2 x 3 factorial) in a 127-d finishing trial with 108 crossbred steers (341 kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A 5 X 5 Latin square design involving five cannulated beef steers (342 and 358 kg avg initial and final body weights, respectively) fed prairie hay (76.7% neutral detergent fiber, 5.7% acid detergent lignin and .85% N) was conducted to evaluate effects on feed intake and nutrient digestion of variations in physical characteristics of ruminal digesta achieved by ruminal insertion of different amounts of prairie hay differing in particle size. Steers were fed hay ad libitum in two equal meals (0800 and 2000). At 1200, four of the steers received manual, ruminal insertions of ground hay. Fine hay (F) was ground through a screen with 2-mm openings (.39 mm mean particle size), whereas coarse hay (C) was ground through a screen with 2.54-cm openings (4.46 mm mean particle size). Amounts of hay inserted were .2 (low, L) or .4% (high, H of initial body weight of individual steers. Ruminal hay insertions comprised 18% of total dry matter (DM) intake for L and 34 and 37% for HF and HC, respectively. Fed hay consumption decreased (P less than .05) with hay insertion and was lower for H than L; total DM intake was not influenced by treatment (P greater than .10). Ruminal NH3-N concentrations and ruminal organic matter digestion was greater (P less than .05) with ruminal hay insertion than without and with H than with L (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Sixty-four Angus steers initially averaging 354 kg were allotted to a 2 X 2 factorial arrangement of treatments to determine the effects of dietary Ni (0 or 5 mg/kg supplemental), monensin (0 or 33 mg/kg) and their possible interaction on performance, methane production and N metabolism. The basal diet was a high energy, corn-cottonseed hull based diet containing 10.2% crude protein and .30 mg/kg Ni on a dry matter basis. Monensin reduced (P less than .05) feed intake, did not affect average daily gain and improved (P less than .05) feed conversion over the 102-d study. Nickel supplementation did not significantly alter or interact with monensin to affect steer performance. However, steers fed Ni tended to have higher average daily gains and improved feed conversions. Monensin decreased (P less than .05) in vitro methane production, altered several carcass traits, increased (P less than .05) molar proportion of ruminal propionate and decreased (P less than .05) molar proportion of ruminal acetate. Nickel did not alter methane production, carcass characteristics or ruminal volatile fatty acid proportions. Both monensin and Ni increased (P less than .05) ruminal fluid urease activity when samples were obtained before feeding. A significant monensin X Ni interaction was found to affect ruminal epithelial urease activity. Monensin increased ruminal epithelial urease in steers not receiving supplemental Ni, but had no effect on ruminal epithelial urease activity in steers fed supplemental Ni. Ruminal fluid protein and ammonia-N were decreased (P less than .05) by monensin. Results of this study indicate that Ni may interact with monensin to affect ruminal epithelial urease activity but not performance or methane production in finishing steers.  相似文献   

17.
Six Hereford steers averaging 256 kg were used in a 2 x 3 factorial arrangement within a 6 x 6 Latin square design to study the effect of forage conservation (silage vs hay) and N supplementation (0, 200 g of fish meal plus 43 g of urea, or 400 g of fish meal) on ruminal characteristics, digestibility, blood urea, and in situ degradability of DM, N, and ADF. Dry matter intake of forage and total DMI did not differ among treatments (P greater than .05) and averaged 5.3 and 5.5 kg, respectively. Steers fed silage had greater (P less than .05) pH and concentrations of ammonia N, isobutyrate, isovalerate, and valerate in the rumen than in the rumen of those fed hay. Nitrogen supplementation increased (P less than .05) concentrations of total VFA and valerate in the rumen. Digestibility of N and ADF was greater (P less than .05) for silage than for hay, and N supplementation increased digestibility of N. Plasma urea concentrations were greater (P less than .05) for steers fed silage than for those fed hay. These data suggest that feed utilization is better with silage than with hay and is increased by N supplementation.  相似文献   

18.
Two forms of corn, whole (WC) and ground (GC), were fed with hay (WH; 900) or 4 h after hay (AH; 1300) feeding to evaluate their effects on growth, starch utilization and digesta passage characteristics in growing steers. Twenty-four Angus steers with ad libitum access to fescue hay were individually limit-fed ground or whole corn (2.27 kg/d) in a 2 x 2 factorial arrangement of treatments: GC- WH, GC-AH, WC-WH and WC-AH. Average daily gain was improved with feeding GC (P less than .08), especially when fed at the same time as hay. Fecal starch (%) was less (P less than .001) for GC (7.07) than for WC (15.68). No difference was observed in rate of liquid or solid (hay) passage. Mean retention time (MRT) of whole corn (stained with neutral red and crystal violet) was decreased (P less than .07), and rate of corn passage tended to be faster for steers fed WC-AH than for those fed WC-WH. Although time of corn feeding had no effect on performance, steers fed WC-AH had more whole corn particles recovered from the feces and the MRT for whole corn particles was reduced, indicating that time of supplementation may affect passage characteristics. Altering time of supplement feeding may have applications in other feeding situations, such as with protein supplementation where ruminal escape would be advantageous.  相似文献   

19.
Hereford x Angus steers were used in a 13-treatment, four-period, incomplete Latin square design to examine the effects of starch and degradable intake protein (DIP) supplements on forage utilization and ruminal function. Steers were given ad libitum access to low-quality hay (4.9% CP) and were not supplemented (NS) or received different amounts of starch (cornstarch grits; 0, .15, and .3% of initial BW) and DIP (Na-caseinate; .03, .06, .09, and .12% of initial BW) administered via ruminal fistulae in a 3 x 4 factorial arrangement of treatments. Supplemented steers consumed more (P < .01) forage OM, total OM, NDF, and digestible OM (DOM) than NS steers. Forage OM, total OM, NDF, and DOM intakes increased linearly (P < .01) as the amount of supplemental DIP increased. The addition of starch to supplements linearly decreased ( P < .01) the intake of forage OM, NDF, and DOM. The digestion of DM, OM, and NDF increased linearly (P < .01) with supplemental DIP and decreased linearly (P < or = .06) with supplemental starch. Particulate and liquid passages generally increased with DIP; however, starch level influenced the nature of the response (P = .03 and .06, respectively). Similarly, ruminal acid detergent-insoluble ash content generally decreased as starch increased, but the effect was dependent on DIP level (P < .01). Supplementation increased (P < .01) ruminal NH3 and total VFA and decreased (P < .01) ruminal pH relative to NS. All treatments supported average pH values in a range (6.3 to 6.7) unlikely to inhibit fibrolytic bacteria. Ruminal NH3 concentration increased quadratically (P = .03) with DIP and decreased linearly (P = .02) with starch. As DIP increased, total VFA concentration increased linearly (P = .02). Providing supplemental DIP to steers fed low-quality forage increased OM intake and digestion, whereas addition of starch to supplements decreased forage intake and digestion.  相似文献   

20.
Brahman x British crossbred steers were used in growth and digestion trials to evaluate the response of source (corn, sugar cane molasses, or soybean hulls) and feeding rate (0, 1.4, or 2.8 kg DM per steer daily in the growth trials; 0, 15, or 30% of the ration DM in the digestion trial) of energy supplementation in cattle fed ammoniated (4% of forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Cattle on all treatments were fed 0.5 kg cottonseed meal daily. In the growth trials, steers grazed dormant bahiagrass (Paspalum notatum) pasture. Increasing the levels of supplementation decreased hay intake but increased total dietary intake for all diets (P < 0.07). Daily gain and feed efficiency of steers were improved (P < 0.03) with supplementation. Steers supplemented with corn or soybean hulls at 2.8 kg DM/d had a higher ADG (0.92 kg) and gain/feed (0.103) than steers supplemented with molasses (0.78 kg, 0.08, respectively) at the same level. Seven crossbred steers (200 kg) were used in a five-period digestion trial to evaluate apparent OM, NDF, ADF, and hemicellulose digestibility. Apparent OM digestibility of all diets increased linearly (P = 0.02) as the level of supplementation increased. Apparent NDF and ADF digestibility decreased (P < 0.03) as the level of supplementation with corn or molasses increased, whereas increasing the level of soybean hulls in the diet increased (P < 0.06) apparent NDF and ADF digestibility. Four ruminally fistulated crossbred steers (472 kg) were used in a 4 x 4 latin square design to investigate ruminal characteristics with energy supplementation at 30% of ration DM. Ruminal pH in steers supplemented with soybean hulls or corn declined after feeding. Ruminal pH decreased more rapidly with corn supplementation and remained below 6.2 for a longer period of time than with the other diets. Ruminal pH did not change within 24 h after feeding for steers fed the control or molasses diets. No change in total VFA concentration was observed in steers fed molasses or corn. Total ruminal VFA concentration in steers supplemented with soybean hulls increased initially after feeding and then declined within 24 h after feeding. Soybean hulls produced fewer negative associative effects than corn when fed with ammoniated stargrass hay at 2.8 kg DM/d. The reduced gain/feed of steers supplemented with molasses compared to soybean hulls or corn indicates that molasses was not utilized as efficiently as the other energy sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号