首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Experimental colibacillosis was produced in 40 healthy, 7-day-old broiler chickens and turkeys by intratracheal injection of 1 x 10(8) CFU/chick and 1.23 x 10(9) CFU/poult bacteria of an O1:F11 strain of Escherichia coli, respectively. Two days before E. coli challenge all chicks were vaccinated with a live attenuated strain of infectious bronchitis virus (H-52). This model of infection--at least in chicken--proved to be useful for evaluating the efficacy of antimicrobial medication, by recording mortality, body weight gain, pathological alterations and frequency of reisolation of E. coli. Using this model, the efficacy of two different dosing methods of norfloxacin (continuous and pulse dosing) was evaluated. The once-per-day pulse dosing of norfloxacin administered via the drinking water at 15 mg/kg body weight proved to be more efficacious than the continuous dosing method of 100 mg/L for 5 days in chickens, while there were no convincing differences between the two treatment regimens in turkeys. The results confirmed earlier observations on the pharmacokinetic properties of norfloxacin in chicks and turkeys (Laczay et al., 1998).  相似文献   

2.
1. The pharmacokinetics of pefloxacin and its active metabolite norfloxacin were investigated in chickens after a single oral administration of pefloxacin at a dosage of 10 mg/kg. To characterise the residue pattern, another group of chickens was given 10 mg of pefloxacin/kg body once daily for 4 d by oral route; the tissue concentrations of pefloxacin and norfloxacin were determined at 1, 5 and 10 d after the last administration of the drug. 2. The concentrations of pefloxacin and norfloxacin in plasma and tissues were determined by HPLC assay. The limit of detection for pefloxacin and norfloxacin was 0.03 microg/ml in plasma or microg/g in tissue. 3. The plasma concentration-time data for pefloxacin and norfloxacin were characteristic of a one-compartment open model. The elimination half-life, maximum plasma drug concentration, time to reach maximum plasma drug concentration and mean residence time of pefloxacin were 8.74 +/- 1.48 h, 3.78 +/- 0.23 microg/ml, 3.33 +/- 0.21 h and 14.32 +/- 1.94 h, respectively, whereas the respective values of these variables for norfloxacin were 5.66 +/- 0.81 h, 0.80 +/- 0.07 microg/ml, 3.67 +/- 0.21 h and 14.44 +/- 0.97 h. 4. Pefloxacin was metabolised to norfloxacin to the extent of 22%. 5. The concentrations of pefloxacin (microg/g) 24 h after the fourth dose of the drug declined in the following order: liver (3.20 +/- 0.40) > muscle (1.42 +/- 0.18) > kidney (0.69 +/- 0.04) > skin and fat (0.06 +/- 0.02). Norfloxacin was also detectable in all the tissues analysed except muscle. No drug and/or its metabolite was detectable in tissues except skin and fat 5 d after the last administration. The concentrations of pefloxacin and norfloxacin in skin and fat 10 d after the last dose of pefloxacin were 0.04 +/- 0.02 and 0.03 +/- 0.01 microg/g, respectively.  相似文献   

3.
Experimental fowl cholera was induced in 60 healthy 10-week-old broiler chickens and 8-week-old turkeys by intramuscular inoculation with approximately 80 colony-forming units (cfu) of Pasteurella multocida X-73 strain and with approximately 70 cfu of P. multocida P-1059 strain, respectively. This method of infection proved to be useful for evaluating the efficacy of anti-microbial medication, by measuring mortality, weight gain, pathological responses and frequency of re-isolation of P. multocida. The efficacies of two different dosing methods, continuous and pulse dosing, were compared. Using the continuous-dosing method, norfloxacin was administered to drinking water at 100 mg/l for 5 days in chickens. Efficacies were slightly improved compared with pulse dosing at 15 mg/kg bodyweight for the same length of time. The opposite was observed in turkeys, to the degree of control of mortality and maintenance of weight gain.  相似文献   

4.
Norfloxacin was given to 2 groups of chickens (8 chickens/group) at a dosage of 8 mg/kg of body weight, IV and orally. For 24 hours, plasma concentration was monitored serially after each administration. Another group of chickens (n = 30) was given 8 mg of norfloxacin/kg orally every 24 hours for 4 days, and plasma and tissue concentrations of norfloxacin and its major metabolites desethylenenorfloxacin and oxonorfloxacin were determined serially after the last administration of the drug. Plasma and tissue concentrations of norfloxacin, desethylenenorfloxacin, and oxonorfloxacin were measured by use of high-performance liquid chromatography. Pharmacokinetic variables were calculated, using a 2-compartment open model. For norfloxacin, the elimination half-life (t1/2 beta) and the mean +/- SEM residence time for plasma were 12.8 +/- 0.59 and 15.05 +/- 0.81 hours, respectively, after oral administration and 8.0 +/- 0.3 and 8.71 +/- 0.23 hours, respectively, after IV administration. After single oral administration, norfloxacin was absorbed rapidly, with Tmax of 0.22 +/- 0.02 hour. Maximal plasma concentration was 2.89 +/- 0.20 microgram/ml. Oral bioavailability of norfloxacin was found to be 57.0 +/- 2.4%. In chickens, norfloxacin was mainly converted to desethylenenorfloxacin and oxonorfloxacin. Norfloxacin parent drug and its 2 major metabolites were widely distributed in tissues. Considerable tissue concentrations of norfloxacin, desethylenenorfloxacin, and oxonorfloxacin were found when norfloxacin was administered orally (8 mg/kg on 4 successive days). The concentration of the parent fluoroquinolone in fat, kidneys, and liver was 0.05 micrograms/g on day 12 after the end of dosing.  相似文献   

5.
OBJECTIVE: To describe the disposition of and pharmacodynamic response to atenolol when administered as a novel transdermal gel formulation to healthy cats. ANIMALS: 7 healthy neutered male client-owned cats. PROCEDURES: Atenolol was administered either orally as a quarter of a 25-mg tablet or as an equal dose by transdermal gel. Following 1 week of treatment, an ECG and blood pressure measurements were performed and blood samples were collected for determination of plasma atenolol concentration at 2 and 12 hours after administration. RESULTS: 2 hours after oral administration, 6 of 7 cats reached therapeutic plasma atenolol concentrations with a mean peak concentration of 579 +/- 212 ng/mL. Two hours following transdermal administration, only 2 of 7 cats reached therapeutic plasma atenolol concentrations with a mean peak concentration of 177 +/- 123 ng/mL. The difference in concentration between treatments was significant. Trough plasma atenolol concentrations of 258 +/- 142 ng/mL and 62.4 +/- 17 ng/mL were achieved 12 hours after oral and transdermal administration, respectively. A negative correlation was found between heart rate and plasma atenolol concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of atenolol at a median dose of 1.1 mg/kg every 12 hours (range, 0.8 to 1.5 mg/kg) in cats induced effective plasma concentrations at 2 hours after treatment in most cats. Transdermal administration provided lower and inconsistent plasma atenolol concentrations. Further studies are needed to find an effective formulation and dosing scheme for transdermal administration of atenolol.  相似文献   

6.
The pharmacokinetic properties of the fluoroquinolone levofloxacin, were investigated in five cats after single intravenous and repeat oral administration at a daily dose of 10 mg/kg. Levofloxacin serum concentration was analyzed by microbiological assay using Klebsiella pneumoniae ATCC 10031 as test microorganism. Serum levofloxacin disposition after intravenous and oral dosing was best fitted to a bicompartmental and a monocompartmental open models with first-order elimination, respectively. After intravenous administration, distribution was rapid (t(1/2(d)) 0.26 +/- 0.18 h) and wide as reflected by the steady-state volume of distribution of 1.75 +/- 0.42 L/kg. Drug elimination was slow with a total body clearance of 0.14 +/- 0.04 L/h.kg and a t(1/2) for this process of 9.31 +/- 1.63 h. The mean residence time was of 12.99 +/- 2.12 h. After repeat oral administration, absorption half-life was of 0.18 +/- 0.12 h and Tmax of 1.62 +/- 0.84 h. The bioavailability was high (86.27 +/- 43.73%) with a peak plasma concentration at the steady state of 4.70 +/- 0.91 microg/mL. Drug accumulation was not significant after four oral administrations. Estimated efficacy predictors for levofloxacin after either intravenous or oral administration indicate a good profile against bacteria with a MIC value below of 0.5 microg/mL. However, for microorganisms with MIC values of 1 microg/mL it would be efficacious only when administered intravenously.  相似文献   

7.
The pharmacokinetics of the novel cephalosporin cefovecin were investigated in a series of in vivo, ex vivo and in vitro studies following administration to adult cats at 8 mg/kg bodyweight. Bioavailability and pharmacokinetic parameters were determined in a cross-over study after intravenous (i.v.) and subcutaneous (s.c.) injections. [14C]cefovecin was used to evaluate excretion for 21 days after s.c. administration. Protein binding was determined in vitro in feline plasma and ex vivo in transudate from cats surgically implanted with tissue chambers. After s.c. administration, cefovecin was characterized by rapid absorption with mean peak plasma concentrations of 141+/-12 microg/mL being achieved within 2 h of s.c. injection with full bioavailability (99%). The mean elimination half-life was 166+/-18 h. After i.v. administration, volume of distribution was 0.09+/-0.01 L/kg and mean plasma clearance was 0.35+/-0.04 mL/h/kg. Approximately 50% of the administered radiolabelled dose was eliminated over the 21-day postdose period via urinary excretion and up to approximately 25% in faeces. In vitro and ex vivo plasma protein binding ranged from 99.8% to 99.5% over the plasma concentration range 10-100 microg/mL. Ex vivo protein binding in transudate was as low as 90.7%. From 8 h postdose, concentrations of unbound (free) cefovecin in transudate were consistently higher than in plasma, with mean unbound cefovecin concentrations being maintained above 0.06 microg/mL (MIC90 of Pasteurella multocida) in transudate for at least 14 days postdose. The slow elimination and long-lasting free concentrations in extracellular fluid are desirable pharmacokinetic attributes for an antimicrobial with a 14-day dosing interval.  相似文献   

8.
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).  相似文献   

9.
The pharmacokinetic properties of ceftazidime, a third generation cephalosporin, were investigated in five cats after single intravenous (IV) and intramuscular (IM) administration at a dose rate of 30 mg/kg. Minimum inhibitory concentrations (MICs) of ceftazidime for some Gram-negative (Escherichia coli, n=11) and Gram-positive (Staphylococcus spp., n=10) strains isolated from clinical cases were determined. An efficacy predictor, measured as the time over which the active drug exceeds the bacteria minimum inhibitory concentration (T>MIC), was calculated. Serum ceftazidime disposition was best fitted by a bi-compartmental and a mono-compartmental open model with first-order elimination after IV and IM dosing, respectively. After IV administration, distribution was rapid (t(1/2(d)) 0.04+/-0.03 h), with an area under the ceftazidime serum concentration:time curve (AUC((0-infinity))) of 173.14+/-48.69 microg h/mL and a volume of distribution (V((d(ss)))) of 0.18+/-0.04 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.19+/-0.08 L/hkg and a t(1/2) of 0.77+/-0.06 h. Peak serum concentration (C(max)), T(max), AUC((0-infinity)) and bioavailability for the IM administration were 89.42+/-12.15 microg/mL, 0.48+/-0.49 h, 192.68+/-65.28 microg h/mL and 82.47+/-14.37%, respectively. Ceftazidime MIC for E. coli ranged from 0.0625 to 32 microg/mL and for Staphylococcus spp. from 1 to 64 microg/mL. T>MIC was in the range 35-52% (IV) and 48-72% (IM) of the recommended dosing interval (8-12h) for bacteria with a MIC(90)4 microg/mL.  相似文献   

10.
Enrofloxacin was administered i.v. to five adult mares at a dose of 5 mg/kg. After administration, blood and endometrial biopsy samples were collected at regular intervals for 24 h. The plasma and tissue samples were analyzed for enrofloxacin and the metabolite ciprofloxacin by high-pressure liquid chromatography. In plasma, enrofloxacin had a terminal half-life (t(1/2)), volume of distribution (area method), and systemic clearance of 6.7 +/- 2.9 h, 1.9 +/- 0.4 L/kg, and 3.7 +/- 1.4 mL/kg/min, respectively. Ciprofloxacin had a maximum plasma concentration (Cmax) of 0.28 +/- 0.09 microg/mL. In endometrial tissue, the enrofloxacin Cmax was 1.7 +/- 0.5 microg/g, and the t(1/2) was 7.8 +/- 3.7 h. Ciprofloxacin Cmax in tissues was 0.15 +/- 0.04 microg/g and the t(1/2) was 5.2 +/- 2.0 h. The tissue:plasma enrofloxacin concentration ratios (w/w:w/v) were 0.175 +/- 0.08 and 0.47 +/- 0.06 for Cmax and AUC, respectively. For ciprofloxacin, these values were 0.55 +/- 0.13 and 0.58 +/- 0.31, respectively. We concluded that plasma concentrations achieved after 5 mg/kg i.v. are high enough to meet surrogate markers for antibacterial activity (Cmax:MIC ratio, and AUC:MIC ratio) considered effective for most susceptible gram-negative bacteria. Endometrial tissue concentrations taken from the mares after dosing showed that enrofloxacin and ciprofloxacin both penetrate this tissue adequately after systemic administration and would attain concentrations high enough in the tissue fluids to treat infections of the endometrium caused by susceptible bacteria.  相似文献   

11.
The pharmacokinetics of enrofloxacin (EFL) and its active metabolite ciprofloxacin (CIP) was investigated in 7-8 month old turkeys (6 birds per sex). EFL was administered intravenously (i.v.) and orally (p.o.) at a dose 10 mg kg(-1) body weight. Blood was taken prior to and at 0.17, 0.33, 0.5, 1, 2, 3, 4, 6, 8, 10 and 24 h following drug administration. The concentrations of EFL and CIP in blood serum were determined by high-performance liquid chromatography (HPLC). Serum concentrations versus time were analysed by a noncompartmental analysis. The elimination half-live and the mean residence time of EFL after i.v. injection for the serum were after oral administration 6.64+/-0.90 h, 8.96+/-1.18 h and 6.92+/-0.97 h, 11.91+/-1.87 h, respectively. After single p.o. administration, EFL was absorbed slowly (MAT=2.76+/-0.48 h) with time to reach maximum serum concentrations of 6.33+/-2.54 h. Maximum serum concentrations was 1.23+/-0.30 microg mL(-1). Oral bioavailability for for EFL after oral administration was found to be 69.20+/-1.49%. The ratios C(max)/MIC and AUC(0 --> 24)/MIC were respectively from 161.23+/-5.9 h to 12.90+/-0.5 h for the pharmacodynamic predictor C(max)/MIC, and from 2153.44+/-66.6 h to 137.82+/-4.27 h for AUC(0 --> 24)/MIC, for the different clinically significant microorganisms, whose values for MIC varies from 0.008 microg L(-1) to 0.125 microg mL(-1).  相似文献   

12.
Pharmacokinetics of ofloxacin, a fluoroquinolone antimicrobial agent, was determined in broiler chickens after intravenous or oral administration of a single dose (10 mg/kg). Ofloxacin concentrations in plasma were determined using a high-performance liquid chromatography assay. Plasma concentration profiles were analyzed by the noncompartmental method. Elimination half-life and mean residence time of ofloxacin in plasma were 4.46 and 5.48 h after intravenous administration and 5.85 and 7.43 h, respectively, after oral administration. Maximal plasma concentration of 3.65 microg/mL was achieved at 1.25 h after oral administration. Apparent volume of distribution of 1.76 and 2.16 L/kg and total body clearance of 4.96 and 4.5 mL/min/kg were obtained following intravenous and oral administration, respectively. The oral bioavailability of ofloxacin was 110.01%. Ofloxacin was found to be more rapidly absorbed, widely distributed and more quickly eliminated than other fluoroquinolones in broilers. Based on these kinetic parameters, a dosage of 10 mg/kg given orally every 24 h can be recommended for the treatment of bacterial infections with MIC90 < 0.3 microg/mL.  相似文献   

13.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

14.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   

15.
The aims of this study were to describe and compare the pharmacokinetic profiles and T(>MIC90) of two commercially available once-daily recommended cephalexin formulations in healthy adult dogs administered by the intramuscular (i.m.) route. Six beagle dogs received a 10 mg/kg dose of an 18% parenteral suspension of cephalexin of laboratory A (formulation A) and laboratory B (formulation B) 3 weeks apart. Blood samples were collected in predetermined times after drug administration. The main pharmacokinetic parameters were (mean +/- SD): AUC((0-infinity)), 72.44 +/- 15.9 and 60.83 +/- 13.2 microg.h/mL; C(max), 10.11 +/- 1.5 and 8.50 +/- 1.9 microg/mL; terminal half-life, 3.56 +/- 1.5 and 2.57 +/- 0.72 h and MRT((0-infinity)), 5.86 +/- 1.5 and 5.36 +/- 1.2 h for formulations A and B, respectively. T(>MIC90) was 63.1 +/- 14.7 and 62.1 +/- 14.7% of the dosing interval for formulations A and B, respectively. Median (range) for t(max) was 2.0 (2.0-3.0) h and 3.0 (2.0-4.0) for formulations A and B, respectively. Geometric mean ratios of natural log-transformed AUC((0-infinity)) and C(max) and their 90% confidence intervals (CI) were 0.84 (0.72-0.98) and 0.83 (0.64-1.07), respectively. The plasma profiles of cephalexin following the administration of both formulations were similar. No statistical differences between pharmacokinetic parameters or T(>MIC90) were observed, however, bioequivalence between both formulations could not be demonstrated, as lower 90% CI failed to fell within the selected range of 80-125% for bioequivalence.  相似文献   

16.
OBJECTIVE: To investigate the disposition kinetics of ampicillin and sulbactam after IV and IM administration of an ampicillin-sulbactam (2:1) preparation and determine the bioavailability of the combined preparation after IM administration in turkeys. ANIMALS: 10 healthy large white turkeys. PROCEDURE: In a crossover study, turkeys were administered the combined preparation IV (20 mg/kg) and IM (30 mg/kg). Blood samples were collected before and at intervals after drug administrations. Plasma ampicillin and sulbactam concentrations were measured by use of high-performance liquid chromatography; plasma concentration-time curves were analyzed via compartmental pharmacokinetics and noncompartmental methods. RESULTS: The drugs were distributed according to an open 2-compartment model after IV administration and a 1-compartment model (first-order absorption) after IM administration. For ampicillin and sulbactam, the apparent volumes of distribution were 0.75+/-0.11 L/kg and 0.74+/-0.10 L/kg, respectively, and the total body clearances were 0.67+/-0.07 L x kg(-1) x h(-1) and 0.56+/-0.06 L x kg(-1) x h(-), respectively. The elimination half-lives of ampicillin after IV and IM administration were 0.78+/-0.12 hours and 0.89+/-0.17 hours, respectively, whereas the corresponding half-lives of sulbactam were 0.91+/-0.12 hours and 0.99+/-0.16 hours, respectively. Bioavailability after IM injection was 58.87+/-765% for ampicillin and 53.75+/-5.35% for sulbactam. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that a regimen of loading and maintenance doses of 300 mg of the ampicillin-sulbactam (2:1) combination/kg every 8 hours could be clinically useful in turkeys. This dosage regimen maintained plasma concentrations of ampicillin > 0.45 microg/mL in turkeys.  相似文献   

17.
The pharmacokinetics of cephalexin, a first generation cephalosporin, were investigated in dogs using two formulations marketed for humans, but also often employed by practitioners for pet therapy. Cephalexin was administered to five dogs intravenously and intramuscularly as a sodium salt and by the oral route as a monohydrate. The dosage was always 20 mg/kg of active ingredient. A microbiological assay with Sarcina lutea as the test organism was adopted to measure cephalexin concentrations in serum. The mean residence time (MRT) median values after intravenous (i.v.), intramuscular (i.m.) and oral administration (p.o.) were 86 min, 200 min, and 279 min, respectively. After i.m. and oral dosing the peak serum concentrations (24.2 +/- 1.8 micrograms/mL and 20.3 +/- 1.7 micrograms/mL, respectively) were attained at 90 min in all dogs and bioavailabilities were 63 +/- 10% and 57 +/- 5%, respectively. The time course of the cephalexin serum concentrations after oral administration was best described by a model incorporating saturable absorption kinetics of the Michaelis-Menten type: thus in the gastrointestinal tract of dogs a carrier mediated transport for cephalexin similar to that reported in humans, may exist. The predicted average serum concentrations of cephalexin after repeated i.m. and oral administration indicated that, in order to maintain the therapeutic concentrations, the 20 mg/kg b.w. dosage should be administered every 6-8 h.  相似文献   

18.
OBJECTIVE: To investigate penciclovir pharmacokinetics following single and multiple oral administrations of famciclovir to cats. ANIMALS: 8 adult cats. PROCEDURES: A balanced crossover design was used. Phase I consisted of a single administration (62.5 mg, PO) of famciclovir. Phase II consisted of multiple doses of famciclovir (62.5 mg, PO) given every 8 or 12 hours for 3 days. Plasma penciclovir concentrations were assayed via liquid chromatography-mass spectrometry at fixed time points after famciclovir administration. RESULTS: Following a single dose of famciclovir, the dose-normalized (15 mg/kg) maximum concentration (C(max)) of penciclovir (350 +/- 180 ng/mL) occurred at 4.6 +/- 1.8 hours and mean +/- SD apparent elimination half-life was 3.1 +/- 0.9 hours. However, the dose-normalized area under the plasma penciclovir concentration-time curve extrapolated to infinity (AUC(0-->)) during phase I decreased with increasing dose, suggesting either nonlinear pharmacokinetics or interindividual variability among cats. Accumulation occurred following multiple doses of famciclovir administered every 8 hours as indicated by a significantly increased dose-normalized AUC, compared with AUC(0-->) from phase 1. Dose-normalized penciclovir C(max)following administration of famciclovir every 12 or 8 hours (290 +/- 150 ng/mL or 780 +/- 250 ng/mL, respectively) was notably less than the in vitro concentration (3,500 ng/mL) required for activity against feline herpesvirus-1. CONCLUSIONS AND CLINICAL RELEVANCE: Penciclovir pharmacokinetics following oral famciclovir administration in cats appeared complex within the dosage range studied. Famciclovir dosages of 15 mg/kg administered every 8 hours to cats are unlikely to result in plasma penciclovir concentrations with activity against feline herpesvirus-1.  相似文献   

19.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

20.
The objective of this study was to evaluate the pharmacokinetic profile of enrofloxacin and its active metabolite, ciprofloxacin, in Korean catfish after intravenous and oral administrations. Enrofloxacin was administered to Korean catfish by a single intravenous and oral administrations at the dose of 10 mg/kg body weight. The plasma concentrations from intravenous and oral administrations of enrofloxacin were determined by LC/MS. Pharmacokinetic parameters from both routes were described to have a two-compartmental model. After intravenous and oral administrations of enrofloxacin, the elimination half-lives (t(1/2,beta)), area under the drug concentration-time curves (AUC), oral bioavailability (F) were 17.44 +/- 4.66 h and 34.13 +/- 11.50 h, 48.1 +/- 15.7 microgxh/mL and 27.3 +/- 12.4 microgxh/mL, and 64.59 +/- 4.58% respectively. The 3.44 +/- 0.81 h maximum concentration (C(max)) of 1.2 +/- 0.2 microg/mL. Ciprofloxacin, an active metabolite of enrofloxacin, was detected at all the determined time-points from 0.25 to 72 h, with the C(max) of 0.17 +/- 0.08 microg/mL for intravenous dose. After oral administration, ciprofloxacin was detected at all the time-points except 0.25 h, with the C(max) of 0.03 +/- 0.01 microg/mL at 6.67 +/- 2.31 h. Ciprofloxacin was eliminated with terminal half-life t(1/2,beta) of 52.08 +/- 17.34 h for intravenous administration and 52.43 +/- 22.37 h for oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号