首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myoelectric activity of the cecum and right ventral colon (RVC) was studied in 4 female ponies. Eight, bipolar Ag-AgCl electrodes were sequentially placed on the seromuscular layer of the cecum (6 electrodes) and RVC (2 electrodes), and recordings were begun 14 days after surgery. The myoelectric activity for each pony was recorded during 12, 60-minute recording sessions done during the interdigestive period (3 to 7 hours after the morning feeding). Coordinated series of spike bursts were recognized as independent motility patterns in the cecum and in the RVC. Local haustra-haustra myoelectric activity involving approximately 40 cm of the cecal body (0.45 +/- 0.03 spike bursts/min) were detected. A series of spike bursts started at the cecal apex and progressed to, but stopped at, the caudal cecal base (0.40 +/- 0.03 spike bursts/min). Infrequently, a series of spike bursts started at the apex and progressed to the cranial cecal base (0.09 +/- 0.01 spike bursts/min). More commonly, a series of spike bursts with a conduction velocity of 3.8 +/- 0.07 cm/s, began in the cranial base and progressed orally to the cecal apex (0.46 +/- 0.03 spike bursts/min). Spike bursts conducted aborally (propulsion) beginning at the origin of the RVC (0.05 +/- 0.007 spike bursts/min) and spike bursts conducted orally (retropulsion; 0.15 +/- 0.02 spike bursts/min) were seen independent of cecal myoelectric activity. A progressive series of coordinated spike bursts, which began at the cecal apex, were conducted through the cecolic orifice and continued into the RVC (0.42 +/- 0.02 spike bursts/min), representing the only pattern common to the cecum and RVC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A chronic model with an ultrasonic transit time blood flow probe and strain gauge force transducers implanted on the cecum was used to evaluate cecal mechanical activity and cecal arterial blood flow in 4 conscious adult horses. Intravenous administration of xylazine (1.1 mg/kg of body weight) significantly decreased heart rate and cardiac output, but significantly increased diastolic pulmonary arterial pressure, mean pulmonary arterial pressure, carotid arterial pressure, and central venous pressure. Lateral cecal arterial blood flow after xylazine administration was decreased substantially more than was cardiac output, suggesting that xylazine caused constriction of the cecal vasculature. This effect of xylazine may have resulted from either a direct effect of xylazine on the cecal vasculature or from reflex vasoconstriction attributable to reduced cardiac output. Intravenous administration of butorphanol tartrate (0.1 mg/kg) did not significantly alter the hemodynamic responses to xylazine. Cecal mechanical activity, as measured by the motility index, was decreased for 120 minutes after administration of xylazine and for 150 minutes after administration of xylazine/butorphanol.  相似文献   

3.
Mechanical activity of the cecal body, lateral cecal arterial blood flow, carotid arterial pressure, and heart rate were measured in 6 conscious healthy horses 30 minutes before and for 120 minutes after IV administration of xylazine at dosages of 1.1 mg/kg of body weight, 0.55 mg/kg, and 0.275 mg/kg. Xylazine at a dosage of 1.1 mg/kg reduced the mean motility index (the product of the mean amplitude of contractions and the total duration of contractile activity divided by the recording time) of the circular and longitudinal muscle layers for the first, second, third, and fourth 30-minute periods after administration of xylazine. Xylazine at a dosage of 0.55 mg/kg reduced the motility index of the circular and longitudinal muscle layers for the first and second 30-minute periods after administration of xylazine. Xylazine at a dosage of 0.275 mg/kg reduced the motility index of the circular and longitudinal muscle layers for the first 30-minute period after administration of xylazine. Mean lateral cecal arterial blood flow was significantly (P less than 0.05) lower than the base-line value at 2 and 4 minutes after administration of all 3 xylazine dosages and at 8 minutes after administration of xylazine dosages of 1.1 mg/kg and 0.55 mg/kg. All dosages of xylazine caused transient hypertension and bradycardia, followed by hypotension.  相似文献   

4.
The visceral analgesic, cardiorespiratory, and behavioral effects induced by xylazine, butorphanol, meperidine, and pentazocine were determined in 9 adult horses with colic. Colic was produced by inflating a balloon in the horses' cecum. Heart rate, respiratory rate, mean arterial blood pressure, and cardiac output increased after cecal balloon inflation. Xylazine and butorphanol decreased the hemodynamic response to cecal balloon inflation. Meperidine and pentazocine had minimal effects on the cardiorespiratory changes induced by cecal balloon inflation. Xylazine produced the most pronounced visceral analgesia. The duration of visceral analgesia was longest with xylazine (approx 90 minutes) followed by butorphanol (approx 60 min) and then by meperidine and pentazocine (approx 30 to 35 min). Accurate assessment of the effects of visceral analgesics is dependent upon the use of objective tests to evaluate pain.  相似文献   

5.
Myoelectric activity in 2 cows instrumented with permanent electrodes in the ileum, cecum, proximal loop of the ascending colon (PLAC), and spiral colon was analyzed after an obstruction developed in the distal small intestine. Results were compared with patterns from a group of 7 normal cows. Myoelectric activity in the ileum immediately orad to the occlusion was characterized by abolition of the migrating myoelectric complex (MMC) and a constant pattern of strong spike bursts of long duration. Cyclic activity was present in all parts of the large intestine, and propagation of phase III activity was evident from proximal to distal. A slight degree of disorganization in phase III propagation was restricted to the spiral colon. Activity cycles tended to be shorter in the cecum and PLAC of both cows with colic than in normal cows, and the intensity of spiking activity was generally lower. Changes in duration of the MMC in the spiral colon (bovine colonic MMC, bcMMC) were inconsistent, but the intensity of spiking activity tended to be lower in phases I and II of both cows compared to controls. The organization of phase III in several spindles typical of the bovine spiral colon was not disrupted, but phase IV of the bcMMC occurred only infrequently. Organized cyclic activity occurred in the large intestine of both cows despite complete disruption of the small intestinal MMC, indicating the presence of mechanisms able to initiate and regulate coordinated myoelectric patterns in the large intestine independent of the small intestine.  相似文献   

6.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

8.
The acoustic reflex (AR) and brain stem auditory-evoked response (BAER) were recorded in adult cats 5 minutes after IM administration of xylazine (1 mg/kg) and after IM administration of ketamine (10 mg/kg). Ipsilateral and contralateral AR were recorded at 10 and 20 dB above acoustic reflex threshold 5 minutes after xylazine administration and 5 and 35 minutes after ketamine administration. Monaural BAER were recorded 5 minutes after xylazine and 5 and 35 minutes after ketamine, using stimulus intensities of 90-, 80-, and 70-dB hearing level (HL). Additional BAER were recorded at 10, 15, and 25 minutes after ketamine, using the 90-dB HL stimulus. Pre- and postinjection comparisons were made for threshold, latency, and amplitude of the AR and for latency and amplitude of waves I through VI of the BAER. At both stimulus intensities before and after ketamine administration threshold for the ipsilateral reflex was significantly lower (P greater than 0.05) than for the contralateral reflex. The threshold, latency, and amplitude of the AR were unaffected (P greater than 0.05) by the injection of ketamine after xylazine. The amplitude of BAER waves was not affected (P greater than 0.05) by ketamine after xylazine for each of the 3 stimulus intensities. Latency of the 90-dB HL-evoked response was increased (P less than or equal to 0.05) for waves III/IV at 5 and 35 minutes after ketamine, and for wave V at each of the postinjection times, except at postinjection minute 15.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Xylazine, morphine, butorphanol, and nalbuphine were evaluated in 5 adult male horses, using dental dolorimetry. Comparisons were made at 30, 60, and 100 minutes after IV drug administration. Peak analgesia and the time to develop peak analgesia also were compared. Xylazine induced a marked increase in the tooth pulp pain threshold measurements as did the xylazine/narcotic combinations. Statistical differences were not detectable between these treatments. Xylazine and xylazine/butorphanol were better analgesics than was butorphanol alone at 30 and 60 minutes. Xylazine resulted in peak analgesia faster than did butorphanol or the combination of xylazine/butorphanol. Additive analgesic effects were not detected with the combined treatments.  相似文献   

10.
ObjectiveTo elaborate constant rate infusion (CRI) protocols for xylazine (X) and xylazine/butorphanol (XB) which will result in constant sedation and steady xylazine plasma concentrations.Study designBlinded randomized experimental study.AnimalsTen adult research horses.MethodsPart I: After normal height of head above ground (HHAG = 100%) was determined, a loading dose of xylazine (1 mg kg?1) with butorphanol (XB: 18 μg kg?1) or saline (X: equal volume) was given slowly intravenously (IV). Immediately afterwards, a CRI of butorphanol (XB: 25 μg kg?1 hour?1) or saline (X) was administered for 2 hours. The HHAG was used as a marker of depth of sedation. Sedation was maintained for 2 hours by additional boluses of xylazine (0.3 mg kg?1) whenever HHAG >50%. The dose of xylazine (mg kg?1 hour?1) required to maintain sedation was calculated for both groups. Part II: After the initial loading dose, the calculated xylazine infusion rates were administered in parallel to butorphanol (XB) or saline (X) and sedation evaluated. Xylazine plasma concentrations were measured by HPLC-MS-MS at time points 0, 5, 30, 45, 60, 90, and 120 minutes. Data were analyzed using paired t-test, Wilcoxon signed rank test and a 2-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in xylazine requirements (X: 0.69, XB: 0.65 mg kg?1 hour?1) between groups. With treatment X, a CRI leading to prolonged sedation was developed. With XB, five horses (part I: two, part II: three) fell down and during part II four horses appeared insufficiently sedated. Xylazine plasma concentrations were constant after 45 minutes in both groups.ConclusionXylazine bolus, followed by CRI, provided constant sedation. Additional butorphanol was ineffective in reducing xylazine requirements and increased ataxia and apparent early recovery from sedation in unstimulated horses.Clinical relevanceData were obtained on unstimulated healthy horses and extrapolation to clinical conditions requires caution.  相似文献   

11.
Normal motility of the cecum and right ventral colon in ponies   总被引:1,自引:0,他引:1  
To study the normal motility of the cecum and right ventral colon (RVC) in 3 mature Shetland ponies, a 6-part, indwelling, intraluminal catheter system was used to measure intraluminal pressure changes. Three catheters were placed in the cecum at 10, 25, and 40 cm from the cecocolic orifice, and 3 catheters were placed in the RVC at 10, 20, and 30 cm from the cecocolic orifice. Recordings were made during the interdigestive period beginning 2 weeks after surgical operation was done. Frequent, low-amplitude peaks (0.35 +/- 0.13 coordinated peaks/min) were seen involving the cecal body and caudal cecal base, which represented a haustra-to-haustra mixing pattern. Coordinated pressure peaks originated in the cecal body and progressed to the cranial cecal base (0.07 +/- 0.01/min) or originated in the cranial cecal base and progressed to the cecal body (0.07 +/- 0.04/min). Associated with a loud rush of ingesta heard on transabdominal auscultation and progression of liquid ingesta confirmed with barium contrast radiography, there was a series of coordinated, progressive pressure peaks which originated in the cecal body, sequentially involved the cecal base, traversed the cecocolic orifice, and extended into the RVC (0.36 +/- 0.05/min). It seemed that a pacemaker region existed in the cecal body and initiated the important aborally propagated progressive pattern responsible for the transit of ingesta from the cecum to the RVC. A separate mechanism for the transit of gas was not identified. In the RVC, infrequent, nondirectional, low-amplitude segmental pressure peaks (0.12 +/- 0.06/min), and aborally progressive coordinated pressure peaks originating at the beginning of the RVC (0.09 +/- 0.02/min), occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Surgical diseases of the equine cecum   总被引:1,自引:0,他引:1  
Cecal impaction and cecal perforation, the two most common equine cecal diseases, are thought to develop after slowing or interruption of a single progressive motility pattern, which begins in a pacemaker area near the apex, occurs once every 3 minutes, and propels ingesta from the cecum to the right ventral colon. Rectal examination in horses with cecal impaction is the most useful technique to grade the severity of the condition. Medical treatment is undertaken if the impaction is judged to be mild to moderate. Surgical correction of cecal impaction in severe cases requires a ventral midline celiotomy, and exploration reveals a large ingesta-filled cecum and relatively empty large colon. Currently, the techniques of typhlotomy with manual evacuation of ingesta, combined with a complete bypass of the cecum by use of a jejunocolostomy, is the preferred method of surgical management. The use of a cecocolic anastomosis remains a viable alternative surgical procedure. Cecal perforation (CP), a uniformly fatal disease of horses, most often develops when the subtle signs of cecal impaction are missed or are masked by the administration of nonsteroidal antiinflammatory agents. CP can occur in mares around the time of foaling and, in this form, is not associated with cecal outflow dysfunction. Surgical management of cecocecal or cecocolic intussusception is required and involves resection of the diseased portion of cecum, either with extra- or intraluminal techniques. Both the side-to-side and end-to-side jejunocecal anastomoses are useful and successful techniques for bypass of simple or strangulating lesions of the ileum.  相似文献   

13.
Cardiovascular effects of butorphanol (0.2 mg/kg of body weight, IV) and responses associated with subsequent administration of naloxone (0.04 mg/kg, IV) were studied in halothane (1.2% end-tidal concentration)-anesthetized dogs. Transient, but statistically significant (P less than 0.05), decreases in heart rate, mean and diastolic arterial blood pressures, and rate-pressure product were observed after butorphanol administration. Cardiac index, stroke volume, and systemic vascular resistance did not change significantly. Except for the decrease in heart rate, changes in the values of the cardiovascular variables measured after butorphanol administration did not appear to be clinically relevant. Sixty minutes after butorphanol administration, naloxone was given. Statistically significant (P less than 0.05) increases in heart rate, arterial blood pressures, cardiac index, and rate-pressure product, along with dysrhythmias were observed. Stroke volume and systemic vascular resistance remained unchanged after administration of naloxone. Naloxone administration was associated with changes indicative of increased myocardial oxygen consumption.  相似文献   

14.
For each of 3 separate evaluations, 6 fasted llamas (Lama glama) were sedated with xylazine (1.1 mg/kg of body weight, IV) and then 15 minutes later were given normal saline solution (5.0 ml, IV; control values), doxapram (2.2 mg/kg, IV), or 4-amino-pyridine (0.3 mg/kg, IV) and yohimbine (0.125 mg/kg, IV). After administration of 4-aminopyridine and yohimbine, the llamas stood in a mean of 11 minutes and resumed eating in a mean of 34 minutes; both means were significantly less (P less than 0.05) than control values (46 minutes and 67 minutes, respectively). Doxapram induced muscle fasciculations, and (compared with control values) did not significantly decrease the time to standing (41 minutes) or the time until the animals resumed eating (68 minutes). Yohimbine and 4-aminopyridine in combination rapidly antagonized xylazine-induced sedation in llamas, whereas doxapram was ineffective as an antagonist of xylazine-induced sedation.  相似文献   

15.
OBJECTIVE: To describe myoelectric activity of the spiral colon in healthy cows. ANIMALS: 7 lactating Simmental X Red-Holstein crossbred cows. PROCEDURE: Cows were implanted with 7 pairs of bipolar silver electrodes (4 in the spiral colon and 1 each in the cecum, distal part of the ileum, and proximal loop of the ascending colon [PLAC]). Myo-electric activity was recorded during 4 days for each cow. Patterns were analyzed, using computer-based methods. RESULTS: Myoelectric activity of the spiral colon was closely associated with motility of the ileum and PLAC and showed the typical organization of migrating myoelectric complexes (MMC). The MMC in the bovine spiral colon (bcMMC) had a mean +/- SD duration of 188.6 +/- 30.8 minutes and was divided into 4 phases. Phases I and II lasted 11.3 +/- 1.4 and 159.4 +/- 33.3 minutes, respectively. Phase III (duration, 5.4 +/- 1.2 minutes) was characterized by 5.2 +/- 0.9 regular spindles (35.4 +/- 5.4 seconds) and 1 final elongated spindle (137.2 +/- 56.4 seconds). Phase III most commonly (73.8 +/- 16.1%) was followed by phase IV (duration, 173 +/- 3.6 minutes). Propagation velocity of phase III was 4.4 +/- 0.5 cm/min, and 13.6% of bcMMC were incompletely propagated through the spiral colon. CONCLUSIONS: Myoelectric activity of the bovine spiral colon is composed of a recurring cyclic pattern similar to MMC of the small intestine. Data of colonic myoelectric activity in healthy cows will serve as a basis for studies on cecal dilatation and dislocation in cattle.  相似文献   

16.
Effects of ketamine, xylazine, and a combination of ketamine and xylazine were studied in 12 male Pekin ducks (7 to 12 weeks old; mean [+/- SD] body weight, 3.1 +/- 0.3 kg). After venous and arterial catheterization and fixation of a temperature probe in the cloaca, each awake duck was confined, but not restrained, in an open box in a dimly lit room. Blood pressure and lead-II ECG were recorded. Three arterial blood samples were collected every 15 minutes over a 45-minute period (control period) and were analyzed for pHa, PaCO2 and PaO2. After the control period, each duck was assigned at random to 1 of 3 drug groups: (1) ketamine (KET; 20 mg/kg of body weight, IV), (2) xylazine (XYL; 1 mg/kg, IV), and (3) KET + XYL (KET 20 mg/kg and XYL, 1 mg/kg; IV). Measurements were made at 1, 5, 10, 15, 30, 45, 60, and 90 minutes after drug administration. All ducks survived the drug study. Cloacal temperature was significantly (P less than or equal to 0.05) increased above control cloacal temperature at 90 minutes after the administration of ketamine, and from 10 through 90 minutes after administration of ketamine plus xylazine. In ducks of the KET group, pHa, PaCO2, and PaO2, remained unchanged after administration of the drug. In ducks of the XYL group, pHa and PaO2 decreased significantly (P less than or equal to 0.05) from control values for all time points up to and including 15 minutes after drug administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Reversal of hemodynamic alterations induced by midazolam maleate (1.0 mg/kg of body weight), xylazine hydrochloride (0.44 mg/kg), and butorphanol tartrate (0.1 mg/kg) with yohimbine (0.1 mg/kg) and flumazenil (0.25 mg/kg) was evaluated in 5 dogs. The dogs were anesthetized with isoflurane for instrumentation. With return to consciousness, baseline values were recorded, and the midazolam/xylazine/butorphanol mixture with glycopyrrolate was administered IV. Hemodynamic data were recorded for 60 minutes, and then a reversal mixture of yohimbine and flumazenil was administered IV. All variables were measured 1 minute from beginning of the reversal injection. Mean arterial pressure, pulmonary arterial pressure, systemic vascular resistance, and right ventricular stroke work index increased significantly (P < 0.05) above baseline at 60 minutes. Cardiac index and central venous pressure significantly decreased below baseline at 60 minutes. After reversal, mean arterial pressure and central venous pressure significantly decreased from baseline, whereas cardiac index, pulmonary arterial pressure, and right ventricular stroke work index increased significantly above baseline. Heart rate, cardiac index, and right ventricular stroke work index increased significantly above the 60-minute value after reversal. Mean arterial pressure and systemic vascular resistance decreased significantly (P < 0.05) below the 60-minute value after reversal. The hemodynamic alterations accompanying midazolam/xylazine/butorphanol sedation-anesthesia may be rapidly reversed with a combination of yohimbine and flumazenil.  相似文献   

18.
On 74 occasions, 54 horses and 6 foals were anesthetized with xylazine and ketamine or xylazine, guaifenesin, and ketamine, with or without butorphanol. On 64 occasions, anesthesia was prolonged for up to 70 minutes (34 +/- 15 min) by administration of 1 to 9 supplemental IV injections of xylazine and ketamine at approximately a third the initial dosage. All horses except 5 were positioned in lateral recumbency, and oxygen was insufflated. In adult horses, the time from induction of anesthesia to the first supplemental xylazine and ketamine injection was 13 +/- 4 minutes and the time between supplemental injections was 12.1 +/- 3.7 minutes. These results were consistent with predicted plasma ketamine concentration calculated from previously published pharmacokinetic data for ketamine in horses. Respiratory and heart rates and coccygeal artery pressure remained consistent for the duration of anesthesia. The average interval between the last injection of ketamine and assumption of sternal position was approximately 30 minutes, and was the same regardless of the number of supplemental injections. The time to standing was significantly longer (P less than 0.05) in horses given 2 supplemental injections, compared with those not given any or only given 1, but was not longer in horses given 3 supplemental injections. Recovery was considered unsatisfactory in 5 horses, but did not appear to be related to prolongation of anesthesia.  相似文献   

19.
Antagonism of xylazine sedation by 4-aminopyridine and yohimbine in cattle   总被引:2,自引:0,他引:2  
Twenty-four crossbred steers (4 groups of 6 steers each) were injected IM with a standard dosage range of xylazine hydrochloride (0.2 to 0.3 mg/kg of body weight). When the steers were maximally sedated, group I (control group) were given isotonic saline solution (1 ml, IV), group II were given 4-aminopyridine (4-AP, 0.3 mg/kg) IV, group III were given yohimbine hydrochloride (0.125 mg/kg) IV, and group IV were given 4-AP (0.3 mg/kg) plus yohimbine hydrochloride (0.125 mg/kg) IV. The 4-AP decreased mean standing time (MST; time until animal could stand unaided) from 94.3 minutes (control) to 13.4 minutes. Yohimbine decreased MST to 27 minutes. The combination of 4-AP + yohimbine decreased MST to 7.4 minutes. Mean total recovery time (MTRT; time from xylazine injection until normal behavior, including eating and drinking) was not significantly (P = greater than 0.05) decreased from control values by any of the antagonists tested. The combination of 4-AP + yohimbine decreased MST in animals given a 3X overdose of xylazine (0.6 mg/kg) from 124 minutes (control) to 30.3 min. The MTRT was not significantly (P greater than 0.05) decreased from control values. Two animals given a 5X overdose of xylazine (1 mg/kg) and then given 4-AP + yohimbine had a MST of 32.5 minutes and a MTRT of 3.7 hours. The combination of 4-AP + yohimbine produced marked antagonism of xylazine sedation in cattle. The combination of antagonists may prove to be useful for the arousal of animals sedated with xylazine alone or with a combination of sedatives including xylazine.  相似文献   

20.
OBJECTIVE-To compare the effect of oral administration of tramadol alone and with IV administration of butorphanol or hydromorphone on the minimum alveolar concentration (MAC) of sevoflurane in cats. DESIGN-Crossover study. ANIMALS-8 Healthy 3-year-old cats. PROCEDURES-Cats were anesthetized with sevoflurane in 100% oxygen. A standard tail clamp method was used to determine the MAC of sevoflurane following administration of tramadol (8.6 to 11.6 mg/kg [3.6 to 5.3 mg/lb], PO, 5 minutes before induction of anesthesia), butorphanol (0.4 mg/kg [0.18 mg/lb], IV, 30 minutes after induction), hydromorphone (0.1 mg/kg [0.04 mg/lb], IV, 30 minutes after induction), saline (0.9% NaCl) solution (0.05 mL/kg [0.023 mL/lb], IV, 30 minutes after induction), or tramadol with butorphanol or with hydromorphone (same doses and routes of administration). Naloxone (0.02 mg/kg [0.009 mg/lb], IV) was used to reverse the effects of treatments, and MACs were redetermined. RESULTS-Mean +/- SEM MACs for sevoflurane after administration of tramadol (1.48 +/- 0.20%), butorphanol (1.20 +/- 0.16%), hydromorphone (1.76 +/- 0.15%), tramadol and butorphanol (1.48 +/- 0.20%), and tramadol and hydromorphone (1.85 +/- 0.20%) were significantly less than those after administration of saline solution (2.45 +/- 0.22%). Naloxone reversed the reductions in MACs. CONCLUSIONS AND CLINICAL RELEVANCE-Administration of tramadol, butorphanol, or hydromorphone reduced the MAC of sevoflurane in cats, compared with that in cats treated with saline solution. The reductions detected were likely mediated by effects of the drugs on opioid receptors. An additional reduction in MAC was not detected when tramadol was administered with butorphanol or hydromorphone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号