首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
Light leaf spot (Pyrenopeziza brassicae) is an important disease on winter oilseed rape crops (Brassica napus) in northern Europe. In regions where economically damaging epidemics occur, resistance to P. brassicae in commercial cultivars is generally insufficient to control the disease without the use of fungicides. Two major genes for resistance have been identified in seedling experiments, which may operate by decreasing colonisation of B. napus leaf tissues and P. brassicae sporulation. Much of the resistance present in current commercial cultivars is thought to be minor gene-mediated and, in crops, disease escape and tolerance also operate. The subtle strategy of the pathogen means that early colonisation of host tissues is asymptomatic, so a range of techniques and molecular tools is required to investigate mechanisms of resistance. Whilst resistance of new cultivars needs to be assessed in field experiments where they are exposed to populations of P. brassicae under natural conditions, such experiments provide little insight into components of resistance. Genetic components are best assessed in controlled environment experiments with single spore (genetically fixed) P. brassicae isolates. Data for cultivars used in the UK Recommended List trials over several seasons demonstrate how the efficacy of cultivar resistance can be reduced when they are deployed on a widespread scale. There is a need to improve understanding of the components of resistance to P. brassicae to guide the development of breeding and deployment strategies for sustainable management of resistance to P. brassicae in Europe.  相似文献   

2.
针对不同品种甘蓝型冬油菜抗寒性和遗传多样性存在差异等特点,于2021年采用随机区组设计,结合系统聚类分析法及SSR标记对32份甘肃省生产应用甘蓝型冬油菜与9份陕西中部及江苏省现推广应用甘蓝型冬油菜品种的越冬率及春化特性差异和遗传多样性进行分析,探究其抗寒性差异,分析品种间遗传多样性及亲缘关系。结果表明:甘肃省生产应用甘蓝型冬油菜越冬率高于80%,陕西中部及江苏省甘蓝型冬油菜品种越冬率均小于25%,且抗寒性强弱差异明显;根据春化率高低,参试材料可分为强冬性、冬性、半冬性、弱冬性等4个级别;强冬性材料未现蕾的植株占比高,春播后难以抽薹现蕾进入生殖生长,加权平均薹高随之偏低,抗寒性强;春化率越高,成熟期的加权平均株高越高且抗性越弱,越冬率与春化率呈负相关关系;筛选出的98对多态性高的引物组合共扩增出976个总位点,其中多态性条带750个,多态位点比率达72%,说明其分子遗传水平上的多态性丰富度高,陕西中部及江苏省甘蓝型冬油菜遗传多样性整体高于甘肃省生产应用甘蓝型冬油菜;通过聚类分析,可将甘蓝型冬油菜划分为9类;根据群体遗传结构分析及主成分分析可分为3大类,与抗寒性分类趋于一致。研究成果有望为鉴别甘蓝型冬油菜品种、构建指纹图谱及选择不同生态区适宜品种等研究奠定基础。  相似文献   

3.
Phoma stem canker is an internationally important disease of oilseed rape (Brassica napus, canola, rapeseed), causing serious losses in Europe, Australia and North America. UK losses of €56M per season are estimated using national disease survey data and a yield loss formula. Phoma stem canker pathogen populations comprise two main species, Leptosphaeria maculans, associated with damaging stem base cankers, and Leptosphaeria biglobosa, often associated with less damaging upper stem lesions. Both major gene and quantitative trait loci mediated resistance to L. maculans have been identified in B. napus, but little is known about resistance to L. biglobosa. Leptosphaeria maculans, which has spread into areas in North America and eastern Europe where only L. biglobosa was previously identified, now poses a threat to large areas of oilseed rape production in Asia. Epidemics are initiated by air-borne ascospores; major gene resistance to initial infection by L. maculans operates in the leaf lamina of B. napus. It is not clear whether the quantitative trait loci involved in the resistance to the pathogen that can be assessed only at the end of the season operate in the leaf petioles or stems. In countries where serious phoma stem canker epidemics occur, a minimum standard for resistance to L. maculans is included in national systems for registration of cultivars. This review provides a background to a series of papers on improving strategies for managing B. napus resistance to L. maculans, which is a model system for studying genetic interactions between hemi-biotrophic pathogens and their hosts.  相似文献   

4.
5.
Pathotype-specific and broad-spectrum resistance to turnip mosaic virus (TuMV) have been identified in the diploid A genome brassica species Brassica rapa. The pathotype-specific resistance is effective against pathotype 1 isolates of TuMV, which are the most common in Europe. It is almost identical in its specificity to that of a mapped resistance gene (TuRB01) present in the A genome of the amphidiploid species Brassica napus. A mutant of a pathotype 1 isolate of TuMV (UK 1M) that is able to overcome TuRB01 also overcame the B. rapa resistance. This, combined with the fact that a single-nucleotide mutation in the cylindrical inclusion gene of TuMV that has been shown to induce a change from avirulence to virulence against TuRB01, had an identical effect on the B. rapa resistance, suggest that the two resistances are conditioned by the same gene. A second source of resistance in B. rapa prevented systemic spread of all TuMV isolates tested. A third source of resistance that appears to provide immunity to, or severely restrict replication of most isolates of TuMV has been characterised. This resistance source also prevented systemic spread of all TuMV isolates tested. Prior to this study, no resistance to pathotype 4 or pathotype 12 isolates of TuMV had ever been identified. For each of these three resistance sources, plant lines that are not segregating for some of the resistance phenotypes and that are presumably homozygous for the genes controlling these phenotypes have been generated. Strategies for further characterising and deploying these resistances in different Brassica species are described.  相似文献   

6.
Blackleg (Phoma stem canker) caused by Leptosphaeria maculans is the most damaging disease of Brassica napus (canola, rapeseed, colza) worldwide and is controlled by sowing blackleg resistant cultivars and crop management strategies that reduce exposure to inoculum and fungicide application. In experiments in south-eastern Australia, canola cultivars inoculated after the three to five leaf growth stage did not develop stem canker. Although mature canola plants are known to be less susceptible to blackleg than seedlings, this highlights for the first time the specific importance of protecting seedlings up to the three to five leaf growth stage in Australia. This would typically correspond to a period of four to six weeks after emergence. Canola plants are likely to be significantly less vulnerable to infection after this growth stage. However, this timing may vary due to the influence of environmental conditions.  相似文献   

7.
The most common and effective way to control phoma stem canker (blackleg) caused by Leptosphaeria maculans in oilseed rape (Brassica napus) is through the breeding of resistant cultivars. Race specific major genes that mediate resistance from the seedling stage have been identified in B. napus or have been introgressed from related species. Many race specific major genes have been described and some of them are probably identical in B. napus (allotetraploid AACC) and the parental species B. rapa (diploid AA). More work is needed using a set of well-characterised isolates to determine the number of different major resistance genes available. In some B. napus cultivars, there is resistance which is polygenic (mediated by Quantitative Trait Loci) and postulated to be race non-specific. Many of these major genes and Quantitative Trait Loci for resistance to L. maculans have been located on B. napus genetic maps. Genes involved in race specific and polygenic resistance are generally distinct.  相似文献   

8.
Brassica napus (canola, oilseed rape), an important break crop for cereals across the Australian wheat belt, is being rapidly adopted as a dual‐purpose (forage and grain) crop in mixed farming systems. Stem canker caused by the fungus Leptosphaeria maculans is the most important disease of B. napus in Australia. The primary source of inoculum is airborne ascospores released during autumn/winter which coincides with the grazing of dual‐purpose crops. Field experiments were defoliated by sheep to determine the effect of grazing on blackleg stem canker severity at plant maturity in B. napus cultivars differing in their resistance level and grazed at different times. One cultivar was sown on different dates to investigate the impact of grazing at the same time, but at different growth stages. Defoliation by mowing was compared to defoliation by livestock. Similar amounts of dry matter remained after defoliation by machinery (0·66 t ha?1) or livestock (0·52 t ha?1). However, stem canker severity was higher in the grazed (40% of crown cross‐section diseased) compared with the mown (25%) treatment, which was higher than the ungrazed control (9%). Stem canker severity generally increased with grazing, but the increase was eliminated or reduced in cultivars with good resistance. Grazing during vegetative plant growth minimized the increase in stem canker severity compared with grazing during reproductive growth. Currently, cultivars with good L. maculans resistance are recommended in high disease situations. To avoid excessive yield loss in dual‐purpose B. napus crops due to L. maculans it is recommended that such cultivars are grown even in low‐moderate disease situations.  相似文献   

9.
为了研究比较越冬前北方两种不同类型冬油菜的生长特性,于2020年10—11月选用强冬性白菜型冬油菜和强冬性甘蓝型冬油菜品种,分析其越冬前降温过程中的形态特征、光合特性和渗透调节物质含量变化,并与越冬率进行了相关性分析。结果表明,越冬前随着温度的降低,白菜型冬油菜根冠比增加164.7%,甘蓝型冬油菜根冠比变化不大,两个品种间差异显著,但二者组织含水量变化为69%~89%,变化幅度较小。随着温度的降低,白菜型冬油菜和甘蓝型冬油菜的叶面积逐渐减小,下降幅度为5%~16%,叶绿素SPAD值整体呈现增加的趋势;光合速率、蒸腾速率、气孔导度均逐渐下降,降幅为54%~64%,胞间CO2浓度逐渐上升19%~29%。叶片和根部的可溶性蛋白、脯氨酸含量均增大,增幅为26%~91%;叶片可溶性糖含量先增加后降低,根部可溶性糖含量先降低后增加。叶片的钠离子和钾离子含量逐渐降低了20%~47%,钙离子含量先增加后降低;根部钾离子和钙离子含量先下降后上升;白菜型冬油菜根部钠离子含量呈现出逐渐上升的趋势,甘蓝型冬油菜呈现出先上升后下降的趋势。由此推断白菜型冬油菜陇油6号的抗寒性强于甘蓝型冬油菜2019-QL-GAU-30。  相似文献   

10.
Leptosphaeria maculans,a fungal pathogen of Brassica napus, secretes large amounts of a 28kDa protein (SP2) in liquid culture. This protein shows high sequence similarity to secreted serine proteases from other ascomycetes and is the major component of culture filtrate with protease activity, as analysed on casein zymogels. The sp2 gene is expressed during infection of B.napuscotyledons when L. maculans hyphae are growing between mesophyll cells, as well as at later stages when the fungus invades the vascular tissue.  相似文献   

11.
采用聚乙二醇(PEG 6000)模拟干旱胁迫,分析干旱胁迫下8份甘蓝型油菜芽期和苗期抗旱相关指标,鉴定芽期和苗期抗旱性,筛选抗旱评价指标。结果表明,甘蓝型油菜种质芽期和苗期抗旱性强弱不同,芽期抗旱性鉴定的最适PEG 6000浓度为15%,成苗率可作为芽期抗旱性的鉴定指标。通过主成分分析、隶属函数等方法分析苗期相关指标的变化,利用抗旱性综合度量值D值评价甘蓝型油菜苗期抗旱性,结果表明叶片相对含水量(r=0.907~(**))、可溶性蛋白(r=0.921~(**))与抗旱度量值D值呈极显著正相关,丙二醛含量(r=-0.837~(**))与D值呈极显著负相关,这些指标可作为甘蓝型油菜苗期抗旱性的评价指标。  相似文献   

12.
Blackleg disease of canola/rapeseed (Brassica napus), caused by the devastating fungal pathogen Leptosphaeria maculans, can significantly influence B. napus production worldwide, except for China, where only the less aggressive L. biglobosa has been found associated with the disease. The aim of this study was to characterize both seedling resistance (major gene resistance, R gene resistance) and adult plant resistance (APR) from a collection of Chinese B. napus varieties/lines (accessions) to L. maculans. Evaluation of seedling resistance was carried out under a controlled environment, using 11 well‐characterized L. maculans isolates as differentials. The identification of APR was performed under multiple field environments in western Canada. R genes were detected in more than 40% of the accessions tested. Four specific R genes, Rlm1, Rlm2, Rlm3 and Rlm4 were identified, with Rlm3 and Rlm4 being the most common genes, while Rlm1 and Rlm2 were detected only occasionally. Results of field evaluation indicated significant variations among field locations as well as accessions; a large portion of the B. napus accessions, regardless of the resistance level observed at the seedling stage, showed high to moderate levels of APR under all environments tested. This study highlights that both R gene resistance and APR are present in Chinese B. napus germplasm and could be potential sources of resistance against blackleg caused by L. maculans if the pathogen ever becomes established in China.  相似文献   

13.
油菜和小麦种苗根系对乙草胺的耐性差异分析   总被引:1,自引:0,他引:1  
为揭示油菜和小麦根系对乙草胺耐药性差异的原因,采用水培法研究了梯度浓度乙草胺对油菜和小麦种苗根系形态、根尖生理代谢和解剖结构的影响。结果表明,1 mg/L乙草胺对油菜根长抑制率为33.63%,而对小麦根长抑制率可达55.22%;100 mg/L乙草胺对油菜侧根抑制率为63.03%,而对小麦侧根抑制率达100.00%;经0.01 mg/L乙草胺处理后的油菜根尖细胞膜透性高于小麦,当乙草胺浓度高于0.1 mg/L后,小麦根尖细胞膜透性剧烈增加且高于油菜;在较高浓度乙草胺胁迫下,小麦根尖抗氧化酶活性均低于油菜;10 mg/L乙草胺处理下,小麦根尖的解剖结构变异较油菜明显,表现为细胞排列松散、混乱,根冠变形,分生组织细胞染色程度变浅,伸长区细胞分化提前,中柱鞘细胞木质化。研究表明,小麦的根系建成比油菜更容易受乙草胺抑制,且侧根数比根长更敏感;油菜和小麦对乙草胺耐药性差异可能与细胞膜透性、抗氧化酶活性以及根尖细胞组织分化等差异有关。  相似文献   

14.
The management of phoma stem canker (blackleg disease, caused by Leptosphaeria maculans) is an integral component of oilseed rape production. In this paper, we discuss the information about management strategies that is disseminated in Europe and Australia. New cultivars have been introduced with improved resistance to disease, but sometimes this resistance has been overcome as new races of the pathogen have emerged. When cultivars with single major gene resistance have been introduced into areas with high inoculum concentrations, significant economic damage has been caused by new races of L. maculans within 2–3 years. Quantitative or polygenic resistance has also been used successfully against stem canker and offers more durable disease resistance if plant breeders and farmers deploy this resistance more effectively. Strategies to improve the durability of resistance need to be developed and tested in practice. New information on the occurrence of virulence and avirulence genes in populations of Leptosphaeria maculans and modelling of the durability of resistance provide opportunities for plant breeders, specialist technical organisations, cooperatives, advisory services and farmers to collaborate and better exploit cultivar resistance. Changing economic and environmental factors influence cropping practices and, if to be considered successful, management strategies must show clear financial benefits. Technology transfer will need to address all aspects of managing stem canker and other diseases of oilseed rape and using effective written, verbal and electronic methods of communication.  相似文献   

15.
Brassica crops are of global importance, with oilseed rape (Brassica napus) accounting for 13% of edible oil production. All Brassica species are susceptible to sclerotinia stem rot caused by Sclerotinia sclerotiorum, a generalist fungal pathogen causing disease in over 400 plant species. Generally, sources of plant resistance result in partial control of the pathogen although some studies have identified wild Brassica species that are highly resistant. The related pathogen Ssubarctica has also been reported on Brassica but its aggressiveness in relation to S. sclerotiorum is unknown. In this study, detached leaf and petiole assays were used to identify new sources of resistance to S. sclerotiorum within a wild Brassica ‘C genome’ diversity set. High‐level resistance was observed in B. incana and B. cretica in petiole assays, whilst wild B. oleracea and B. incana lines were the most resistant in leaf assays. A B. bourgeai line showed both partial petiole and leaf resistance. Although there was no correlation between the two assays, resistance in the detached petiole assay was correlated with stem resistance in mature plants. When tested on commercial cultivars of B. napus, B. oleracea and B. rapa, selected isolates of S. subarctica exhibited aggressiveness comparable to S. sclerotiorum indicating it can be a significant pathogen of Brassica. This is the first study to identify B. cretica as a source of resistance to S. sclerotiorum and to report resistance in other wild Brassica species to a UK isolate, hence providing resources for breeding of resistant cultivars suitable for Europe.  相似文献   

16.
Nine avirulence genes (AvrLm1–AvrLm9) were identified in Leptosphaeria maculans, the causal agent of stem canker of oilseed rape (OSR), combinations of which could theoretically generate up to 512 different races of the fungus. L. maculans displays a high evolutionary potential to adapt to novel resistance genes as illustrated by the Rlm1 breakdown in France, where virulent populations became prevalent within three growing seasons. An improved knowledge of the race structure of the fungal population is therefore needed to ensure a better use of available major resistance genes. The objective of this study was to characterise the L. maculans population structure in France using a large-scale, rationalised sample of isolates. Experimental fields, planted with “trap plants” harbouring no major resistance gene, were sown at 20 locations. Single-pycnidium isolates were collected from leaf lesions that developed in early autumn and 1797 isolates were genotyped at Avr loci. The frequency of AvrLm6 and AvrLm7 was higher than 99%, whereas avrLm2 and avrLm9 alleles were fixed in the population. AvrLm1, AvrLm4, AvrLm5 and AvrLm8 were polymorphic. AvrLm3 isolates were detected at a very low frequency (less than 1%). Only 11 races were identified in France, with one race prevalent, namely Av5-6-7-(8) (i.e. virulent on Rlm1, Rlm2, Rlm3, Rlm4 and Rlm9), representing around 65% of the population. Disparities between the locations sampled were evident at all scales analysed. Some virulent races, such as those harbouring avrLm5, were present before the introduction of the corresponding resistance gene in the commercial OSR crop.  相似文献   

17.
Tomato and transgenic oilseed rape plants expressing the Cf-9 resistance gene develop a hypersensitive response (HR) after injection of the corresponding Avr9 gene product. It was investigated whether induction of a HR conferred resistance to different fungal pathogens in tomato and oilseed rape. Induction of an AVR9 mediated HR at the pathogen infection site delayed the development of the biotrophs Oidium lycopersicum in tomato and Erysiphe polygoni in oilseed rape, but enhanced the development of the necrotrophs Botrytis cinerea and Alternaria solani in tomato and Sclerotinia sclerotiorum in oilseed rape. Interestingly, delayed fungal disease development was observed in plant tissues surrounding the HR lesion regardless of whether a necrotrophic or biotrophic pathogen was used. In tomato, AVR9 injection induced systemic expression of PR1, PR2 and PR3 defence genes but did not induce systemic resistance to O. lycopersicum, B. cinerea or A. solani. In oilseed rape, AVR9 injection temporarily induced systemic resistance to Leptosphaeria maculans and E. polygoni, but did not induce detectable systemic expression of PR1, PR2 or Cxc750. These results give new insights into the potential uses of an induced HR to engineer disease resistance.  相似文献   

18.
19.
以120份西北地区甘蓝型油菜种质为试验材料,人工气候室盆栽,油菜五叶期时采用PEG-6000模拟干旱处理,通过抗旱指数和生理指标测定,对120份材料进行抗旱鉴定,探讨甘蓝型油菜抗旱指数与8个抗旱生理指标之间的相关关系及甘蓝型油菜抗旱性鉴定指标的选择。结果表明:120份种质中高抗旱材料6份、中抗10份、低抗23份、低感42份和高感39份;不同油菜种质干旱处理后可溶性糖、脯氨酸、可溶性蛋白等生理指标发生明显变化,增加率分别为94.7%、432.8%和95.7%;抗旱指数与可溶性蛋白含量(0.521~(**))、可溶性糖含量(0.506~(**))、脯氨酸含量(0.495~(**))和叶片保水力(0.426~(**))呈极显著正相关,与丙二醛含量(-0.372~(**))呈极显著负相关;对抗旱指数直接影响最大的是可溶性蛋白,直接通径系数为0.384,间接影响最大的是SPAD值,间接综合效应为0.196。通过主成分分析,可将相关指标综合为3大类:渗透调节因子、水分保持因子和膜脂损伤因子。关键字:  相似文献   

20.
Resistance to pea bacterial blight (Pseudomonas syringae pv. pisi) in different plant parts was assessed in 19 Pisum sativum cultivars and landraces, carrying race-specific resistance genes (R-genes) and two Pisum abyssinicum accessions carrying race-nonspecific resistance. Stems, leaves and pods were inoculated with seven races of P. s. pv. pisi under glasshouse conditions. For both race-specific and nonspecific resistance, a resistant response in the stem was not always associated with resistance in leaf and pod. Race-specific genes conferred stem resistance consistently, however, there was variability in the responses of leaves and pods which depended on the matching R-gene and A-gene (avirulence gene in the pathogen) combination. R2 generally conferred resistance in all plant parts. R3 or R4 singly did not confer complete resistance in leaf and pod, however, R3 in combination with R2 or R4 enhanced leaf and pod resistance. Race-nonspecific resistance conferred stem resistance to all races, leaf and pod resistance to races 2, 5 and 7 and variable reactions in leaves and pods to races 1, 3, 4 and 6.Disease expression was also studied in the field under autumn/winter conditions. P. sativum cultivar, Kelvedon Wonder (with no R genes), and two P. abyssinicum accessions, were inoculated with the most frequent races in Europe under field conditions (2, 4 and 6). Kelvedon Wonder was very susceptible to all three races, whereas P. abyssinicum was much less affected. The combination of disease resistance with frost tolerance in P. abyssinicum enabled plants to survive through the winter. A breeding strategy combining race-nonspecific resistance derived from P. abyssinicum with race-specific R-genes should provide durable resistance under severe disease pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号