首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于3S和实测相结合的冬小麦估产研究   总被引:8,自引:1,他引:7  
该文运用3S集成技术(地理信息系统、遥感和全球定位系统),进行冬小麦产量估测的应用研究。结果表明, 3月下旬是运城地区冬小麦面积监测的最佳时相,4月上、中旬是该区冬小麦产量估算的最佳时期。用遥感信息中的TM提取冬小麦面积,AVHRR提取绿度信息,效果较好。根据归一化植被指数的大小把冬小麦分为3类,同类麦田在不同区域的实测产量差异很大。分析研究区域自然地理特征和关键期气象资料,以归一化植被指数、极高温度、相对湿度为主因子建立了冬小麦遥感—气象—产量综合模型。  相似文献   

2.
基于低空无人机遥感的冬小麦覆盖度变化监测   总被引:25,自引:12,他引:13  
无人机遥感作为卫星遥感的有益补充,具有高时效、高分辨率、低成本、低损耗、低风险及可重复等优点。为了利用无人机遥感系统进行快速机动地监测大面积农作物覆盖度变化,更好地服务和指导农业生产,该文设计了一套以低空无人直升机为平台的多光谱载荷观测系统,并以冬小麦为研究对象,对冬小麦生长过程中的5个主要生育期进行监测,提出一种从时间序列影像的植被指数直方图曲线中获取植被指数阈值的方法,并利用植被指数阈值法提取研究区域内冬小麦覆盖度时序变化曲线,分析了空间尺度对提取植被覆盖度的影响。研究结果表明,利用低空无人机遥感监测冬小麦覆盖度变化的方法可行,分析结果可靠,在大面积农作物覆盖度的测量有很好的应用前景。  相似文献   

3.
基于无人机遥感影像的大豆叶面积指数反演研究   总被引:16,自引:0,他引:16  
作物叶面积指数的遥感反演是农业定量遥感研究热点之一,利用无人机遥感监测系统获取农作物光谱信息精确反演叶面积指数对精准农业生产与管理意义重大。本研究以山东省嘉祥县一带的大豆种植区为试验区,设计以多旋翼无人机为平台同步搭载Canon Power Shot G16数码相机和ADC-Lite多光谱传感器组成的无人机农情监测系统开展试验,分别获取大豆结荚期和鼓粒期的遥感影像。使用比值植被指数(RVI)、归一化植被指数(NDVI)、土壤调整植被指数(SAVI)、差值植被指数(DVI)、三角植被指数(TVI)5种植被指数,结合田间同步实测叶面积指数(leaf area index,LAI)数据,采用经验模型法分别构建了单变量和多变量LAI反演模型,通过决定系数(R2)、均方根误差(RMSE)和估测精度(EA)3个指标筛选出最佳模型。研究表明,有选择性地分时期进行农作物的叶面积指数反演是必要的,鼓粒期作为2个生育期中大豆LAI反演的最佳时期,其NDVI线性回归模型对大豆LAI的解释能力最强,R2=0.829,RMSE=0.301,反演大豆LAI最准确,EA=85.4%,生成的鼓粒期大豆LAI分布图反映了当地当时大豆真实长势情况。因此,以多旋翼无人机为平台同步搭载高清数码相机和多光谱传感器组成的无人机农情监测系统对研究大豆叶面积指数反演是可行性,可作为指导精准农业研究的一种新方法。  相似文献   

4.
基于HJ-1A/1B CCD数据的雹灾监测与评价   总被引:2,自引:2,他引:0  
由于雹灾的突发性、灾后影响的显著空间异质性,雹灾监测与灾后评价的研究相对较少。以黑龙江甘南县典型雹灾为研究对象,利用HJ-1A/1B CCD等遥感影像与地面实测高光谱数据,进行雹灾遥感监测与评价研究。基于实测光谱数据分析了不同灾害程度农作物的反射光谱特征及植被指数变化;利用2个时相的遥感影像数据,结合地面调查,通过对植被指数分级进行雹灾监测与评价,并结合另一个时相的数据做了验证。结果表明:不同灾害程度作物的反射光谱特征差异显著;运用植被指数分级进行雹灾监测是可行的,基于归一化差分植被指数差值图分级得到的不同雹灾程度范围与实际情况相符,而基于比值植被指数差值图的分级结果则与实际结果差距较大;根据雹灾遥感分级结果分析了雹灾空间分布特征。研究结果可对雹灾监测与评价提供理论与技术支持。  相似文献   

5.
不同生育时期冬小麦叶面积指数高光谱遥感监测模型   总被引:5,自引:2,他引:5  
贺佳  刘冰锋  李军 《农业工程学报》2014,30(24):141-150
高光谱遥感能快速无损获取植被冠层信息,是实现作物长势实时监测的重要技术。为研究不同氮磷水平下冬小麦不同生育时期叶面积指数高光谱遥感监测模型,提高叶面积指数高光谱监测精度,该研究连续5 a定位测定黄土高原旱地不同氮磷水平和不同冬小麦品种各生育时期冠层光谱反射率与叶面积指数,通过相关分析、回归分析等统计方法,构建不同生育时期冬小麦叶面积指数监测模型。结果表明:不同氮磷水平下,冬小麦叶面积指数随施肥量增加呈递增趋势,随生育时期改变呈抛物线趋势变化;随着氮磷供应量的增加,冠层光谱反射率在可见光波段显著降低2%~5%(P0.05),在近红外波段显著增加4%~10%(P0.05);不同生育时期叶面积指数与优化土壤调整植被指数、增强型植被指数Ⅱ、新型植被指数、修正归一化差异植被指数、修正简单比值植被指数均达极显著相关(P0.01);拔节期、孕穗期、抽穗期、灌浆期和成熟期叶面积指数分别与优化土壤调整植被指数、增强型植被指数Ⅱ、增强型植被指数Ⅱ、修正归一化差异植被指数和修正简单比值植被指数拟合效果较好,决定系数分别为0.952、0.979、0.989、0.960和0.993;以不同年份独立数据验证模型表明,所建预测模型均有较好的验证结果,相对误差分别为13.0%、13.5%、12.8%、12.6%和14.0%,均方根误差分别为:0.313、0.336、0.316、0.316、0.324。因此,优化土壤调整植被指数、增强型植被指数Ⅱ、增强型植被指数Ⅱ、修正归一化差异植被指数和修正简单比值植被指数能有效评价拔节期、孕穗期、抽穗期、灌浆期和成熟期冬小麦叶面积指数。同时,叶面积指数分段监测模型较统一监测模型精度有所改善。该结果为实现不同肥力水平下冬小麦不同生育时期长势精确监测提供理论依据和技术支撑。  相似文献   

6.
基于信息扩散和关键期遥感数据的冬小麦估产模型   总被引:5,自引:3,他引:2  
农作物估产对于国家制定粮食进出口政策和保障粮食安全具有重要意义。为构建高精度的作物估产模型,探讨了一种将信息扩散原理和关键期遥感数据相结合的农作物遥感估产方法。首先利用信息扩散原理将关键期遥感数据生成的NDVI和实割实测产量数据扩散到多维监控空间,采用模糊合成的方法建立关键期遥感数据和实割实测产量之间的离散关系模型。然后针对模型的稳定性和精度进行交叉验证,并与多元线性回归模型和BP神经网络模型进行对比。结果表明,利用信息扩散方法构建的遥感估产模型稳定性和精度都明显提高,与多元回归方法和BP神经网络方法相比,决定系数分别提高0.180、0.491,均方根误差分别降低173.10、487.79 kg/hm2。该方法能较好地模拟冬小麦遥感估产中归一化植被指数和产量之间的非线性关系,且泛化推广能力优异,为应用关键期遥感数据进行冬小麦估产提供了一种有效方法。  相似文献   

7.
基于改进水云模型和Radarsat-2数据的农田土壤含水量估算   总被引:3,自引:2,他引:1  
为了直接将雷达遥感中"水云模型"进行反演应用,该研究将"水云模型"中植被参数改为雷达植被指数,利用全极化数据直接支持遥感反演土壤含水量,无需遥感反演植被参数输入。改进模型为利用雷达遥感结合"水云模型"进行土壤含水量监测提供了一种高效便捷方法。基于Radarsat-2全极化数据对冬小麦覆盖的农田土壤含水量进行估算,利用2014年在陕西杨凌区获取的4个生育期内Radarsat-2卫星数据及同步田间测量108组冬小麦农田土壤含水量地面测量数据进行模型参数校正和精度验证。验证结果精度为:改进的雷达植被指数模型原叶面积指数模型(实测叶面积指数验证)原叶面积指数模型(光学遥感反演叶面积指数验证),且改进的雷达植被指数模型可以在多个生育期内对农田土壤含水量进行监测。  相似文献   

8.
基于MODIS数据和模糊ARTMAP的冬小麦遥感识别方法   总被引:3,自引:2,他引:1  
针对国家级农情遥感监测与信息服务系统对农作物遥感识别的需求,利用Terra/MODIS数据相对于NOAA/AVHRR数据具有的高光谱和中等空间分辨率的优势,以中国华北地区冬小麦识别为例,采用多时相和波谱分析方法,选取合适波段,构造特征植被指数,建立模糊ARTMAP影像分类模型进行大尺度农作物识别,实现农作物遥感自动识别.用Landsat TM进行局部抽样验证,结果精度可达到85.9%.研究表明,仅利用MODIS自身光谱信息,即可实现作物遥感全覆盖自动识别,并可达到较高精度,与传统方法认为冬小麦遥感识别的最佳时间为处于返青期的3月份相比,在时间上可提前约一个季度,因此可以确实地为农业决策部门提供信息服务.  相似文献   

9.
基于关键发育期的冬小麦长势遥感监测方法   总被引:1,自引:0,他引:1  
利用遥感方法识别中国冬小麦关键发育期并基于识别发育期进行长势监测。通过冬小麦主产区271个气象站2005-2010年的农业气象资料和同期MODIS-EVI(增强植被指数)遥感资料,综合分析EVI时间序列与冬小麦返青、抽穗和成熟期的关系,使用最大变化斜率法、窗口转折点法和简单转折点法识别冬小麦关键发育期。然后基于遥感识别抽穗期数据,使用相邻年抽穗期EVI值比较方法对冬小麦2006-2010年长势进行遥感监测。遥感识别冬小麦主要发育期均方根均值为14.61d,平均绝对偏差均值为11.2d;冬小麦遥感长势监测结果显示基于识别抽穗期的遥感长势监测方法监测效果好于传统长势监测方法。  相似文献   

10.
基于无人机遥感植被指数优选的田块尺度冬小麦估产   总被引:4,自引:3,他引:1  
田块尺度作物快捷精准估产对规模化农业经营管理具有重要意义。因此,急需选取最优植被指数和最佳无人机遥感作业时期,建立冬小麦无人机遥感估产模型,获取及时、快速、低成本的无人机遥感估产方法。该文以山东省滨州市典型规模化农田为研究对象,利用固定翼无人机遥感平台对冬小麦进行多期遥感观测与估产。基于2016年冬小麦返青拔节期、抽穗灌浆期和成熟期的无人机遥感影像数据集,采用最小二乘法,构建了基于不同植被指数与冬小麦实测产量的9种线性模型,并结合作物实测产量进行模型评价。多时相多种类植被指数的优选分析结果显示,抽穗灌浆期估产模型R~2最高,RMSE最低(n=34)。其中,模型R~2达到0.70的植被指数共6个,从高到低依次为EVI2、MSAVI2、SAVI、MTVI1、MSR和OSAVI;RMSE由低到高依次为EVI2、MSAVI2、SAVI、MTVI1、MSR和OSAVI。另外,该文进一步评价农田土壤像元对无人机遥感估产的影响,经过阈值滤波法处理后,返青拔节期估产模型的R~2(n=34)从约0.20提升至0.30以上,RMSE和MRE下降;抽穗灌浆期模型的RMSE降低,R~2(n=34)有所提升但不显著。综上所述,最佳无人机飞行作业时期为冬小麦抽穗灌浆期,最优植被指数为EVI2,土壤像元的滤除对抽穗灌浆期无人机遥感估产模型的影响不显著。因此,优化后的基于植被指数的无人机遥感估产模型,可以快速有效诊断和评估作物长势和产量,为规模化农业种植经营提供一种快捷高效的低空管理工具。  相似文献   

11.
基于GF-1遥感影像和relief-mRMR-GASVM模型的小麦白粉病监测   总被引:3,自引:3,他引:0  
选择合适的建模和特征选择算法对提高作物病害的遥感监测水平有着重要的作用。研究以河北省小麦白粉病为研究对象,基于GF-1/WFV数据共提取了4个波段反射率数据和10个对作物长势和胁迫敏感的植被指数作为初选特征。针对常用的特征提取算法relief算法筛选出的特征存在冗余性的问题,提出了一种relief结合最小冗余最大相关(minimum redundancy maximum relevance,m RMR)的特征降维算法(relief-m RMR)。首先,通过relief算法计算出各特征的权重系数,对特征集进行加权;然后利用m RMR算法选出与类别具有最小冗余性的特征,利用支持向量机(support vector machine,SVM)对河北白粉病进行监测,并用遗传算法(genetic algorithm,GA)优化的SVM(GASVM)建立了白粉病的监测模型(relief-m RMR-GASVM),将监测结果分别与SVM和网格寻优(grid search,GS)算法优化的SVM(GSSVM)的监测结果进行对比分析,同时比较了该方法与Ada Boost、粒子群(Pso)优化的最小二乘支持向量机(least squares support vector machine,Pso-LSSVM)和随机森林(random forest,RF)3种方法的优越性。结果表明,relief-m RMR算法筛选出的特征与GASVM、SVM和GSSVM建立的监测模型精度比传统relief算法筛选特征所建模型的精度分别提高了14.3个百分点、7.2个百分点和7.1个百分点,比传统m RMR算法筛选特征所建模型的精度分别提高了14.3个百分点、14.3个百分点和14.2个百分点。relief-m RMR算法结合GASVM建立的监测模型精度为所有模型中最高,精度为85.7个百分点,分别比SVM和GSSVM所建监测模型精度提高了21.4个百分点和7.2个百分点。此外,GF-1数据结合relief-m RMR-GASVM模型的监测精度分别高出Ada Boost、Pso-LSSVM和RF方法21.4个百分点、14.3个百分点和7.1个百分点。说明GF-1数据结合relief-m RMR-GASVM模型可用于小麦白粉病的遥感监测。  相似文献   

12.
遥感与气象数据结合预测小麦灌浆期白粉病   总被引:2,自引:6,他引:2  
利用多源数据对区域尺度上小麦白粉病的发生状况准确及时地预报能为农业服务和农业植保等部门提供重要信息,实现小麦白粉病的有效预防。研究利用一景2014年5月6日的landsat8遥感影像提取出植被指数、地表温度(land surface temperature,LST)和影像中各波段反射率特征,同时用2014年3月-5月份的站点逐日地面气象资料计算获得各气象特征,并经过GIS空间插值分析得到相应的空间气象特征。通过Relief算法和泊松相关系数相结合的方式进行遥感和气象特征的筛选,最终得出改进的简单比值指数(modified simple ratio index,MSR)、重归一化植被指数(re-normalized difference vegetation index,RDVI)、3月21日-4月20日总日照时数和4月11日-5月10日大于0.1 mm降雨日数。采用相关向量机(relevance vector machine,RVM)的方法分别用筛选出的遥感、气象数据特征及2种数据特征相结合的方式构建了河北省石家庄市藁城、晋州和赵县3地区小麦灌浆期白粉病的发生预测模型,并对3种不同数据模型进行了验证与评估。试验结果表明,遥感气象数据模型的总体精度达到84.2%,优于遥感数据模型的80.0%和气象数据模型的74.7%。进而得出,相比于单站点准确和空间不连续的气象数据和类型单一的遥感数据,遥感气象数据更适合于区域尺度范围内的作物病虫害发生发展状况的预测研究。  相似文献   

13.
高光谱遥感反演LAI时,由于实际样本数远小于光谱维数,易导致基于全谱段建立的模型不稳定。针对该问题,该文提出将基于原始光谱反射率与LAI相关性和基于光谱曲线特征的2种波段选择方式分别与主成分回归(PCR)或偏最小二乘回归(PLSR)结合的高光谱维数约简方法,估算冬小麦LAI。并选择归一化植被指数(NDVI)、增强型植被指数(EVI)、重归一化植被指数(RDVI)、修正土壤调节植被指数(MSAVI)和三角形植被指数(TVI)5种代表性植被指数,利用2009、2010年实测大田冬小麦冠层高光谱和LAI数据,将提出的基于维数约简的方法与基于植被指数的LAI估算方法进行了比较,独立样本集验证结果和交叉验证结果均表明,提出的基于维数约简的方法比基于植被指数方法的估算精度高,在交叉验证结果中,基于维数约简的方法R2最高达到0.818,相应RMSE为0.685。该研究可为后续基于高光谱的LAI估算提供参考。  相似文献   

14.
冬小麦叶面积指数高光谱遥感反演方法对比   总被引:26,自引:13,他引:13  
冬小麦叶面积指数(LAI,leafarea index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

15.
冬小麦叶面积指数(LAI, leaf area index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

16.
基于多源无人机影像特征融合的冬小麦LAI估算   总被引:3,自引:3,他引:0  
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。  相似文献   

17.
充分挖掘遥感数据信息,改善作物识别环境,一直是农作物遥感监测的重要工作。以往研究表明最佳波段组合、纹理信息和植被指数信息可以在一定程度上提高分类精度,但这些手段是否一定可以提高作物识别的精度,不同分类器对不同特征信息组合的响应是否一致等都是值得探讨的问题,也是目前研究甚少的问题。为此,该文将平均值(Mean)、方差(Variance)、均一性(Homogeneity)、反差(Contrast)、相异性(Dissimilarity)、熵(Entropy)、角二阶矩(Angular Second Moment)、灰度相关(Correlation)7种纹理信息以及比值植被指数(RVI)、土壤调整植被指数(SAVI)、重归一化植被指数(RDVI)、植被液态水含量指数(NDWI)、有效叶面积植被指数(SLAVI)5种植被指数信息分别加入到TM多光谱数据中,同时还进行了最佳波段选择,利用最小距离、最大似然和支持向量机3种方法进行分类提取小麦,研究了不同特征信息对小麦测量精度的影响。结果表明:该试验区内最佳波段5、4、3组合,纹理信息和植被指数信息的加入,对小麦面积测量精度的提高没有贡献;同一个特征信息组合对不同的分类器影响不同。在实际小麦面积测量的操作中,作业员不应该盲目的加入特征信息。选用何种信息不仅仅和研究区本身的性质有关,还和使用的分类器有关。  相似文献   

18.
基于无人机高光谱的冬小麦氮素营养监测   总被引:1,自引:10,他引:1  
为了实现小区域尺度上的作物氮素营养状况遥感监测,该研究利用无人机搭载Cubert UHD185成像光谱仪对2016 -2017年关中地区的冬小麦进行遥感监测,通过分析冠层光谱参数与植株氮含量、地上部生物量和氮素营养指数的相关性,筛选出对三者均敏感的光谱参数,结合多元线性逐步回归、偏最小二乘回归和随机森林回归建立抽穗期冬小麦氮素营养指数(Nitrogen Nutrition Index,NNI)估测模型,并与单个光谱参数建立的冬小麦氮素营养指数模型进行比较。结果表明,任意两波段光谱指数对氮素营养指数更为敏感,与氮素营养指数均达到了极显著性相关;基于差值光谱指数和红边归一化指数的单个光谱参数构建的模型具有粗略估算氮素营养指数的能力,相对预测偏差分别为1.53和1.56;基于随机森林回归构建的多变量冬小麦氮素营养指数估算模型具有极好的预测能力,模型决定系数为0.79,均方根误差为0.13,相对预测偏差为2.25,可以用来进行小区域范围内的冬小麦氮素营养指数遥感填图,为冬小麦氮素营养诊断、产量和品质监测及后期田间管理提供科学依据。  相似文献   

19.
利用HJ-1-A/B CCD2数据反演冬小麦叶面积指数   总被引:2,自引:2,他引:0  
叶面积指数是十分重要的作物生理生态参数,为提高利用国产环境减灾小卫星CCD数据反演冬小麦叶面积指数的精度,该文以5种常用的植被指数(归一化差值植被指数(normalized difference vegetation index,NDVI),增强植被指数(enhanced vegetation index,EVI),双波段增强植被指数(2-bands enhanced vegetation index,EVI2),比值植被指数(ratiovegetation index,RVI),土壤调节植被指数(soil-adjusted vegetation index,SAVI)为基础,结合3种常用的回归模型,按生长阶段比较分析了不同植被指数和回归模型反演叶面积指数的精度。结果表明,除生殖生长阶段外,叶面积指数和5种植被指数之间均有较强的相关关系;指数模型和一元线性模型分别为全生育期和营养生长阶段的最佳拟合模型;EVI在全生育期拟合时的表现好于其他4个指数(R2=0.9348),SAVI则是营养生长阶段表现最佳的指数(R2=0.9404)。该研究为进一步利用植被指数反演叶面积指数提供了参考。  相似文献   

20.
基于无人机高光谱遥感的冬小麦叶面积指数反演   总被引:22,自引:12,他引:10  
叶面积指数(leaf area index,LAI)是评价作物长势和预测产量的重要依据。光谱特征信息作为高光谱遥感的突出优势在追踪LAI动态变化方面极其重要;然而,围绕光谱特征信息所开展的无人机高光谱遥感反演作物LAI的相关研究鲜有报道。该文利用ASD Field Spec FR Pro 2500光谱辐射仪(ASD Field Spec FR Pro 2500 spectroradiometer,ASD)和Cubert UHD185 Firefly成像光谱仪(Cuber UHD185 Firefly imaging spectrometer,UHD185)在冬小麦试验田进行空地联合试验,基于获取的孕穗期、开花期以及灌浆期地面数据和无人机高光谱遥感数据,估测冬小麦LAI。该文选择同步获取的冬小麦冠层ASD光谱反射率数据作为评价无人机UHD185高光谱数据质量的标准,依次从光谱曲线变化趋势、光谱相关性以及目标地物光谱差异三方面展开分析,结果表明458~830 nm(第3~96波段)的UHD185光谱数据可靠,可使用其探测冬小麦LAI,这为今后无人机UHD185高光谱数据的使用提供了参考。该文研究对比分析了UHD185数据计算的红边参数和光谱指数与冬小麦LAI的相关性,结果表明:12种参数中比值型光谱指数RSI(494,610)与LAI高度正相关,是估测LAI的最佳参数;基于比值型光谱指数的对数形式lg(RSI)构建的线性模型展现出lg(RSI)与lg(LAI)较优的线性关系(决定系数R2=0.737,参与建模的样本个数n=103),且lg(LAI)预测值和lg(LAI)实测值高度拟合性(R2=0.783,均方根误差RMSE=0.127,n=41,P0.001);该研究为利用无人机高光谱遥感数据开展相关研究积累了经验,也为发展无人机高光谱遥感的精准农业应用提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号