首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The understanding and prediction of the responses of animal populations to habitat fragmentation is a central issue in applied ecology. The identification of habitat variables associated to patch occupancy is particularly important when habitat quality is affected by human activities. Here, we analyze the influence of patch and landscape characteristics on patch occupancy by the subterranean herbivorous rodent Ctenomys porteousi. Patch occupancy was monitored in a network of 63 habitat patches identified by satellite imagery analysis which extends along almost the whole distributional range for C. porteousi. Suitable habitat for the occurrence of C. porteousi is highly fragmented and represents <10% of the total area in its distributional range. The distribution of C. porteousi in the patch network is affected not only by characteristics of the habitat patches, but also by those of the surrounding landscape matrix. Significant differences between occupied and empty patches were found in several environmental variables. Overall, occupied patches were larger, less vegetated, more connected, and had larger neighbor patches than empty patches. A stepwise procedure on a generalized linear model selected four habitat variables that explain patch occupancy in C. porteousi; it included the effects of habitat quality in the matrix surrounding the patch, average vegetation cover in the patch, minimum vegetation cover in the matrix surrounding the patch, and the area of the nearest neighbor patch. These results indicate that patch occupancy in C. porteousi is strongly influenced by the availability and quality of habitat both in the patch and in the surrounding landscape matrix.  相似文献   

2.
We tested whether size of habitat patches and distance between patches are sufficient to predict the distribution of the mountain vizcacha Lagidium viscacia a large, rock-dwelling rodent of the Patagonian steppe Argentina, or whether information on other patch and landscape characteristics also is required. A logistic regression model including the distance between rock crevices and depth of crevices, distance between a patch and the nearest occupied patch, and whether or not there was a river separating it from the nearest occupied patch was a better predictor of patch occupancy by mountain vizcachas than was a model based only on patch size and distance between patches. Our results indicate that a simple metapopulation analysis based on size of habitat patches and distance between patches may not provide an accurate representation of regional population dynamics if patches vary in habitat quality independently of patch size and features in the matrix alter connectivity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.

Context

Landscape fragmentation significantly affects species distributions by decreasing the number and connectivity of suitable patches. While researchers have hypothesized that species functional traits could help in predicting species distribution in a landscape, predictions should depend on the type of patches available and on the ability of species to disperse and grow there.

Objectives

To explore whether different traits can explain the frequency of grassland species (number of occupied patches) and/or their occupancy (ratio of occupied to suitable patches) across a variety of patch types within a fragmented landscape.

Methods

We sampled species distributions over 1300 grassland patches in a fragmented landscape of 385 km2 in the Czech Republic. Relationships between functional traits and species frequency and occupancy were tested across all patches in the landscape, as well as within patches that shared similar management, wetness, and isolation.

Results

Although some traits predicting species frequency also predicted occupancy, others were markedly different, with competition- and dispersal-related traits becoming more important for occupancy. Which traits were important differed for frequency and occupancy and also differed depending on patch management, wetness, and isolation.

Conclusions

Plant traits can provide insight into plant distribution in fragmented landscapes and can reveal specific abiotic, biotic, and dispersal processes affecting species occurrence in a patch type. However, the importance of individual traits depends on the type of suitable patches available within the landscape.
  相似文献   

4.
We investigated the role of patch attributes and context on patch occupancy of the Lower Keys marsh rabbit (Sylvilagus palustris hefneri). The Lower Keys marsh rabbit is a federally endangered lagomorph endemic to the Lower Keys of Florida. The marsh rabbit occurs in subpopulations on patches of high marsh that interact to form a metapopulation. Between March 1991 and July 1993, all known patches of high marsh in the Lower Keys were surveyed for presence or absence of marsh rabbit pellets three times per year. Of the 59 habitat patches, 20 had pellets present during all of the surveys (occupied patches), 22 had pellets present during at least one survey (variable patches), and 17 never had any pellets present (empty). Ten variables were measured at each of the 59 patches; seven of these variables concerned attributes of the patch (food, cover, patch size), and three were patch context variables (distance of patch to other patches, distance of patch to other features). Two discriminant function analysis (DFA) were performed. The first DFA compared empty patches to occupied patches (both variably and consistently occupied). Patch isolation explained the most variation in patch occupancy followed by area. The second DFA compared the variably occupied sites with the consistently occupied sites, and patch attributes variables involving the type and height of vegetation were significant. Management efforts for the Lower Keys marsh rabbit should be aimed at both improving habitat quality and decreasing distance between patches.  相似文献   

5.
Conservation of populations in fragmented habitats is often based on spatially realistic metapopulation theory, which predicts negative relationships between patch extinction and area and patch colonization and isolation. Cost-distance metrics have been developed to integrate habitat quality into measures of connectivity, and thus may improve predictive power of the area-isolation paradigm. Few studies use empirical data to compare predictive performance of complex cost-distance metrics to simple metrics relying on Euclidean distances. We used 3 years of presence–absence data to examine relative influence of habitat quality, habitat area, and connectivity on occupancy and extinction rates for Poliocitellus franklinii (Franklin’s ground squirrel), a rare grassland species of conservation concern. We calculated connectivity using nearest-neighbor (NN) and incidence function model (IFM) metrics based on Euclidean and cost-distances. Habitat quality, area, and connectivity were all positive predictors for occupancy, but only isolation was a positive predictor of extinction. P. franklinii does not appear to be a tallgrass prairie obligate, but the species distribution is limited by isolation of suitable grassland habitat. A simple NN metric measuring Euclidean distance between a target area and nearest occupied source outperformed IFM (Euclidean and cost-distance) in predicting occupancy and extinction for P. franklinii. Although NN metrics are criticized for considering only the contribution of the source nearest to a target, this simplicity may be acceptable when measuring connectivity for rare species with few occupied habitat patches within dispersal distance.  相似文献   

6.
We investigated patterns in habitat use by the noisy miner (Manorina melanocephala) along farmland-woodland edges of large patches of remnant vegetation (>300 ha) in the highly fragmented box-ironbark woodlands and forests of central Victoria, Australia. Noisy miners exclude small birds from their territories, and are considered a significant threat to woodland bird communities in the study region. Seventeen different characteristics of edge habitat were recorded, together with the detection or non-detection of noisy miners along 129 500-m segments of patch edge. Habitat characteristics ranged from patch-level factors related to patch-edge geometry to site-level floristic factors. Backward (stepwise) logistic regression analyses were used to identify habitat characteristics that were associated with the occupancy of a site by noisy miners. After accounting for the effects of spatial autocorrelation on the occurrence of noisy miners along edges, we identified projections of remnant vegetation from the patch edge into the agricultural matrix (e.g., corners of patches, peninsulas of vegetation) and clumps of trees in the agricultural matrix within 100 m of the edge as significant predictors of the occupancy of edges by noisy miners. This relationship was also confirmed in two other geographically and floristically distinct habitats within Victoria. The use of edges with projections by noisy miners may confer advantages in interspecific territorial defence. In light of these results, we advocate revegetation strategies that attempt to enclose projections within 100 m of the edge, with fencing placed out to this new boundary, to reduce the likelihood of colonisation and domination of an edge by noisy miners. Our study highlights the need for greater consideration to be given to the patterns in habitat use by aggressive edge specialists, particularly in relation to patch-edge geometry and other human-induced components of landscapes.  相似文献   

7.
In fragmented landscapes, plant species persistence depends on functional connectivity in terms of pollen flow to maintain genetic diversity within populations, and seed dispersal to re-colonize habitat patches following local extinction. Connectivity in plants is commonly modeled as a function of the physical distance between patches, without testing alternative dispersal vectors. In addition, pre- and post-dispersal processes such as seed production and establishment are likely to affect patch colonization rates. Here, we test alternative models of potential functional connectivity with different assumptions on source patch effects (patch area and species occupancy) and dispersal (relating to distance among patches, matrix composition, and sheep grazing routes) against empirical patch colonization rates at the community level (actual functional connectivity), accounting for post-dispersal effects in terms of structural elements providing regeneration niches for establishment. Our analyses are based on two surveys in 1989 and in 2009 of 48 habitat specialist plants in 62 previously abandoned calcareous grassland patches in the Southern Franconian Alb in Bavaria, Germany. The best connectivity model S i , as identified by multi-model inference, combined distance along sheep grazing routes including consistently and intermittently grazed patches with mean species occupancy in 1989 as a proxy for pre-dispersal effects. Community-level patch colonization rates depended to equal degrees on connectivity and post-dispersal process. Our study highlights that actual functional connectivity of calcareous grassland communities cannot be approximated by structural connectivity based on physical distance alone, and modeling of functional connectivity needs to consider pre- and post-dispersal processes.  相似文献   

8.
In fragmented landscapes, a species?? dispersal ability and response to habitat condition are key determinants of persistence. To understand the relative importance of dispersal and condition for survival of Nephrurus stellatus (Gekkonidae) in southern Australia, we surveyed 92 woodland remnants three times. This gecko favours early post-fire succession conditions so may be at risk of extinction in the long-unburnt agricultural landscape. Using N-mixture models, we compared the influence of four measures of isolation, patch area and two habitat variables on the abundance and occurrence of N. stellatus, while taking into account detection probability. Patch occupancy was high, despite the long-term absence of fire from most remnants. Distance to the nearest occupied site was the most informative measure of patch isolation, exhibiting a negative relationship with occupancy. Distance to a nearby conservation park had little influence, suggesting that mainland?Cisland metapopulation dynamics are not important. Abundance and occurrence were positively related to ?%-cover of spinifex (Triodia), indicating that niche-related factors may also contribute to spatial dynamics. Patterns of patch occupancy imply that N. stellatus has a sequence of spatial dynamics across an isolation gradient, with patchy populations and source-sink dynamics when patches are within 300?m, metapopulations at intermediate isolation, and declining populations when patches are separated by >1?C2?km. Considering the conservation needs of the community, habitat condition and connectivity may need to be improved before fire can be reintroduced to the landscape. We speculate that fire may interact with habitat degradation and isolation, increasing the risk of local extinctions.  相似文献   

9.
The distribution of plant species in urban vegetation fragments   总被引:21,自引:4,他引:17  
Bastin  Lucy  Thomas  Chris D. 《Landscape Ecology》1999,14(5):493-507
(1) The presence and absence of 22 plant species of various growth forms and habitat associations were analysed in 423 habitat fragments totalling 10.4 km2 in a 268 km2 urban and suburban region, in Birmingham, UK. (2) Multivariate logistic regressions were used to assess the effects of patch geometry and quality on the species distributions. Measures of geometry were area, shape (S-factor), distance from open countryside and various measures of isolation from other patches. Potential habitat for each species was determined quantitatively, and the distribution of each species was considered within a subset of patches containing potentially suitable habitat types. There was found to be a significant positive correlation between the density of patches available to a species and the proportion of these patches which were occupied. (3) Logistic analyses and incidence functions revealed that, for many of the species, occupancy increased with site age, area, habitat number and similarity of adjacent habitats, while increasing distance to the nearest recorded population of the same species decreased the likelihood that a species would be found in a patch. (4) Patterns of occupancy are consistent with increased extinction from small sites, and colonisation of nearby habitats, coupled with an important role for site history. We conclude that spatial dynamics at the scale of the landscape are of importance to the long-term persistence of many plant species in fragmented landscapes, and must be seriously considered in conservation planning and management. These results have direct implications for the siting and connectivity of urban habitat reserves.  相似文献   

10.
Grof-Tisza  Patrick  Pepi  Adam  Holyoak  Marcel  Karban  Richard 《Landscape Ecology》2019,34(5):1131-1143
Context

Patch-based population models predominately focus on factors that affect regional processes namely, patch size and connectivity, as the primary drivers explaining patch occupancy. This trend persists despite the recognition that patch quality can strongly influence population demography at the local scale. The quality of patches is often temporally variable and influenced by abiotic conditions. However, few studies have explicitly investigated how climatic variables influence the spatial and temporal dynamics of spatially-structured populations either directly or indirectly through changes in patch quality.

Objectives

Using a 10-year census of a spatially-structured population of an outbreaking caterpillar, we determined the relative importance of patch quality (determined demographically), connectivity, precipitation, and their interactive effects on patch abundance, occupancy, colonization, and extinction.

Methods

We generated a series of statistical models and performed comparisons using Akaike’s information criterion. We subsequently used likelihood ratio tests to determine the influence of each parameter on model fit.

Results

Patch quality and precipitation were the strongest predictors of the observed dynamics. We found that the dynamics of the spatially-structured population of Arctia virginalis were strongly influenced by precipitation: all patches had a higher probability of occupancy, contained higher abundances of caterpillars, and experienced fewer extinctions following wet winters compared to years following droughts.

Conclusion

These findings suggest that precipitation may act to influence the strength of heterogeneity of patch quality. This work demonstrates that patch-based models that do not include local and climatic factors may produce poor predictions under future climatic regimes.

  相似文献   

11.
Individual movement is a key process affecting the distribution of animals in heterogeneous landscapes. For specialist species in patchy habitat, a central issue is how dispersal distances are related to landscape structure. We compared dispersal distances for cactus bugs (Chelinidea vittiger) on two naturally fragmented landscapes (≤ 4% suitable habitat) with different matrix structures (i.e., vegetation height of nonsuitable habitat between suitable patches). Using mark-release-recapture studies, we determined that most transfers between cactus patches occurred during the mating season. Dispersal distances were reduced by > 50% on the landscape that had reduced structural connectivity due to relatively high matrix structure and low patch density. An experiment with detailed movement pathways demonstrated that greater matrix structure decreased mean step lengths, reduced directionality, and thus decreased net displacement by > 60%. However, habitat edges between two matrix elements that differed substantially in resistance to movement were completely permeable. Therefore, the difference in distributions of dispersal distances between the two landscapes mainly reflected the average resistance of matrix habitat and not the level of matrix heterogeneity per se. Our study highlights the merits of combining estimates of dispersal distances with insights on mechanisms from detailed movement pathways, and emphasizes the difficulty of treating dispersal distances of species as fixed traits independent of landscape structure.  相似文献   

12.
ABSTRACT

Thirty-one strawberry genotypes were evaluated for supporting the reproductive success of the strawberry aphid (Chaetosiphon fragaefolii), a vector of several strawberry viruses. A pure colony of C. fragaefolii was initiated from eggs collected from field strawberry leaves in Fall 2013. In Spring 2014 greenhouse-grown strawberry plants with four to five leaves were placed in screened cages (16 genotypes/cage) and five aphids were placed on each plant. After 30–32 days, the number of aphids in each of four developmental stages was counted on each plant. Total aphid numbers/plant ranged from a mean of 33 on Fragaria chiloensis CFRA 48 (PI 551459) to 279 on F. × ananassa ‘AAC Lila’. Cultivars with relatively low numbers of aphids included ‘Bounty’ (106 aphids), ‘Mira’ (114 aphids), and ‘Annapolis’ (115 aphids). This experiment, part of a larger project on aphids and virus diseases associated with the cultivated strawberry, will inform decisions in the strawberry breeding program.  相似文献   

13.
The storm that struck France on december 26th and 28th 1999 felled 140 million m3 of timber and had a high economic, social and landscape impact. This event offered the opportunity to study large-scale patterns in populations of forest insect pests that would benefit from the abundant breeding material. A large-scale survey was carried out in France in 2000 to sample the most frequently observed species developing on spruce (Ips typographus, Pityogene schalcographus) and pine (Tomicus piniperda, Ips sexdentatus) in 898 locations distributed throughout wind-damaged areas. The local abundance of each species scored on a 0 to 5 scale was analysed using geostatistical estimators to explore the extent and intensity of spatial autocorrelation, and was related to site, stand, and neighbourhood landscape metrics of the forest cover (in particular the interconnection with broadleaf forest patches) found within dispersal distance. All species but I. sexdentatus, which was much less abundant, displayed large-scale spatial dependence and regional variations in abundance. Lower infestation levels per tree (windfalls and standing trees) were observed in stands with a high proportion of wind-damaged trees, which was interpreted as the result of beetles distributing themselves among the available breeding material. More infestations were observed in wind-broken trees as compared to wind-felled trees. More importantly, populations showed significant relationships with the structure of coniferous stands (in particular with the number of coniferous patches). T. piniperda population levels were negatively correlated to the amount of coniferous edge shared with broadleaf forest patches, possibly because of the disruptive effect of non-host volatiles on host-finding processes at the landscape-scale. The differences observed between species regarding patterns and relationships to site, stand, and forest cover characteristics are discussed in relation to the ecological characteristics of each species.  相似文献   

14.
The discipline of landscape ecology recognizes the importance of measuring habitat suitability variables at spatial scales relevant to specific organisms. This paper uses a novel multi-scale hierarchical patch delineation method, PatchMorph, to measure landscape patch characteristics at two distinct spatial scales and statistically relate them to the presence of state-listed endangered yellow-billed cuckoos (Coccyzus americanus occidentalis) nesting in forest patches along the Sacramento River, California, USA. The landscape patch characteristics calculated were: patch thickness, area of cottonwood forest, area of riparian scrub, area of other mixed riparian forest, and total patch area. A third, regional spatial variable, delineating the north and south portions of study area was also analyzed for the effect of regional processes. Using field surveys, the landscape characteristics were related to patch occupancy by yellow-billed cuckoos. The area of cottonwood forest measured at the finest spatial scale of patches was found to be the most important factor determining yellow-billed cuckoo presence in the forest patches, while no patch characteristics at the larger scale of habitat patches were important. The regional spatial variable was important in two of the three analysis techniques. Model validation using an independent data set of surveys (conducted 1987–1990) found 76–82% model accuracy for all the statistical techniques used. Our results show that the spatial scale at which habitat characteristics are measured influences the suitability of forest patches. This multi-scale patch and model selection approach to habitat suitability analysis can readily be generalized for use with other organisms and systems.  相似文献   

15.
To assess corridor effects on movement in Peromyscus polionotus (old-field mice), we used a set of three experimental landscapes that contained multiple patches (1.64 ha) of usable, open habitat embedded in a loblolly pine (Pinus taeda) forest matrix. Some patches were connected by corridors and others were isolated (unconnected). We introduced mice to nest boxes in experimental patches and followed them through the landscapes via trapping. We found weak evidence that the presence of corridors decreased the probability that P. polionotus (particularly females) would disperse or disappear from a patch. In the process of live trapping the patches, we also encountered `feral' P. polionotus, Sigmodon hispidus (cotton rats), and Peromyscus gossypinus (cotton mice). The average number of feral animals did not differ between isolated and connected patches. This suggests that corridors do not act as drift fences that `sieve' individuals out of the matrix and into the patches. However, more male than female P. polionotus and S. hispidus were trapped in isolated patches. This intersexual difference did not exist in connected patches.  相似文献   

16.
Perceptual range is the maximum distance from which an animal can perceive the presence of remote landscape elements such as patches of habitat. Such perceptual abilities are of interest because they influence the probability that an animal will successfully disperse to a new patch in a landscape. Furthermore, understanding how perceptual range differs between species may help to explain differential species sensitivity to patch isolation. The objective of this research was to assess the perceptual range of eastern chipmunks (Tamias striatus), gray squirrels (Sciurus carolinensis), and fox squirrels (Sciurus niger) in fragmented agricultural landscapes. Animals were captured in remote woodlots and translocated to unfamiliar agricultural fields. There they were released at different distances from a woodlot and their movements towards or away from the woodlot were used to assess their ability to perceive forested habitat. Observed perceptual ranges of approximately 120 m for chipmunks, 300 m for gray squirrels, and 400 m for fox squirrels, suggest that differences in landscape-level perceptual abilities may influence the occurrence of these species in isolated habitat patches.  相似文献   

17.
Context

Biodiversity in tropical region has declined in the last decades, mainly due to forest conversion into agricultural areas. Consequently, species occupancy in these landscapes is strongly governed by environmental changes acting at multiple spatial scales.

Objectives

We investigated which environmental predictors best determines the occupancy probability of 68 bird species exhibiting different ecological traits in forest patches.

Methods.

We conducted point-count bird surveys in 40 forest sites of the Brazilian Atlantic forest. Using six variables related to landscape composition and configuration and local vegetation structure, we predicted the occupancy probability of each species accounting for imperfect detections.

Results

Landscape composition, especially forest cover, best predicted bird occupancy probability. Specifically, most bird species showed greater occupancy probability in sites inserted in more forested landscapes, while some species presented higher occurrence in patches surrounded by low-quality matrices. Conversely, only three species showed greater occupancy in landscapes with higher number of patches and dominated by forest edges. Also, several species exhibited greater occupancy in sites harbouring either larger trees or lower number of understory plants. Of uttermost importance, our study revealed that a minimum of 54% of forest cover is required to ensure high (> 60%) occupancy probability of forest species.

Conclusions

We highlighted that maintaining only 20% of native vegetation in private property according to Brazilian environmental law is insufficient to guarantee a greater occupancy for most bird species. We recommend that policy actions should safeguard existing forest remnants, expand restoration projects, and curb human-induced disturbances to minimise degradation within forest patches.

  相似文献   

18.
Habitat area and isolation have been useful predictors of species occupancy and turnover in highly fragmented systems. However, habitat quality also can influence occupancy dynamics, especially in patchy systems where habitat selection can be as important as stochastic demographic processes. We studied the spatial population dynamics of Chrysemys picta (painted turtle) in a network of 90 wetlands in Illinois, USA from 2007 to 2009. We first evaluated the relative influence of metapopulation factors (area, isolation) and habitat quality of focal patches on occupancy and turnover. Next, we tested the effect of habitat quality of source patches on occupancy and turnover at focal patches. Turnover was common with colonizations (n = 16) outnumbering extinctions (n = 10) between the first 2 years, and extinctions (n = 16) outnumbering colonizations (n = 3) between the second 2 years. Both metapopulation and habitat quality factors influenced C. picta occupancy dynamics. Colonization probability was related positively to spatial connectivity, wetland area, and habitat quality (wetland inundation, emergent vegetation cover). Extinction probability was related negatively to wetland area and emergent vegetation cover. Habitat quality of source patches strongly influenced initial occupancy but not turnover patterns. Because habitat quality for freshwater turtles is related to wetland hydrology, a change from drought to wet conditions during our study likely influenced distributional shifts. Thus, effects of habitat quality of source and focal patches on occupancy can vary in space and time. Both metapopulation and habitat quality factors may be needed to understand occupancy dynamics, even for species exhibiting patchy population structures.  相似文献   

19.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Predicting the vulnerability of landscapes to both the initial colonisation and the subsequent spread of invasive species remains a major challenge. The aim of this study was to assess the relative importance of sub-patch level factors and landscape factors for the invasion of the megaforb Heracleum mantegazzianum. In particular, we tested which factors affect the presence in suitable habitat patches and the cover-percentage within invaded patches. For this purpose, we used standard (logistic) regression modelling techniques. The regression analyses were based on inventories of suitable habitat patches in 20 study areas (each 1 km2) in cultural landscapes of Germany. The cover percentage in invaded patches was independent from landscape factors, except for patch shape, and even unsatisfactorily explained by sub-patch level factors included in the analysis (R 2 = 0.19). In contrast, presence of H. mantegazzianum was affected by both local and landscape factors. Woody habitat structure decreased the occurrence probability, whereas vicinity to transport corridors (rivers, roads), high habitat connectivity, patch size and perimeter-area ratio of habitat patches had positive effects. The significance of corridors and habitat connectivity shows that dispersal of H. mantegazzianum through the landscape matrix is limited. We conclude that cultural landscapes of Germany function as patch-corridor-matrix mosaics for the spread of H. mantegazzianum. Our results highlight the importance of landscape structure and habitat configuration for invasive spread. Furthermore, this study shows that both local and landscape factors should be incorporated into spatially explicit models to predict spatiotemporal dynamics and equilibrium stages of plant invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号