首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven years‘ field experiments on application of corn stover and/or cattle manure combined with chemical fertilizers were carried out in Shouyang Dryland Farming Experimental Station. Results showed that the increased available N in the plough layer was mainly influenced by the application of cattle manure; the available P was mainly influenced by the application of chemical fertilizer; the available K was mainly influenced by the incorporation of corn stover. The organic matter contents in the soils treated with corn stover or cattle manure were kept in balance under the experimental conditions. Corn yield and water use efficiency were influenced significantly not only by fertilizer N but also by incorporated corn stover. The results suggested that the highest N uptake, yield and water use efficiency could be obtained at rates of 105 kg fertilizer N, 6000 kg corn stover, and 1500 kg cattle manure per hectare. The experiments supplied information on nutrient recycling and use of corn stover as sources of fodder and organic fertilizer for balancing application of organic and inorganic fertilizer, improving soil fertility and increasing crop yield with incorporation of corn stover in soil.  相似文献   

2.
Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sichuan Basin of China, it is of great importance to study and understand the impacts of different fertilizer amendments on soil organic carbon(SOC) changes with time. A research was carried out to investigate the relationship between soil carbon sequestration and organic carbon input as affected by different fertilizer treatments at two long-term rice-based cropping system experiments set up in early 1980 s. Each experiment consisted of six identical treatments, including(1) no fertilizer(CK),(2) nitrogen and phosphorus fertilizers(NP),(3) nitrogen, phosphorus and potassium fertilizers(NPK),(4) fresh pig manure(M),(5) nitrogen and phosphorus fertilizers plus manure(MNP), and(6) nitrogen, phosphorus and potassium fertilizers plus manure(MNPK). The results showed that annual harvestable carbon biomass was the highest in the treatment of MNPK, followed by MNP and NPK, then M and NP, and the lowest in CK. Most of fertilizer treatments resulted in a significant gain in SOC ranging from 6.48 to 2 9.13% compared with the CK, and raised soil carbon sequestration rate to 0.10–0.53 t ha–1 yr-1. Especially, addition of manure on the basis of mineral fertilizers was very conducive to SOC maintenance in this soil. SOC content and soil carbon sequestration rate under balanced fertilizer treatments(NPK and MNPK) in the calcareous purple soil(Suining) were higher than that in the acid purple soil(Leshan). But carbon conversion rate at Leshan was 11.00%, almost 1.5 times of that(7.80%) at Suining. Significant linear correlations between soil carbon sequestration and carbon input were observed at both sites, signifying that the purple soil was not carbon-saturated and still had considerable potential to se questrate more carbon.  相似文献   

3.
To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.  相似文献   

4.
The present study was conducted to see the short term impact of organic and inorganic fertilizers on soil microbial biomass both in spring and summer. Also aimed to observe the correlation between soil microbial biomass and soil DNA. The study concluded that type of fertilizer might alter the soil microbial biomass and DNA contents. In soil treated with organic fertilizers resulted in higher concentrations of microbial biomass and DNA contents in summer as compared to spring dute to increase in temperature. Correspondingly, in case of inorganic fertilizer, concentrations of soil microbial biomass and DNA detected higher in summer instead of spring. The statistical correlation between soil microbial biomass, DNA and ODR in spring and summer along with organic and inorganic fertilizers were calculated highly significant (p>0.01). This study demonstrated the impact of fertilizers and seasonal variations on soil microbial biomass and also revealed significant correlation between soil microbial biomass and soil DNA.  相似文献   

5.
Green manure can be used as a substitute for chemical fertilizer without reducing rice yield. We studied the responses of soil fertility and rice yield to different combinations of Chinese milk vetch(CMV; Astragalus sinicus L.) and chemical fertilizer in a subtropical double-rice cropping system. Our goal is to reduce chemical fertilizer use and decrease environmental contamination. Compared with the recommended rate of chemical fertilizer(CF), both early-and late-rice yields in the two treatments supplied with 15 and 22.5 Mg CMV ha–1 plus 60% CF(represented as 60 A and 60 B, respectively) showed no significant differences while the two treatments supplied with 30 and 37.5 Mg CMV ha–1 plus 60% CF(represented as 60 C and 60 D, respectively) showed significantly higher values. The sustainable yield index(SYI) values in the 60 C and 60 D treatments with double-rice croppong system were significantly higher than those in other treatments(P0.05). Early-rice yield showed a significant positive relationship with the Chinese milk vetch incorporation rate. The coefficients increased annually from 2009 to 2013 and then decreased in 2014. Soil organic matter increased over time by the end of the experiment in all of the treatment groups. Soil organic matter in 60 A, 60 B and 60 C showed no significant difference compared with that in CF, while soil organic matter in 60 D was significantly higher than that in CF. The slopes of soil organic matter and total nitrogen over six years were the highest in 60 C and 60 D. The soil total nitrogen content in 60 A, 60 B, 60 C and 60 D was higher than that in CF, but the differences were not significant(P0.05). Therefore, a relatively high Chinese milk vetch incorporation rate(≥30 Mg ha–1) was more effective in improving the productivity and sustainability of paddy soil. The decreased coefficients of early-rice yield and the Chinese milk vetch incorporation rate in 2014 implied that the benefits of soil fertility and rice yield created by Chinese milk vetch input may decline after five years under a continuously high rate of Chinese milk vetch incorporation.  相似文献   

6.
Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil enzyme activities in order to illustrate the function of soil microbial properties as bio-indicators of soil health. In this study, microbial biomass C and N contents (Cmic & Nmic), soil enzyme activities, and soil fertility with different fertilizer regimes were carried out based on a 15-year long-term fertilizer experiment in Drab Fluvo-aquic soil in Changping County, Beijing, China. At this site, 7 different treatments were established in 1991. They were in a wheat-maize rotation receiving either no fertilizer (CK), mineral fertilizers (NPK), mineral fertilizers with wheat straw incorporated (NPKW), mineral fertilizers with incremental wheat straw incorporated (NPKW+), mineral fertilizers plus swine manure (NPKM), mineral fertilizers plus incremental swine manure (NPKM+) or mineral fertilizers with maize straw incorporated (NPKS). In different fertilization treatments Cmic changed from 96.49 to 500.12 mg kg^-1, and Nmic changed from 35.89 to 101.82 mg kg^-1. Compared with CK, the other treatments increased Cmic & Nmic, Cmic/Corg (organic C) ratios, Cmic/Nmic, urease activity, soil organic matter (SOM), soil total nitrogen (STN), and soil total phosphorus (STP). All these properties in treatment with fertilizers input NPKM+ were the highest. Meantime, long-term combined application of mineral fertilizers with organic manure or crop straw could significantly decrease the soil pH in Fluvo-aquic soil (the pH around 8.00 in this experimental soil). Some of soil microbial properties (Cmic/Nmic, urease activity) were positively correlated with soil nutrients. Cmic/Nmic was significantly correlated with SOM and STN contents. The correlation between catalase activity and soil nutrients was not significant. In addition, except of catalase act  相似文献   

7.
Objective] This study aimed to investigate the improving effect of organic fertilizer on acidified soil as wel as their ef-fects on fruit quality and quantity in Yantai orchard. [Method] Plot experiment was conducted to investigate the effects of organic fertilizer on fruit yield and quality of Red Fuji and chemical properties of acidified soil. [Result] The apple yield in acidified soil applied with organic fertilizer al increased. Under the application of biological organic fertilizer, the apple yield was higher, and it was 8.92% higher than that in the control group. Under the mixed application of chemical fertilizer and biological organic fertiliz-er, the growth and development of apple trees were improved, and the total soluble solid (TSS) content, vitamin C (Vc) content and TSS-acid ratio in mature apples al increased. The application of organic fertilizer significantly reduced soil acidity. Compared with those in the control group, the soil pH value, organic matter content and alkali-hydrolyzable nitrogen content under the ap-plication of biological organic fertilizer were increased by 8.33%, 15.10% and 30.80%, respectively. [Conclusion] The application of biological organic fertilizer could improve the yield of apple in acidified soil.  相似文献   

8.
Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.  相似文献   

9.
Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.  相似文献   

10.
The objective of this study is to provide scientific guidance for optimizing agricultural field nitrogen management that is based on the evaluation of current nitrogen application practice in Jiangsu Province, China, in 2000. The agricultural nitrogen models, consist of the soil mineralization model, the organic manure nitrogen releasing model, and the nitrogenous fertilizer use efficiency model. These models combined with the geographic information system technique were used to describe the spatial variability of nitrogen released from soil and organic manure and to identify its contributing factors. The comparison of the nitrogen fertilizer amount required by croplands, which was simulated by the models with the actual nitrogen fertilizer applied rate, was used to evaluate the current nitrogen application. The results showed that nitrogen was excessively applied in 71.8% croplands, given that the actual crop yield was desired. The excessive nitrogen amounted to 760 kiloton, accounting for 41.5% of the total nitrogen applied. Given that the actual highest yield was desired, nitrogen was reduced in 64.3% croplands. The total shortage of nitrogen was about 800 kiloton. Low use efficiency of nitrogen fertilizer was found in Taihu Lake area, Nanjing-Zhenjiang hilly area, and Xuzhou area, whereas the east beach area of Jiangsu showed an obvious deficiency of nitrogen fertilizer inputs. A balance of nitrogen fertilizer in Jiangsu croplands between excessive and deficient application areas would greatly benefit economic and environmental advantages.  相似文献   

11.
The effects of supplementing 50% of the mineral N fertilizer with organic fertilizer on the metabolism and diversity of soil microbial communities in an oat field were investigated using Biolog-Eco plates. The experiment consisted of five treatments: no fertilizer(CK), mineral N fertilizer applied at 90 and 45 kg ha–1 N in the form of urea(U1 and U2, respectively), and U2 supplemented with organic fertilizer in the form of sheep manure at 90 and 45 kg ha–1 N(U2 OM1 and U2 OM2, respectively). Each treatment had three replications. The experiment was conducted in 2018 and 2019 in Pinglu District, Shanxi Province, China. The carbon source utilization by soil microbial communities, such as amino acids, amines, carbohydrates, carboxylic acids, and polymers, increased when 50% of the mineral N fertilizer was replaced with organic fertilizer in both years. This result was accompanied by increased richness, dominance, and evenness of the microbial communities. The utilization of amino acid, amine, and carboxylic acid carbon sources and community evenness were further improved when the organic fertilizer amount was doubled in both years. Biplot analysis indicated that amines and amino acids were the most representative of the total carbon source utilization by the soil microbial communities in both years. The highest oat yield was achieved at a total N application rate of 135 kg ha–1 in the treatment involving 45 kg ha–1 N in the form of urea and 90 kg ha–1 N in the form of sheep manure in both years. It was concluded that the application of 50% of the conventional rate of mineral N fertilizer supplemented with an appropriate rate of organic fertilizer enhanced both the functional diversity of soil microbial communities and oat yield. Amine and amino acid carbon sources may be used as a substitute for total carbon sources for assessing total carbon source utilization by soil microbial communities in oat fields in future studies.  相似文献   

12.
Ammonia oxidizing (AOB) and denitrifying bacteria (DNB) play an important role in soil nitrogen transformation in natural and agricultural ecosystems. Effects of long-term fertilization on abundance and community composition of AOB and DNB were studied with targeting ammonia monooxygenase (amoA) and nitrite reductase (nirK) genes using polymerase chain reaction- denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR, respectively. A field trial with different fertilization treatments in a rice paddy from Tai Lake region, centre East China was used in this study, including no fertilizer application (NF), balanced chemical fertilizers (CF), combined organic/inorganic fertilizer of balanced chemical fertilizers plus pig manure (CFM), and plus rice straw return (CFS). The abundances and riehnesses of amoA and nirK were increased in CF, CFM and CFS compared to NF. Principle component analysis of DGGE profiles showed significant difference in nirK and amoA genes composition between organic amended (CFS and CFM) and the non-organic amended (CF and NF) plots. Number of amoA copies was significantly positively correlated with normalized soil nutrient richness (NSNR) of soil organic carbon (SOC) and total nitrogen (T-N), and that of nirK copies was with NSNR of SOC, T-N plus total phosphorus. Moreover, nitrification potential showed a positive correlation with SOC content, while a significantly lower denitrification potential was found under CFM compared to under CFS. Therefore, SOC accumulation accompanied with soil nutrient richness under long-term balanced and organic/inorganic combined fertilization promoted abundance and diversity of AOB and DNB in the rice paddy.  相似文献   

13.
The paper compared the effects of application of farm manure with chemical fertilizers on nitrification and denitrification in black soil, the result showed that the numbers of nitrobacterias and denitrobacterias in farm manure treatment were both higher than that of other treatments. The intensity of denitrification in chemical treatment was higher than that of manure treatment. The content of organic matter in soil was correlated with the intensity of nitrification and denitrification, and the coefficients were resnectively 0.9981 and 0.8693.  相似文献   

14.
Application of fertilizer has been found to significantly affect soil N cycling. However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking. We compiled data of observations from 10 long-term fertilization experiments and conducted a meta-analysis of the effects of long-term fertilization on soil gross N transformation rates. The results showed that if chemical fertilizers of N, P and K were applied in balance, soil p H decreased very slightly. There was a significantly positive effect of long-term fertilization, either chemical or organic fertilizers or their combinations, on gross N mineralization rate compared to the control treatment(the mean effect size ranged from 1.21 to 1.25 at 95% confidence intervals(CI) with a mean of 1.23), mainly due to the increasing soil total N content. The long-term application of organic fertilizer alone and combining organic and chemical fertilizer could increase the mineralization-immobilization turnover, thus enhance available N for plant while reduce N losses potential compared to the control treatment. However, long-term chemical fertilizer application did not significantly affect the gross NH4+ immobilization rate, but accelerated gross nitrification rate(1.19; 95% CI: 1.08 to 1.31). Thus, long-term chemical fertilizer alone would probably induce higher N losses potential through NO3– leaching and runoff than organic fertilizer application compared to the control treatment. Therefore, in the view of the effects of long-term fertilization on gross N transformation rates, it also supports that organic fertilizer alone or combination of organic and chemical fertilizer could not only improve crop yield, but also increase soil fertility and reduce the N losses potential.  相似文献   

15.
Field experiment was conducted on mature tea bushes of Qi-Men variety at two different altitudes from sea level i.e. at National Tea Research Institute Shinkiari (1000 m) and on farmer's field in Konsh valley at village Battal (1500 m). Different levels of nitrogen with constant dose of phosphorus and potassium were applied to observe the optimal dose of nutrients for highest yield under local edaphic conditions. The experiment was repeated for three consecutive years. The highest yield of fresh tea leaves were obtained by the application of 420 kg ha^-1 N followed by the application of 360 kg ha^-1 N at 1000 masl. The highest dose of nitrogen also reduced significantly the soil pH in the upper (0-15cm) layer depth during 1998 and 1999. During the year 2000, the reduction in soil pH was observed by the application of highest dose of nitrogen but was non-significant at 5% level. The lower soil depth (15-30 cm) showed the reduction in pH with the highest dose of nitrogen during the experimental year but was statistically non significant. At the higher altitude of 1500 masl the highest yield of fresh tea leaves was obtained by the application of 420 kg ha^-1 during the experimental years but the increase was significant during the year 1999 and 2000. The yield of the fresh tea leaves was positively correlated with the amount of nitrogen application at both the altitudes. The increasing amount of nitrogen decreased the soil pH at both the depths of 0-15cm and 15-30cm. Unlike the lower altitude (1000 m) there was no any significant reduction in the soil pH during 1998 and 1999. A significant reduction in soil pH was found in the year 2000.  相似文献   

16.
The development of more efficient management systems is crucial to achieving high grain yields with high nitrogen use efficiency(NUE). February Orchid-spring maize rotation system is a newly established planting system with the benefits of ground cover and potential wind erosion in northern China. A field experiment was conducted to evaluate the effects of integrated application of February Orchid as green manure with reduction of chemical fertilizers(INTEGRATED) on spring maize yield, N uptake, ammonium volatilization, and soil residual mineral N in northern China. Compared to farmers' traditional fertilization(CON), integrated application of February Orchid as green manure with 30% reduction of nitrogen fertilizers(INTEGRATED) increased maize grain yield and biomass by 9.9 and 10.2%, respectively. The 0–100 cm soil residual Nmin at harvest was decreased by 58.5% and thus nitrogen use efficiency was increased significantly by 26.7%. The nitrogen balance calculation further demonstrated that the INTEGRATED approach performed better than CON with lower apparent nitrogen loss(decreased by 48.9%) which evidenced by the ammonium volatilization of top-dressing fertilizer was decreased by 31.1%, the N_(min) movement to the deeper soil layers was reduced, and the apparent nitrogen leaching loss nearly equal to 0 under the INTEGRATED treatment. Therefore, in northern China, integrated application of green manure and chemical fertilizers is an efficient management approach for improving maize yields and NUE simultaneously.  相似文献   

17.
Organic manure application is an important measure for high yield and good quality vegetable production, whereas organic manure is also a main source of residual antibiotic in soils. A 3-yr experiment was conducted on a fluvo-aguic soil in Tianjin of northern China. The objective of this study was to investigate the effects of different fertilization patterns on yield of six-season vegetables with celery and tomato rotation, and dynamic change of tetracyclines residues in the soil during the sixth growing season(tomato season). The field experiment comprised six treatments depending on the proportion of nitrogen of each type of fertilizer: 4/4 CN(CN, nitrogen in chemical fertilizer), 3/4 CN+1/4 MN(MN, nitrogen in pig manure), 2/4 CN+2/4 MN, 1/4 CN+3/4 MN, 2/4 CN+1/4 MN+1/4 SN(SN, nitrogen in corn straw), and CF(conventional fertilization, the amounts of nitrogen application were 943 and 912 kg N ha–1 for celery and tomato season, respectively). In addition to CF treatment, the amount of nitrogen application in other treatments was greatly reduced and equal(450 and 450 kg N ha–1 for celery and tomato season, respectively). Results showed that the combined application of 3/4 CN+1/4 MN achieved the highest yield and economic benefit in the first four seasons, but addition of straw(2/4 CN+1/4 MN+1/4 SN treatment) performed better in the subsequent two seasons, and the average yields of 2/4 CN+1/4 MN+1/4 SN treatment were respectively higher by 9.9 and 12.8% than those of 4/4 CN treatment, and by 5.6 and 10.5% than those of CF treatment. The residual chlortetracycline(CTC) in manure-amended soil for three consecutive years increased along with the increase of applied amount of pig manure. Under the same amount of pig manure application, content of CTC in straw-amended soil was obviously decreased compared with no straw-amended soil(3/4 CN+1/4 MN treatment), and averagely decreased by 41.9% for four sampling periods in the sixth season. Addition of crop straw facilitated the degradation of CTC in manure-amended soil. As a whole, the conventional fertilization was not the desirable pattern based on yield, economic benefit and environment, the optimal fertilization pattern with the highest yield and profit and the least soil chlortetracycline residue was the treatment of2/4 CN+1/4 MN+1/4 SN under this experimental condition.  相似文献   

18.
Proper application of nitrogen(N) fertilizers and irrigation management are important production practices that can reduce nitrate leaching into groundwater and improve the N use efficiency(NUE). A lysimeter/rain shelter facility was used to study effects of the rate of N fertilization, type of N fertilizer, and irrigation level on key aspects of winter wheat production over three growing seasons(response variables were nitrate transport, N leaching, and NUE). Results indicated that nitrate concentration in the soil profile and N leaching increased with the rate of N fertilization. At the end of the third season, nitrate concentration in the top 0–75 cm layer of soil was higher with manure treatment while urea treatments resulted in higher concentrations in the 100–200 cm layer. With normal irrigation, 3.4 to 15.3% of N from applied fertilizer was leached from the soil, yet no leaching occurred under a stress irrigation treatment. The manure treatment experienced less N leaching than the urea treatment in all cases except for the 180 kg N ha-1 rate in 2011–2012(season 3). In terms of grain yield(GY), dry matter(DM) or NUE parameters, values for the manure treatment were lower than for the urea treatment in 2009–2010(season 1), yet were otherwise higher for urea treatment in season 3. GY and crop nitrogen uptake(NU) were elevated when the rate of N fertilizer increased, while the NUE decreased; GY, DM, and NU increased with the amount of irrigation. Data indicated that reduced rates of N fertilization combined with increased manure application and proper irrigation management can lower nitrate levels in the subsoil and reduce potential N leaching into groundwater.  相似文献   

19.
Zea mays var. saccharata (sweet corn) is an important crops grown for food and feed in the tropics. In Indonesia, most of the land used for crops production is characterized by acid pH and low levels of nitrogen and phosphorus. Phosphorus fertilizers have been widely used to improve soil fertility in Indonesia. Given the high cost of superphosphate (SP), the focus is now on rock phosphate (RP) fertilizer, which is relatively cheaper than SP and shows high solubility in acid condition. The combination of RP and manure during the decomposing process and the addition of decomposing microbes may be a promising technique to overcome the problem. A field experiment was conducted on a vertisol soil (low pH and low available nitrogen and phosphorus). The objective of the research is to evaluate the effect of combinations of manure enriched with RP (granular and non-granular) with three different decomposing microbes (EM4, starTmik and stardec) on sweet corn and dry matter production, phosphorus (P) and calcium (Ca) content in above-ground biomass. A completely randomized design with seven treatments and four replicates was used in this experiment. The size of the plots was 3 m x 2.5 m. The treatments were TO (manure), T1 (manure + EM4), T2 (manure + starTmik), T3 (manure + stardec), T4 (manure granular ~ EM4), T5 (manure granular + starTmik), T6 (manure granular + stardec). The manure was enriched with RP 66 kg P/ha (150 kg P2Os/ha) and inoculated with the biodecomposer according to the assigned treatment. The manure was applied in a rate of 30 t/ha. All plot received 125 kg KC1/ha (150 kg K20/ha) and 200 kg urea/ha as basal fertilization. Sweet corn was harvested 70 d after planting. Sweet corn plants were cut close to the ground and analyzed for dry matter yield (DM) and P and Ca content in the biomass. Result showed that sweet corn and DM yield and P content were not significantly influenced by the treatments. Ca content in the above-gro  相似文献   

20.
The effect of long-term fertilization on soil denitrifying communities was analysed by measuring the abundance and diversity of the nitrous oxide(N_2O)reductase gene,nos Z.Soil samples were collected from plots of a long-term fertilization experiment established in 1982 in Suining City,China.The fertilizer treatments were no fertilizer(CK),three chemical fertilizer(CF)treatments(N,NP,NPK),manure(M)alone,and manure with chemical fertilizers(NM,NPM,NPKM).The abundance and diversity of the denitrifying bacteria were assessed by real-time quantitative PCR,terminal restriction fragment length polymorphism(T-RFLP),and cloning and sequencing of nos Z genes.The diversity and abundance of nos Z-denitrifiers was higher in soil amended with manure and chemical fertilizers(CFM)than in soil amended with CF alone,and the highest in topsoil(0–20 cm).The nos Z-denitrifier community composition was more complex in CFM soil than in CF soil.Specific species were detected only in the CFM soil.The abundance of nos Z-denitrifier in the NPKM treatment was approximately two times higher than that in the CK,N,and NPK treatments.Most of the cloned nos Z sequences were closely related to nos Z sequences from Bradyrhizobiaceae and Rhodospirillaceae in Alphaproteobacteria.Of the measured abiotic factors,soil organic matter correlated significantly with the abundance(P0.01);available phosphorus correlated significantly with the topsoil community composition(P0.01),whereas soil organic matter correlated significantly with the subsoil(20–90 cm)community composition(P0.01).This study demonstrated that long-term CFM fertilization affected both the abundance and composition of the nos Z-denitrifier community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号