首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
味精废水菌体蛋白浆料变气压过滤脱水研究   总被引:1,自引:0,他引:1  
研究了味精废水菌体蛋白浆料的过滤特性与变气压过滤脱水的主要工艺 .结果表明 :味精废水絮凝分离得到的菌体蛋白浆料为极可压实性物料 ;对絮凝菌体蛋白浆料宜选用型号为 12 0 - 747的涤纶滤布 ;采用 3× 10 4 Pa (90s)→ 7× 10 4 Pa(90s)→ 12× 10 4 Pa(90s)→ 18× 10 4 Pa(30s)的压力调节方式能使菌体蛋白浆料过滤脱水效果提高  相似文献   

2.
为了确定薄层黄花菜的最佳干燥温度,将薄层黄花菜分别在60,70,80,90,100℃温度下进行干燥试验.结果表明,热风干燥温度低于80℃时,干燥时间长(2~5h),干制品形态饱满,呈黄色;干燥温度高于90℃时,干燥时间短(1.5~2h),产品呈褐色的油条状,由此确定薄层黄花菜的最佳干燥温度为80~90℃.同时建立了薄层黄花菜干燥的数学模型MR=e^-re^n(r=e^-4.31 0.056T,n=0.522 0.01007T,T为温度),可较好地描述干燥过程中物料含水率与干燥时间的关系.  相似文献   

3.
参考作物蒸发蒸腾量的多元线性回归模型研究   总被引:12,自引:0,他引:12  
利用FAOPenman Monteith(1992)公式,根据新疆生产建设兵团农七师127团2004年7月至8月每日的气象资料,计算了逐日参考作物潜在腾发量,建立与实测的日平均气温(T)、日照时数(N1)、风速(W)、相对湿度(RH)的相关关系,Y=0.005+0.162×T-0.03×RH+0.607×W+0.077×N1,Y=-3.382+0.205×T+0.679×W+0.118×N1,Y=3.738+0.131×T-0.047×RH,Y=-1.258+0.218×T。利用这些相关关系进行参考作物潜在腾发量的估算,通过验证精度较高,方法简单。  相似文献   

4.
为摸清广安青花椒锈病发生的影响因子,本研究通过一年的实地观察记录,经统计分析发现,在2.5m×2.5m、2.5m×3.0m、3.0m×3.0m三种栽培密度下,3.0m×3.0m密度的锈病病情指数最低,但与2.5m×3.0m密度下的病情指数差异并不显著(p>0.05)。广安青花椒锈病最早发生在4月底,当温度大于18.71℃,总降雨量大于30.60mm时锈病开始发生,9月中旬后,病叶大量脱落。在5-9月,病情指数与温度呈正相关(R=0.584,p=0.018<0.05),病情指数的增长程度与总降雨量变化正相关(R=0.547,p=0.035<0.05)。高温和高总降雨量有利于病害的流行。  相似文献   

5.
[目的]研究聚合硫酸铁(PFS)对浓缩污泥的脱水效果,为污水处理厂的污泥处理提供理论参考。[方法]以PFS作为调理剂,对浓缩池污泥进行调理,以污泥比阻为主要指标,研究了投药量、调理剂浓度、p H和搅拌强度对污泥过滤脱水性能的影响。[结果]PFS的投加量为1 m L,浓度为6%,p H为7(未调节),快速搅拌速度为120 r/min,慢速搅拌速度为50 r/min的条件下,污泥由较难过滤转变为易过滤,污泥经过沉淀后上清液浊度减小。[结论]PFS对浓缩污泥具有较好的调理效果。  相似文献   

6.
蒸青针形名茶造型关键技术   总被引:1,自引:1,他引:0  
以蒸汽杀青叶的脱水方武、蒸青原料的揉捻造型工艺为重点.开展了蒸青针形名茶造型关键技术的试验研究.结果表明蒸青针形名茶造型的技术关键为采用热风脱水方式脱水;初揉叶含水量(60±2)%,压力以轻-中-轻,中揉时间约10 min,总的揉捻时间约30 min;复揉叶含水量(50±2)%,压力以轻-中-轻,中揉时间约(10±2)min,总的揉捻时间约25 min.  相似文献   

7.
在脱水番茄上施缓控释肥料农博士46(24-14-8),研究不同的施肥量和施肥时期的应用效果,结果表明:基施缓控释肥料农博士46(24-14-8)900 kg/hm2、追施尿素313.5 kg/hm2,脱水番茄与习惯施肥增产10.9%,相对效益增加3 592.18元/hm2。  相似文献   

8.
银杏种子不耐脱水,属于温带非典型性顽拗型种子,在干燥脱水过程中,胚和胚乳的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性呈现出降低-升高-降低的变化趋势;过氧化物酶(POD)活性以及丙二醛(MDA)含量先上升后下降;种子浸泡液的电导率不断增加,活力不断降低。  相似文献   

9.
脱水桂圆肉加工技术中试   总被引:1,自引:0,他引:1  
采用热风逆流薄层快速循环脱水方法加工脱水桂圆肉,其色、香、味和卫生状况优于作坊加工产品,具有加工速度快、规模大、效益好等特点,可在生产上推广应用。  相似文献   

10.
在室内18~25℃条件下,七星瓢虫幼虫及雌成虫的捕食效应均为HollingⅡ型.七星瓢虫各龄幼虫对棉蚜的最大日捕食量为:一龄12.24头,二龄32.98头,三龄133.33头,四龄300.30头;温度与功能反应参数关系如下:α=-0.9301+0.1584T-0.002954T~2,Th=8.135×10~(-3)T+4.324×10~(-4)T+7.78×10~(-6)T~2;不同密度棉蚜和不同种类蚜虫对七星瓢虫的生长发育有显著影响。  相似文献   

11.
【目的】研究传统葡萄干燥工艺对葡萄果实干燥特性及水分扩散系数的影响,为新疆葡萄制干干燥理论提供理论依据。【方法】采用晾干和晒干两种传统的制干工艺制干,分析制干工艺对葡萄干燥特性及水分扩散系数的影响,建立干燥动力学模型。【结果】晒干工艺条件下,环境中的最高温度显著高于晾干环境中温度,最低温度低于晾干环境中最低温度。晒干条件下,葡萄果实的干燥速率高于晾干方式。通过对4种模型的拟合分析,Page模型是最符合葡萄干燥的模型,决定系数R2值最大,卡方检验值χ2和均方根误差R2均值最小,分别为0.998 2、8.55×10-4和0.001 5。通过有效水分扩散系数计算,晒干和晾干工艺的有效水分扩散系数分别为2.036 25×10-8、6.468 8×10-9,晒干工艺的有效水分扩散系数明显大于晾干方式的有效水分扩散系数。【结论】Page模型可以有效的阐述传统葡萄会干工艺条件下葡萄果实水分的变化规律。  相似文献   

12.
木材超声波-真空协同干燥的动力学研究   总被引:3,自引:2,他引:1  
结合超声波和真空干燥的优点,采取超声波 真空协同干燥方法,对核桃楸试件进行干燥。在不同干燥温度、绝对压力、超声波功率和频率的条件下,检测木材干燥过程中内部水分的有效扩散系数,并建立对应条件下的干燥动力学模型。结果表明:超声波 真空协同干燥过程中,木材内部水分有效扩散系数随着温度的升高而增大,而绝对压力对于水分有效扩散系数影响较小;干燥过程中,温度对干燥速率起着主要作用,相同温度、不同压力下木材的干燥速率随着时间的变化趋势一致;通过有效扩散系数和菲克单方向扩散方程得到的干燥模型和实际干燥动力学很接近。   相似文献   

13.
核桃气体射流冲击干燥特性及干燥模型   总被引:1,自引:0,他引:1  
赵珂  肖旭霖 《中国农业科学》2015,48(13):2612-2621
目的】研究不同条件对核桃气体射流冲击干燥的影响,提高核桃干制品质、缩短干燥时间,得到干燥所需活化能并筛选出最适干燥模型。【方法】采用热管和自制气体射流冲击节能干燥技术相结合的方法,利用9组试验,探讨了不同射流风温(40、50和60℃)、介质风速(11、12和13 m·s-1)对物料干燥特性、有效水分扩散系数和活化能的影响,同时通过数据统计对5个干燥模型的拟合筛选,建立5个干燥动力学模型,分别为Page模型、Modified Page模型、Logarithmic模型、Herdenson and Pabis模型和Lemus模型,利用DPS软件对数据进行处理,拟合后得到最终的普遍适用的水分比MR与时间t的参数方程。【结果】与大多数食品物料的气体射流冲击干燥试验类似,核桃的气体射流冲击干燥主要属于降速干燥,没有恒速干燥阶段。风温对核桃气体射流冲击干燥的各个阶段影响均较大,风温越高,水分比下降越快,干燥速率越高。风速对干燥时长几乎无影响,但对于表面水分汽化阶段的速率具有一定影响,能够在这一阶段使干燥速率加快,对内部水分转移阶段的干燥速率几乎无影响。利用这一特点可以采用不同时段改变风温风速的方法,既缩短干燥时长又达到节能目的。总体来说对缩短干燥时间的影响顺序为:风温>风速。核桃气体射流冲击干燥的有效扩散系数随风温升高而增加,风速对其几乎无影响,通过费克第二定律求出了干燥过程中核桃的有效水分扩散系数,其值为0.9674×10-11-2.2231×10-11m2·s-1,由于其具有外壳等结构,所以比一般的食品物料的有效水分扩散系数低1-3个数量级。活化能随风速增大而增加,最低的活化能为27.644 kJ·mol-1。5个模型均具有较高的拟合度,能较好地对核桃气体射流冲击干燥进行描述,其中Modified Page模型有最大的确定系数R2、最小卡方值(χ2)和均方根误差(RMSE)。以Modified Page模型,通过DPS软件进行回归,建立了在风温为40-60℃,风速为11-13 m·s-1条件下核桃物料气体射流冲击干燥普遍适用的水分比MR与时间t的参数方程。【结论】射流风温与介质风速对核桃气体射流冲击干燥曲线、干燥速率曲线、有效水分扩散系数和活化能均有影响。根据在不同条件下得到的拟合值与试验组测定的观察值进行拟合比较,以风温为50℃、介质风速为13 m·s-1时干燥最佳。Modified Page模型与Page模型均适合描述在风温为40-60℃,风速为11-13 m·s-1条件下的核桃气体射流冲击干燥。而Modified Page模型拟合程度更高,是核桃气体射流冲击干燥最优模型。  相似文献   

14.
根据干燥动力学理论,分别设定95、100、105℃为热风对流干燥参数和80、160、240 W为微波干燥参数,对植物纤维发泡材料的热风对流和微波干燥的干燥特性进行了研究,并对干燥动力学特性进行数学模型拟合。研究表明,当绝对含水率≤100%,植物纤维发泡材料的热风对流干燥出现传热传质困难,干燥效率降低。而微波干燥速率稳定,干燥曲线呈近似直线线性关系。植物纤维发泡材料的干燥动力学模型可由多项式模型来表示。  相似文献   

15.
香菇微波真空干燥特性及其动力学   总被引:4,自引:2,他引:2  
探讨了微波功率、真空度和装载量对香菇干燥速率的影响,并对试验数据进行拟合,建立干燥动力学模型.结果表明:香菇微波真空干燥过程按降水速率大小分为加速、恒速和降速3个阶段;干燥速率随微波功率的增大和装载量的减少而明显加快,真空度对干燥速率的影响较小,不同真空度对应的干燥时间较为接近;香菇微波真空干燥的动力学模型满足Page方程.  相似文献   

16.
低温下水稻的薄层干燥模型   总被引:10,自引:0,他引:10  
进行了低温水稻的薄层干燥试验,建立了薄层干燥数学模型。试验结果表明,预测值与实测值一致性较好,所建数学模型可用于描述低温下水稻的薄层干燥。  相似文献   

17.
[目的]研究木材干燥过程的Elman神经网络模型。[方法]在人工神经网络理论的基础上,选用Elman神经网络建立木材干燥过程模型。针对木材干燥过程的特点,Elman神经网络利用木材干燥过程材堆的温度、湿度以及对应的木材含水率建立模型。[结果]通过实际干燥过程数据对模型的准确度进行验证,结果表明Elman神经网络利用少量数据就可以建立模型,并且模型预测精度高,对数据的联想记忆和优化能力强。[结论]Elman神经网络建立的木材干燥过程模型准确,对于提高木材干燥过程的控制水平具有重要研究意义。  相似文献   

18.
紫薯气体射流冲击干燥效率及干燥模型的建立   总被引:5,自引:2,他引:3  
【目的】为了提高紫薯干制品质、提高干燥效率,研究不同条件对紫薯气体射流冲击干燥特性的影响并筛选出最适干燥模型。【方法】采用自制气体射流冲击干燥机干燥紫薯片,探讨风温、风速、预处理和切片厚度对物料干燥特性和水分有效扩散系数的影响。利用数据统计对6个干燥模型进行拟合筛选。【结果】与大多数食品物料干燥试验结果一样,紫薯的气体射流冲击干燥主要属于降速干燥。预处理可增加物料初温且使物料更快达到干燥环境温度,但降低干燥速率并延长干燥时间。干燥速率随着切片厚度增加而降低,但随着风温和风速的增加而增加。物料厚度和风速对物料升温影响小,但风温对物料升温有较大影响,随着风温增加会延长物料达到干燥环境温度所需时间。有效扩散系数随着片层厚度、风温和风速的增加而增加,最高有效水分扩散系数为7.0033×10-10 m2•s-1。所有模型都能较好地描述紫薯气体射流冲击干燥过程中紫薯的水分变化规律,其中Modified Henderson and Pabis模型有最大确定系数,最小卡方值和均方根误差。【结论】风温、风速、切片厚度、预处理对紫薯气体射流冲击干燥曲线、干燥速率曲线和温度、有效水分扩散系数均有影响。在风温50—80℃,风速10—13 m•s-1且切片厚度为1.87—4.80 mm条件下,Modified Henderson and Pabis模型是拟合紫薯干燥曲线的最适模型。  相似文献   

19.
微波干制紫心甘薯片干燥特性及其对色素的影响   总被引:1,自引:0,他引:1  
进行了微波干燥紫心甘薯片脱水试验,获得了微波干燥紫心甘薯片失水规律,建立了紫心甘薯片微波干燥模型,以采用Page方程拟合较好。考察微波干燥对紫心甘薯色素的影响,结果表明:在微波功率700W、切片厚度6mm、前期干燥时间20~50s,获得的产品色素含量较高。  相似文献   

20.
切片土豆干燥中传热过程模拟与分析   总被引:4,自引:0,他引:4       下载免费PDF全文
提出了切片土豆内部传热模型,内部传质模型,进行了土豆干燥时传热过程的模拟,并作了实验验证.结果表明:模拟值和实测值十分接近,最大相对偏差小于1.8%;因此用该模拟土豆片干燥中传热过程是可行的.模拟结果还显示:物料内各处温度变化不同;在整个干燥过程中,各层的温度梯度随干燥时间先变大,随后逐渐变小,到干燥后期,各层温度趋于一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号